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Abstract. Mobile photography has made great strides in recent years.
However, low light imaging remains a challenge. Long exposures can
improve signal-to-noise ratio (SNR) but undesirable motion blur can
occur when capturing dynamic scenes. Consequently, imaging pipelines
often rely on computational photography to improve SNR by fusing
multiple short exposures. Recent deep network-based methods have been
shown to generate visually pleasing results by fusing these exposures in a
sophisticated manner, but often at a higher computational cost.
We propose an end-to-end trainable burst denoising pipeline which jointly
captures high-resolution and high-frequency deep features derived from
wavelet transforms. In our model, precious local details are preserved in
high-frequency sub-band features to enhance the final perceptual quality,
while the low-frequency sub-band features carry structural information for
faithful reconstruction and final objective quality. The model is designed to
accommodate variable-length burst captures via temporal feature shifting
while incurring only marginal computational overhead, and further trained
with a realistic noise model for the generalization to real environments.
Using these techniques, our method attains state-of-the-art performance
on perceptual quality, while being an order of magnitude faster.
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1 Introduction

Image and video denoising are fundamental low-level vision tasks that have
been studied for decades. Noise reduction is even more critical with the explosive
growth of mobile cameras with small apertures and sensors that have limited light
capture capabilities, making it difficult to acquire images in low light conditions.
An effective denoising model could improve the visual quality of captures under
such constraints, and immediately underpins many downstream computer vision
and image processing applications.

The traditional approach to dealing with noise under low light situations is
to increase the shutter time, allowing the sensor to collect more light to reduce
the dominant photon noise. However, this approach requires that the camera be
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stable during the exposure and cannot handle object motion and corresponding
motion blur well. An alternate approach is to capture multiple short-exposure
frames (or bursts) to approximately capture an equivalent number of photons as
long exposure, while also avoiding motion blur. Although producing a final high
SNR image requires image registration which adds computational overhead, with
advances in camera technology and dedicated compute units, burst capturing
mode is now quite popular (e.g. Deep Fusion [1] and Night Sight [2].)

In the last decade, researchers have proposed various multi-frame noise re-
duction techniques for burst captures or videos [3,4,5,6]. Many recently proposed
burst denoising techniques employ deep learning to improve the state-of-the-
art [7,8,9,10,11,12]. However, they are typically not efficient enough for potential
deployment (especially on edge devices). Subsequently, they are often trained
and evaluated on unrealistic noise models which do not generally account for the
signal-dependent and spatially correlated nature of actual noise [13].

In this paper, we propose a more practical end-to-end trainable burst denoising
pipeline, which produces visually pleasing results while being significantly faster
than the state-of-the-art. Specifically, we start from a 2D model which is capable
of encoding high-frequency and high-resolution features from each burst frame,
and then extend it to a pseudo-3D model to handle an arbitrary length of
burst frame sequence, as presented in Sec. 3 in detail. Our proposed 2D model
utilizes both high-resolution and high-frequency deep features, and is trained
with realistic noise modeling. The motivation is that the high-resolution features
have been validated in recent literature [14,15,16] to be drastically beneficial for
preserving fine and detailed information during representation encoding, which is
critical for image restoration tasks, especially for denoising. Moreover, an explicit
feature decomposition is expected to guarantee the preserving of local details
since the implicit decomposition of multi-scale high-resolution architectures might
not be enough. After constructing the 2D model, it is further extended to handle
burst frames of varying lengths using channel-wise temporal feature shifts, which
utilizes temporal cues through all burst frames with limited overhead.

For any burst denoising solution to be practical, it needs to address a few
major challenges. Firstly, it needs to be efficient, especially when considering
resource constrained devices. Second, it needs to be flexible and scalable, being
able to handle an arbitrary length of burst frames. Third, it needs to not only
pursue objective quality, but also enhance perceptual quality and balance the
trade-off between them as indicated in [17]. Our proposed approach is designed
under the guideline to address all these challenges.

Our main contributions are summarized as follows:

Performance: Multi-frame denoising tasks are notably efficiency-demanding,
and usually require real-time efficiency on terminals and edge devices. We present a
novel, end-to-end trainable, deep convolutional burst denoising framework capable
of achieving state-of-the-art performance both qualitatively and quantitatively.
Additionally, reduced computational requirements demonstrate the efficiency of
our model.
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Fig. 1: Our proposed architecture for processing one corrupted frame, x, to
recover one reconstructed frame, y. Inter-frame communication is facilitated
through mechanisms illustrated in Figure 2.

