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Abstract
Direct Feedback Alignment (DFA) is emerging
as an efficient and biologically plausible alterna-
tive to backpropagation for training deep neural
networks. Despite relying on random feedback
weights for the backward pass, DFA successfully
trains state-of-the-art models such as Transform-
ers. On the other hand, it notoriously fails to train
convolutional networks. An understanding of the
inner workings of DFA to explain these diverg-
ing results remains elusive. Here, we propose
a theory of feedback alignment algorithms. We
first show that learning in shallow networks pro-
ceeds in two steps: an alignment phase, where the
model adapts its weights to align the approximate
gradient with the true gradient of the loss function,
is followed by a memorisation phase, where the
model focuses on fitting the data. This two-step
process has a degeneracy breaking effect: out of
all the low-loss solutions in the landscape, a net-
work trained with DFA naturally converges to the
solution which maximises gradient alignment. We
also identify a key quantity underlying alignment
in deep linear networks: the conditioning of the
alignment matrices. The latter enables a detailed
understanding of the impact of data structure on
alignment, and suggests a simple explanation for
the well-known failure of DFA to train convolu-
tional neural networks. Numerical experiments
on MNIST and CIFAR10 clearly demonstrate de-
generacy breaking in deep non-linear networks
and show that the align-then-memorize process
occurs sequentially from the bottom layers of the
network to the top.
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Introduction
Training a deep neural network on a supervised learning
task requires solving the credit assignment problem: how
should weights deep in the network be changed, given only
the output of the network and the target label of the input?
Today, almost all networks from computer vision to natural
language processing solve this problem using variants of
the back-propagation algorithm (BP) popularised several
decades ago by Rumelhart et al. (1986). For concreteness,
we illustrate BP using a fully-connected deep network of
depthLwith weightsWl in the lth layer. Given an input x ≡
h0, the output ŷ of the network is computed sequentially as
ŷ = fy(aL), with al = Wlhl−1 and hl = g(al), where g is
a pointwise non-linearity. For regression, the loss function
J is the mean-square error and fy is the identity. Given the
error e ≡ ∂J/∂aL = ŷ − y of the network on an input x, the
update of the last layer of weights reads

δWL = −ηeh>L−1 (1)

for a learning rate η. The updates of the layers below are
given by δWl = −ηδalhTl−1, with factors δal defined se-
quentially as

δaBP
l = ∂J/∂al =

(
WT
l+1δal+1

)
� g′ (al) , (2)

with � denoting the Hadamard product. BP thus solves the
credit assignment problem for deeper layers of the network
by using the transpose of the network’s weight matrices to
transmit the error signal across the network from one layer
to the next, see Fig. 1.

Despite its popularity and practical success, BP suffers from
several limitations. First, it relies on symmetric weights
for the forward and backward pass, which makes it a bio-
logically implausible learning algorithm (Grossberg, 1987;
Crick, 1989). Second, BP updates layers sequentially during
the backward pass, preventing an efficient parallelisation of
training, which becomes ever more important as state-of-
the-art networks grow larger and deeper.

In light of these shortcomings, algorithms which only ap-
proximate the gradient of the loss are attracting increasing
interest. Lillicrap et al. (2016) demonstrated that neural
networks can be trained successfully even if the transpose
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Figure 1. Three approaches to the credit assignment problem
in deep neural networks. In back-propagation (BP), the weight
updates δWl are computed sequentially by transmitting the error e
from layer to layer using the transpose of the network’s weights
W>l . In feedback alignment (FA) (Lillicrap et al., 2016), W>l
are replaced by fixed random feedback matrices Fl. In direct
feedback alignment (DFA) (Nøkland, 2016), the error is directly
injected to each layer using random feedback matrices Fl, enabling
parallelized training.

of the network weights W>l are replaced by random feed-
back connections Fl in the backward pass, an algorithm they
called “feedback alignment” (FA):

δaFA
l = (Flδal+1)� g′ (al) . (3)

In this way, they dispense with the need of biologically unre-
alistic symmetric forward and backward weights (Grossberg,
1987; Crick, 1989). The “direct feedback alignment” (DFA)
algorithm of Nøkland (2016) takes this idea one step further
by propagating the error directly from the output layer to
each hidden layer of the network through random feedback
connections Fl:

δaDFA
l = (Fle)� g′ (al) . (4)

DFA thus allows updating different layers in parallel. Fig. 1
shows the information flow of all three algorithms.

While it was initially unclear whether DFA could scale
to challenging datasets and complex architectures (Gilmer
et al., 2017; Bartunov et al., 2018), recently Launay et al.
(2020) obtained performances comparable to fine-tuned BP
when using DFA to train a number of state-of-the-art archi-
tectures on problems ranging from neural view synthesis
to natural language processing. Yet, feedback alignment
notoriously fails to train convolutional networks (Bartunov

et al., 2018; Moskovitz et al., 2018; Launay et al., 2019;
Han & Yoo, 2019). These varied results underline the need
for a theoretical understanding of how and when feedback
alignment works.

Related Work Lillicrap et al. (2016) gave a first theoreti-
cal characterisation of feedback alignment by arguing that
for two-layer linear networks, FA works because the trans-
pose of the second layer of weights W2 tends to align with
the random feedback matrix F1 during training. This weight
alignment (WA) leads the weight updates of FA to align
with those of BP, leading to gradient alignment (GA) and
thus to successful learning. Frenkel et al. (2019) extended
this analysis to the deep linear case for a variant of DFA
called “Direct Random Target Projection” (DRTP), under
the restrictive assumption of training on a single data point.
Nøkland (2016) also introduced a layerwise alignment cri-
terion to describe DFA in the deep nonlinear setup, under
the assumption of constant update directions for each data
point.

Contributions

1. We give an analytical description of DFA dynamics in
shallow non-linear networks, building on seminal work
analysing BP in the limit of infinitely many training sam-
ples (Saad & Solla, 1995a;b; Biehl & Schwarze, 1995).

2. We show that in this setup, DFA proceeds in two steps:
an alignment phase, where the forward weights adapt to
the feedback weights to improve the approximation of the
gradient, is followed by a memorisation phase, where the
network sacrifices some alignment to minimise the loss.
Out of the same-loss-solutions in the landscape, DFA
converges to the one that maximises gradient alignment,
an effect we term “degeneracy breaking”.

3. We then focus on the alignment phase in the setup of
deep linear networks, and uncover a key quantity under-
lying GA: the conditioning of the alignment matrices.
Our framework allows us to analyse the impact of data
structure on DFA, and suggests an explanation for the
failure of DFA to train convolutional layers.

4. We complement our theoretical results with experiments
that demonstrate the occurence of (i) the Align-then-
Memorise phases of learning, (ii) degeneracy breaking
and (iii) layer-wise alignment in deep neural networks
trained on standard vision datasets.

Reproducibility We host all the code to reproduce
our experiments online at https://github.com/
sdascoli/dfa-dynamics.

https://github.com/sdascoli/dfa-dynamics
https://github.com/sdascoli/dfa-dynamics
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Figure 2. Learning dynamics of back-propagation and feedback alignment for sigmoidal and ReLU neural networks learning a
target function. Each plot shows three runs from different initial conditions for every setting, where a shallow neural network with K
hidden nodes tries to learn a teacher network with M hidden nodes. (a) All networks trained using BP in the matched case K = M
achieve perfect test error. (b) Sigmoidal networks achieve perfect test error with DFA, but the algorithm fails in some instances to train
ReLU networks (K =M ) (c) In the over-parametrised case (K > M ), both sigmoidal and ReLU networks achieve perfect generalisation
when trained with DFA. Parameters: N = 500, L = 2,M = 2, η = 0.1, σ0 = 10−2.

1. A two-phase learning process
We begin with an exact description of DFA dynamics in
shallow non-linear networks. Here we consider a high-
dimensional scalar regression task where the inputs x ∈ RN
are sampled i.i.d. from the standard normal distribution.
We focus on the classic teacher-student setup, where the
labels y ∈ R are given by the outputs of a “teacher” network
with random weights (Gardner & Derrida, 1989; Seung
et al., 1992; Watkin et al., 1993; Engel & Van den Broeck,
2001; Zdeborová & Krzakala, 2016). In this section, we
let the input dimension N → ∞, while both teacher and
student are two-layer networks with K,M ∼ O(1) hidden
nodes.

We consider sigmoidal, g(x) = erf (x/
√
2), and ReLU acti-

vation functions, g(x) = max(0, x). We asses the student’s
performance on the task through its the generalisation error,
or test error:

εg(θ, θ̃) ≡
1

2
E [ŷ − y]

2 ≡ 1

2
E
[
e2
]
, (5)

where the expectation E is taken over the inputs for a
given teacher and student networks with parameters θ̃ =
(M, W̃1, W̃2, g) and θ = (K,W1,W2, g). Learning a target
function such as the teacher is a widely studied setup in
the theory of neural networks (Zhong et al., 2017; Advani
et al., 2020; Tian, 2017; Du et al., 2018; Soltanolkotabi et al.,
2018; Aubin et al., 2018; Saxe et al., 2018; Baity-Jesi et al.,
2018; Goldt et al., 2019; Ghorbani et al., 2019; Yoshida &
Okada, 2019; Bahri et al., 2020; Gabrié, 2020).

In this shallow setup, FA and DFA are equivalent, and
only involve one feedback matrix, F1 ∈ RK which back-
propagates the error signal e to the first layer weights W1.
The updates of the second layer of weights W2 are the same
as for BP.