Features: To our knowledge, this is the first work that brings up the joint
high-resolution and high-frequency feature extraction and fusion in denoising
tasks. Systematic ablation studies and experiments are conducted to validate the
efficacy of extracted features on burst denoising.

Flexibility: Our model can be used in both single-image (photo) and multi-
image input (burst captures or videos) scenarios. For the multi-image input
scenario, it could work in either a bidirectional offline manner (burst captures)
or a unidirectional online manner (real-time video streams).

2 Background and Related Work

Single-image denoising. Image denoising has been extensively studied, with
many traditional methods being proposed to take advantage of the specific
statistics of natural images for reducing noise, including anisotropic diffusion [18],
bilateral filters [19], total variation methods [20], domain transform methods such
as wavelet transform [21,22], non-local patch-based methods [23], sparsity-based
methods [24], and notably, the BM3D method [25]. Due to the popularity of
deep neural networks, image denoising algorithms [26,27,28,29,30,31,32,33] have
achieved a significant boost in performance. Notable denoising neural networks,
DnCNN [26], and IrCNN [28] predict the residual noise present in the image
instead of the denoised image, and recently, CBDNet [13] was proposed as a blind
denoising model for real photographs. However, it is typically not satisfyingly
effective and efficient to apply single-image denoising methods on multi-image
data to generate consistent non-flickering results, without utilizing temporal cues.

Multi-image denoising. Beyond the longstanding single-image denoising prob-
lem, many algorithms have also been proposed for multi-image (burst or video)
denoising. Many ideas are shared between the two tasks, though burst denoising
methods usually tend to generate or select one denoised frame as output, while
video denoising methods aim to generate frame-by-frame output. When burst
images or videos are available, noise can be reduced using spatial and temporal
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correlations. For example, BM3D has been extended to videos by filtering 3D
blocks formed by grouping similar 2D patches (VBM3D) [4] or 4D blocks formed
by grouping similar spatio-temporal volumes (VBM4D) [5]. [34] proposed a video
denoising approach via the empirical Bayesian estimation of space-time patches.
Liu et al. [6] in the case of processed images and Hasinoff et al. [10] in the case of
raw images showed how to achieve good denoising performance in terms of PSNR
and much higher speeds by exploiting temporal redundancy and averaging time-
consistent pixels. Godard et al. [7] proposed a recurrent network for multi-frame
denoising, where the burst sequence needs to be pre-warped to the reference
frame. Mildenhall et al. [8] designed a convolutional network architecture that
predicts spatially varying kernels for each of the input frames. These adaptive
kernels can be applied to the input burst to correct for small misalignment and
generate a clean output. Kokkinos et al. [11] proposed an iterative approach
for both burst denoising and demosaicking tasks. Xu et al. [35] extended this
approach to 3D deformable kernels for video denoising to sample pixels across
the spatial-temporal space. We focus on the burst denoising task in this paper.

Wavelets in Convolutional Networks. Wavelets were originally proposed
to separate data into different space-frequency components for component-wise
analysis at multiple scales, and has been widely used in various image processing
tasks [36]. Recently, different works have been proposed to incorporate wavelets
with CNNs on various tasks, including deep feature dimension reduction [37],
style transfer [38], super-resolution [39], and image denoising [27]. Different
with most previous wavelet-based denoising networks which interleave wavelet
transform with convolutional layers, we focus on utilizing wavelet transforms
only by replacing the feature rescaling step similar to [37] and [38] to explicitly
decompose the convolutional features to high-frequency and low-frequency sub-
band features, and incorporate with the multi-scale network design.

The rest of this paper is organized as follows: Section 3 presents our proposed
model for burst denoising, including the 2D model for feature extraction, and
extended pseudo-3D model for temporal feature fusion. The data preparation
and noise modeling are described in detail in Section 4. Section 5 demonstrates
and analyzes the experimental results. Limitations and failure cases are presented
in Section 5.6. We conclude this paper in Section 6.

3 Methodology

3.1 Overview

Our focus in this work is to generate a single high-quality clean image from
a burst of 2N noisy frames ({X0, ..., X2N−1}) captured by a handheld camera.
We consider XN or XN+1, namely the center frame, as the reference frame. We
focus on the 8-bit sRGB camera output images as input instead of RAW images
since most phones do not retain raw photos (even when supported). To be more
practical, we developed our model to process images that are pre-processed by
an imaging pipeline. This is more challenging since the noise model is often
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Fig. 2: The main schematic of our proposed model in unidirectional
processing mode. For each burst frame, the 2D model will individually extract
high-resolution and high-frequency features for later fusion. Then interleaved
Temporal Shift Modules facilitate inter-frame communication and extend the
2D model to a full pseudo-3D model. As the forward pass of each per-frame
branch is executed, a subset of activations are stored in a separate buffer and the
corresponding activations from the previous frame are copied to take their place.

considerably altered by different operations such as demosaicking, tone-mapping,
and denoising.

In accordance with the goals for our burst denoising task, we designed a new
deep learning-based pipeline to process noisy bursts. In the following subsections,
we introduce our network architecture, high-resolution and high-frequency feature
extraction, temporal feature fusion mechanism, adaptive and conditional versions
of the model, and training objective. The architecture of our proposed model is
demonstrated in Fig. 2 using the unidirectional frame-by-frame processing manner
as an example. The whole pipeline starts from the 2D model to extract high-
frequency and high-resolution features from each burst frame, and is extended to
the pseudo-3D version through temporal feature shifting. We explored different
options for the 2D feature extraction and 3D feature aggregation, and will present
in detail in the following subsections. Specifically, Sec. 3.2 demonstrates the design
for maintaining high-resolution features and explicitly separating high-frequency
features, and Sec. 3.3 further demonstrate the different feature fusion regimes
along the temporal dimension.

3.2 Features matter in burst denoising

We first introduce how we built the 2D model for extracting the high-resolution
and high-frequency features from each frame. This proposed 2D model can be
directly used for the single image denoising task if needed.
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High-resolution features. Recently high-to-low convolution and on-the-fly
fusion techniques have been proposed for various computer vision tasks [14,15,16].
This helps maintain high-resolution representations through the whole convolu-
tional feature extraction process. Our 2D model builds upon HRNet [15], one
of the recently proposed multi-resolution convolution and fusion architectures,
for high-resolution feature encoding. Our motivation is that the high-resolution
features are expected to enhance the objective quality of the generated best
denoised frame, while maintaining local detail. Our 2D network structure is
illustrated below containing 3 parallel streams.

N11 → N21 → N31

↘ N22 → N32

↘ N33

(1)

where Ns,r is a sub-stream in the sth stage and r is the resolution index. The
resolution index of the first stream is r = 1. The resolution of index r is 1

2r−1 of
the resolution of the first stream. The highest resolution features are preserved
along the top stream Ns,1, and fused along with other streams at last.

High-frequency features. Besides maintaining high-resolution features, to
achieve high visual quality, a denoising model should faithfully recover the
structural information of a given noisy frame while removing noise. Though
the aforementioned multi-scale architectures [14,15,16] are usually designed to
implicitly decompose features into different frequencies, we find that an explicit
decomposition is also beneficial to the multi-frame denoising task. (see Sec. 5).

Inspired by recent work on wavelet pooling and unpooling for convolutional
networks [37,38], we propose to integrate wavelet decomposition along with the
branch of high-resolution features in the multi-scale learning. That being that,
the maintained high-resolution features are explicitly decomposed to different
frequency bands, and processed on-the-fly before fused by wavelet unpooling.
With several popular wavelets designs being proposed before, we finally choose
Haar wavelet to efficiently split the original features into channels that capture
different frequency bands. It results in better denoising and corresponding signal
reconstruction. Specifically in our model, Haar wavelet pooling has four kernels,
{LL> LH> HL> HH>}, where the low and high pass filters are

L> =
1√
2

[
1 1

]
, H> =

1√
2

[
−1 1

]
. (2)

Thus, unlike common pooling operations, the output of the Haar wavelet pooling
has four channels. Here, the low-pass filter captures smooth surface and texture
while the high-pass filters extract vertical, horizontal, and diagonal edge-like
information. For simplicity, we denote the output of each kernel as LL, LH, HL,
and HH, respectively.

One favorable property of wavelet pooling is that the original signal can be
reconstructed by mirroring its operation; i.e., wavelet unpooling, as illustrated in
detail in the supplementary doc. More precisely, wavelet unpooling can fully re-
cover the original signal by performing a component-wise transposed-convolution.
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With this property, our proposed model can reconstruct an image with minimal
information loss and noise amplification. In contrast, there is no exact inverse
for max-pooling so that it is difficult for the encoder-decoder alike networks in
previous work to fully recover the signal. To sum, both the high-resolution and
high-frequency design are utilized in our final 2D model capable of frame-by-frame
denoising, which will be further extended to a (pseudo-) 3D model for multi-frame
burst denoising as instructed in Sec. 3.3.

3.3 Temporal fusion of deep features

In this subsection, we introduce the different temporal feature fusion mechanisms
we utilized for aggregating the information from all burst frames, including the
conventional 3D convolution, and two pseudo-3D regimes, temporal max-pooling
and temporal feature shifting. The final model adopts the temporal feature
shifting as the feature fusion mechanism.

3D Convolution. For multi-frame feature extraction, there usually exist two
flavors of 3D convolution methods, i.e. either feeding all frames into the network
at once (offline mode), or feeding a certain number of frames (e.g. 3 or 5) in a
unidirectional sliding window manner (online mode). For burst denoising, the 3D
network aggregates all frames and jointly learn spatio-temporal features. However,
3D CNNs are computationally expensive [40] and more prone to over-fitting. As
a result, we use 3D convolution as one version of our feature fusion regime, and
further investigate 2 pseudo-3D learning mechanisms for the ablation study.

Temporal Max-pooling. Compared to relatively computationally intensive
real 3D convolutions, pseudo-3D convolution strategies such as temporal max-
pooling have been recently proposed as an alternative for handling feature fusion.
Zaheer et al. [41] and Qi et al. [42] show that any function that maps an unordered
set into a regular vector (or an image) can be approximated by a neural network.
Aittala et al. [9] successfully applied this idea to the burst deblurring task. In
this version of our model, the individual input frame of the set are first processed
separately by identical neural networks with tied weights, yielding a vector (or
an image) of features for each. The features are then pooled by a symmetric
operation, by evaluating either the mean or maximum value of each feature across
the members. This scheme gives the individual frames in the burst a principled
mechanism to contribute their local feature capturing the likely content of the
sharp image.

Temporal Feature Shifting. Another alternative to 3D convolution method,
the Temporal Shift Module (TSM) [43] has been successfully used for video
understanding, and is ported as a feature fusion mechanism for our burst denoising
model. Specifically, given a burst image sequence B, we take all 2N frames
{X0, ..., X2N−1} in the sequence. The aforementioned 2D CNN baseline model
would process each of the frames individually with no temporal modeling, and the
output results are averaged to give the final burst denoising prediction. In contrast,
the TSM module has the same parameters and time cost of computation as 2D
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model. During inference, the frames are processed independently similar to 2D
CNNs. The TSM is then inserted in each residual block (similar to temporal max-
pooling) which enables temporal information fusion at no computational overhead.
In our final model, TSM shifts a small proportion (typically 1/8) of channels
along the temporal dimension, enabling the temporal multiply-accumulate to be
computed inside the 2D convolution of channels instead of using an explicit time
dimension. The temporal shift can be either uni- or bi-directional. In contrast to
temporal max-pooling, TSM’s can preserve information ordering. This allows the
model to handle scene motion and object motion appearing in consecutive burst
frames. For each inserted temporal shift module, the temporal receptive field will
be enlarged by 2, as if running a convolution with the kernel size of 3 along the
temporal dimension. Hence, the final integrated model has a very large temporal
receptive field to conduct highly complicated temporal modeling.

Using the unidirectional temporal feature shifting for burst image denoising
has some unique advantages. First, for each frame, we only need to replace and
cache 1/8 of the features, without any extra computations. Hence, the latency
of per-frame prediction is almost the same as the 2D CNN baseline. Both 3D
Convolution and Temporal max-pooling methods need all the frames to be
fed in the network at once for the inference, which leads to increased latency.
Additionally, the temporal feature shifting enables temporal fusion on the fly at
all levels, improving the model’s robustness to scene motions. In contrast, most
online methods only allow late temporal fusion after feature extraction.

3.4 Loss function

With ground truth reference image Y and the denoised frame Ŷ in linear space,
we directly use a L1 loss on both the pixel intensities and gradient intensities to
train the proposed denoising network:

`(Ŷ , Y ) = λ1

∥∥∥Ŷ − Y ∥∥∥
1

+ λ2

∥∥∥∇Ŷ −∇Y ∥∥∥
1
. (3)

which tries to make the average of all denoising estimations close to the ground
truth Y , with λ1+λ2 = 1 (both set to a constant of 0.5 in our experiments). For fair
comparisons with previous approaches, we do not utilize any adversarial training
mechanism or perceptual loss in the proposed model to favor the perceptual
metric. [8] proposed to add annealing loss for multi-frame training to avoid the
convergence at an undesirable local minima in training, which we finally did not
use as we have not noticed significant differences in our experiments.

4 Data preparation

4.1 Camera Pipeline.

In this work, we follow the camera simulation pipeline in [44] to model realistic
noise, and generate noisy burst sequences for all the synthetic training samples.
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Fig. 3: Noisy image comparison between Gaussian noise modeling and our realistic
noise modeling with inverse ISP.

We encourage readers to check our brief review in the supplementary document
for more details of the camera pipeline we choose and corresponding comparisons.
Specifically for the noise modeling, following [44], the noise parameters and
factors (Gaussian and Poisson noise as additive and multiplicative operations)
are randomly determined for all training samples, as 0-0.1 for Gaussian standard
deviation, 0-0.02 for Poisson multiplication factor, with post-processing. For static
burst synthesis, slight camera motion is simulated with random cropping and
jittering (2-8 pixels) of a single image from the DIV2K dataset. Unfortunately,
scene/object motion cannot be easily added without extra processing such as
inpainting and depth/boundary prediction. For dynamic burst synthesis, we only
add noises since camera and object motion already exist in the original data of
the Vimeo90K dataset.

4.2 Datasets and synthetic burst generation

DIV2K dataset. DIV2K (DIVerse 2K resolution high-quality images) [45] is
a dataset composed of 800 high (2K) resolution images for training with 100
images each for validation and testing respectively (the testing set is not publicly
available). We used the available high-resolution images with the static noisy
bursts synthesis for training and testing respectively.

Vimeo90K dataset. Vimeo90K [46] is built upon 5, 846 selected videos from
vimeo.com, which covers large variety of scenes and actions. The subset we used
for training contains 91, 701 7-frame sequences, extracted from 39K selected video
clips. We used all available 91, 701 7-frame sequences (original clean images) with
our realistic noise modeling for the dynamic noisy bursts synthesis and training
(original data containing various camera and scene/object motion as demonstrated
on the dataset page). Note that though our proposed model supports by design
bursts of arbitrary size, this is not the case for the network proposed in [8]. For a
fair comparison, we duplicate the last frame in each 7-frame sequence to generate
a 8-frame burst for training.

http://data.csail.mit.edu/tofu/dataset.html
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Real noisy burst captures. We also captured a collection of realistic burst
sequences with a handheld device. Most of the bursts are captured under low-
light conditions where burst denoising is typically most useful. There are no
ground-truth clean frames available for this set. We used these real noisy data
to qualitatively evaluate the generalization capability of our model trained on
synthetic bursts with realistic noise modeling.

Noisy ref. frame Our denoised Noisy ref. frame Our denoised

GT Avg. KPN [8] Ours GT Avg. KPN [8] Ours

Fig. 4: The qualitative comparison of our burst denoising model with state-of-the-arts
on synthetic burst captures. Our method well preserves the local details while avoiding
the over-smooth issue. It also introduces less distortion than KPN in terms of the
perceptual quality.

5 Experimental Results

5.1 Overview

After setting up the burst denoising benchmarks, we conducted various exper-
iments for the ablation study on different modules of our model, burst image
denoising, and efficiency analysis. We would like to compare our method to two
most recent deep learning based approaches [11,47]. However, there is no model
or testing data released from [47] as a preprint work. The proposed method in [11]
strictly depends on the Enhanced Correlation Coefficient (ECC) estimation of
the warping matrix that aligns every observation to the reference frame while all
the other methods, including our proposed model, do not have this requirement.
While there is no easy way to conduct a fair comparison with similar training
regimes, we qualitatively evaluate our method on the public released testing set
from [11] (see supplementary), and also tested its computational efficiency in
Table 3 for a better experimental completeness.
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Implementation and training details. We implement our method using
PyTorch [48]. The full proposed model is trained on two NVIDIA GeForce RTX
2080 Ti GPU with 11 GB of memory each. We use the Adam optimizer [49]
and the batch size is 16. The initial learning rate is 10−3 and is reduced to
3 × 10−5 after 80 epochs, which takes around 26 hours in total. For the burst
image denoising experiments, most DIV2K and Vimeo90K data are utilized for
training, and the remaining DIV2K and Vimeo90K data are used for testing
on static burst denoising and dynamic burst denoising respectively. For fair
comparisons, all learning-based approaches such as KPN are trained from scratch
on the DIV2K/Vimeo90K based data,

Table 1: Ablation study. Investigation of the contribution of different modules
in our proposed model. The best results in PSNR (dB) on values on DIV2K [45]
are reported. The + symbol indicates the optional modules, and the × symbols
indicates the exclusive modules and only one of them would work.

Model

+ high-res feature X X X X
+ high-freq feature X X X X

× 3D convolution X X
× Temporal max-pooling X X
× Temporal feature shifting X X X X

PSNR (in dB) 32.35 32.18 32.34 32.79 32.75 32.82 32.73 32.88

Evaluation metrics. We evaluate our proposed model and state-of-the-art
methods based on the standard Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) image quality metrics. Furthermore, there usually exists a trade-
off between objective quality and perceptual quality in image restoration tasks,
as indicated in [17] and [39]. Compared with other burst denoising approaches,
our model better preserves the local details in reconstruction due to utilizing the
high-resolution and high-frequency features, thus is prone to better perceptual
quality and alleviates the commonly occurred over-smoothing issues such as
in VBM4D [5]. Therefore, besides the two objective metrics, we also introduce
one recently popular deep learning-based perceptual metric, namely Learned
Perceptual Image Patch Similarity (LPIPS) [50], for a more comprehensive
comparison and analysis. LPIPS is more sensitive to the distortions from deep
learning-based representations, and prone to the human perceptual judgments.
For fair comparisons, we do not utilize any adversarial training mechanism or
perceptual loss in the proposed model to favor this metric.

5.2 Ablation study

To comprehensively analyze the contributions and significance of different modules
in our proposed method, we first quantitatively assess our full model with a set
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Table 2: The mean PSNR, SSIM, and LPIPS burst denoising results of our
proposed model compared with state-of-the-art algorithms evaluated on the syn-
thetic static burst denoising data generated from DIV2K (left) and dynamic data
generated from Vimeo90K (right).

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Noisy reference frame 23.38 0.6841 0.3361 23.33 0.5337 0.4255

Burst average 24.73 0.6923 0.3159 21.39 0.5164 0.4513

VBM4D [5] 30.81 0.8637 0.2166 27.05 0.6922 0.2869

VNLB [34] 31.52 0.8841 0.1824 27.44 0.7043 0.2720

KPN [8] 32.64 0.8920 0.1772 28.67 0.7319 0.2357

Our Proposed 32.88 0.8855 0.1742 28.61 0.7246 0.2366

of ablations on a synthetic test set, followed by an analysis of its interpretability.
We choose the basic U-Net like residual denoising model as the baseline backbone
2D model for ablation study in feature encoding. The main designs we aim to
analyze in our model include: 1) High-resolution feature encoding: w/ or w/o the
three-stage multi-scale high-resolution convolutional network; 2) High-frequency
feature encoding: w/ or w/o the interleaved wavelet pooling and unpooling
operations to explicitly decompose the feature maps. For temporal feature fusion,
only one mechanism will be integrated with 2D backbones to produce the final
denoised output.

As illustrated in Table 1, when we directly utilize the baseline backbone model
without preserving high-resolution and decomposing high-frequency features,
the denoising network performs fairly well on the testing data. Both the high-
resolution and high-frequency features would consistently boost the denoising
performance, though the high-resolution features tend to make slightly more
contributions.

As to the temporal feature fusion mechanisms, temporal feature shifting
performs comparably well as the 3D convolution with the baseline model, and
both outperforms the temporal max-pooling mechanism. However, temporal
feature shifting demonstrates the capability to be better integrated with high-
resolution and high-frequency features, most possibly due to the ability to learn
shifting the most salient features temporally, and better aggregate cues from all
available burst frames. Combining all the best practices, our full model achieves
the top performance on the testing benchmark.

5.3 Burst denoising qualitative evaluation.

We evaluate different methods first on static noisy bursts derived from DIV2k,
and then on dynamic noisy bursts derived from Vimeo90K. Here, static means
the noisy bursts are generated by altering a single image with random jitter,
disturbance, and shifts, then, finally, realistic noise is added. Therefore, these



Burst Denoising via Temporally Shifted Wavelet Transforms 13

bursts contain no scene motion, only camera motion. In contrast, the dynamic
noisy bursts contain scene motion that cannot be fully modeled by camera
stabilization alone.

Fig. 4 shows examples of the denoising results from the proposed model and
state-of-the-arts. As claimed in recent kernel sampling based methods such as [8]
and [47], the patch-based methods such as VBM4D, and direct prediction based
deep learning methods which directly synthesize the denoising results (either
producing the clean or residual image) is prone to generate over-smoothed results,
and lose the local detail. However, the qualitative results validate the efficacy
of our method, which effectively adopts the high-quality features, and faithfully
synthesizes and reconstructs the details.

Also, the slight simulated camera motion are equally well tackled by our
proposed model, though the kernel-sampling based methods such as KPN are
naturally more robust to slight disturbances, and still outperforms the proposed
method by a little margin on Vimeo90K dataset.

Table 3: Comparison of inference latency (running time per frame) during
testing. We report the time of each method to denoise one color frame of resolution
720×720. For burst denoising, the overall latency can be computed by multiplying
the per-frame latency with the total number of burst frames (e.g., 8 in our
experiments). All deep learning based methods are evaluated on one single
NVIDIA GeForce RTX 2080 Ti GPU. *Note: Values displayed for [34] and [11]
do not include the time required for pre-processing (e.g., motion or warping
matrix estimation), which can be time costing.

Method Latency (s) ↓Megapixels/s ↑

VNLB* [34] 387.24 0.0052

VBM4D [5] 131.49 0.0153

KPN (GPU) [8] 0.597 0.8685

Iterative (GPU)* [11] 0.140 3.7029

Our Proposed (GPU) 0.064 8.1403

5.4 Burst denoising quantitative evaluation.

Furthermore, we quantitatively evaluate our model along with state-of-the-arts
on both the static and dynamic testing set, and the results are demonstrated in
Table 2. Generally, our proposed model performs comparably decently with KPN
on different evaluation metrics. In terms of the objective quality (PSNR and
SSIM), KPN leads a slight margin, especially on the dynamic data which contain
scene and object motion. However, our proposed model consistently outperforms
all state-of-the-arts in terms of perceptual quality, evaluated by the deep learning
based metric LPIPS.
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5.5 Algorithm efficiency

While achieving comparable performances on burst denoising, we further evaluate
all models on efficiency. As illustrated in Table 3, benefiting from the efficient
pseudo-3D feature fusion design, our model is significantly faster than state-of-
the-arts. Empirically, the speed-up is mainly due to the concise network design
and the way temporality is handled. The Haar wavelet transform is efficient,
though bringing an increase of space complexity (more intermediate feature maps
to store) of the model.

5.6 Limitations.

The main limitation of our proposed model is that it is still trained in a non-
blind denoising fashion without taking a noise estimation map as input from an
individual noise estimator such as the ones proposed in [13,51], thus lacking the
capability of adaptive noise-aware burst denoising which is recently popular in
single-image denoising methods. Fig. 2 in the supplementary document demon-
strates a failure of our model on a severely corrupted burst, which is considerably
noisier than examples seen during training. The model struggles to recover the
corrupted detail, but instead produces unsatisfactory artifacts. Integrating the
proposed model with a noise level estimation mechanism is a promising future
research direction to mitigate this problem.

5.7 Generalization to real burst captures.

Finally, we evaluate the generalization capability of our model on real burst noisy
frames. The results qualitatively validates that our proposed model performs
reasonably well on real noisy burst captures, while only being trained on synthetic
data with realistic noise modeling. We aim to collect more real noisy bursts along
with corresponding long-exposure shots as the ground truth, though the problem
is that this regime only works for static scenes.

6 Conclusion and future work

We propose the first unified end-to-end trainable deep burst denoising framework
which effectively utilizes high-resolution and high-frequency features. The pro-
posed model excels both quantitatively and qualitatively, while facilitating joint
spatial-temporal modeling through burst frames at no extra cost. Compared to
the prior state-of-the-art, our the proposed framework is more scalable, lighter,
and faster, thus enabling low-latency burst denoising on edge devices.

Inspired by recent work on extreme low-light image [52] and video [53] en-
hancement, our future work is to support burst shots captured in the extreme dark
environments where noise is significantly amplified. Also, we aim to incorporate
a noise estimator for burst captures to support blind (noise-aware) denoising.
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