Performance of BP vs. DFA We show the evolution of
the test error (5) of sigmoidal and ReLU students trained
via vanilla BP in the “matched” case K = M in Fig. 2 a,
for three random choices of the initial weights with standard
deviation σ0 = 10−2. In all cases, learning proceeds in
three phases: an initial exponential decay; a phase where
the error stays constant, the “plateau” (Saad & Solla, 1995a;
Engel & Van den Broeck, 2001; Yoshida & Okada, 2019);
and finally another exponential decay towards zero test error.

Sigmoidal students trained by DFA always achieve perfect
generalisation when started from different initial weights
with a different feedback vector each time (blue in Fig. 2
b) raising a first question: if the student has to align its
second-layer weights with the random feedback vector in
order to retrieve the BP gradient (Lillicrap et al., 2016), i.e.
W2 ∝ F1, how can it recover the teacher weights perfectly,
i.e. W2 = W̃2?

For ReLU networks, over-parametrisation is key to the con-
sistent success of DFA: while some students with K = M
fail to reach zero test error (orange in Fig. 2 b), almost ev-
ery ReLU student having more parameters than her teacher
learns perfectly (K = 4M in Fig. 2 c). A second ques-
tion follows: how does over-parameterisation help ReLU
students achieve zero test error?

An analytical theory for DFA dynamics To answer
these two questions, we study the dynamics of DFA in the
limit of infinite training data where a previously unseen sam-
ple (x, y) is used to compute the DFA weight updates (4) at
every step. This “online learning” or “one-shot/single-pass”
limit of SGD has been widely studied in recent and classi-
cal works on vanilla BP (Kinzel & Ruján, 1990; Biehl &
Schwarze, 1995; Saad & Solla, 1995a;b; Saad, 2009; Zhong
et al., 2017; Brutzkus & Globerson, 2017; Mei et al., 2018;
Rotskoff & Vanden-Eijnden, 2018; Chizat & Bach, 2018;
Sirignano & Spiliopoulos, 2019).
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Figure 3. (a) Theory gives exact prediction for the learning dynamics. We plot learning curves for BP and DFA obtained from (i) a
single simulation (solid lines), (ii) integration of the ODEs for BP dynamics (Biehl & Schwarze, 1995; Saad & Solla, 1995a) (orange
dots), (iii) integration of the ODEs for DFA derived here (blue dots). Insets: Teacher second-layer weights (red) as well as the degenerate
solutions (light red) together with the feedback vector F1 (green) and the student second-layer weights v (blue) at three different times
during training with DFA. Parameters: N = 500,K =M = 2, η = 0.1, σ0 = 10−2.
(b) Align-then-Memorise process. Alignment (cosine similarity) between the student’s second layer weights and the feedback vector. In
the align phase, the alignment increases, and reaches its maximal value when the test loss reaches the plateau. Then it decreases in the
memorization phase, as the student recovers the teacher weights.
(c) The degeneracy breaking mechanism. There are multiple degenerate global minima in the optimisation landscape: they are related
through a discrete symmetry transformation of the weights that leaves the student’s output unchanged. DFA chooses the solution which
maximises the alignment with the feedback vector.

We work in the regime where the input dimension N →∞,
while M and K are finite. The test error (5), i.e. a func-
tion of the student and teacher parameters involving a
high-dimensional average over inputs, can be simply ex-
pressed in terms of a finite number of “order parameters”
Q = (Qkl), R = (Rkm), T = (Tmn),

lim
N→∞

εg(θ, θ̃) = εg(Q,R, T,W2, W̃2) (6)

where

Qkl=
W k

1W
l
1

N
, Rkm=

W k
1 W̃

m
1

N
, Tmn=

W̃m
1 W̃

n
1

N
(7)

as well as second layer weights W̃m
2 and W k

2 (Saad & Solla,
1995a;b; Biehl & Schwarze, 1995; Engel & Van den Broeck,
2001). Intuitively, Rkm quantifies the similarity between
the weights of the student’s kth hidden unit and the teacher’s
mth hidden unit. The self-overlap of the kth and lth stu-
dent nodes is given by Qkl, and likewise Tmn gives the
(static) self-overlap of teacher nodes. In seminal work, Saad
& Solla (1995a) and Biehl & Schwarze (1995) obtained
a closed set of ordinary differential equations (ODEs) for
the time evolution of the order parameters Q and R. Our
first main contribution is to extend their approach to the
DFA setup (see SM A for the details), obtaining a set of
ODEs (27) that predicts the test error of a student trained
using DFA (4) at all times. The accuracy of the predic-
tions from the ODEs is demonstrated in Fig. 3 a, where the

comparison between a single simulation of training a two-
layer net with BP (orange) and DFA (blue) and theoretical
predictions yield perfect agreement.

1.1. Sigmoidal networks learn through “degeneracy
breaking”

The test loss of a sigmoidal student trained on a teacher with
the same number of neurons as herself (K = M ) contains
several global minima, which all correspond to fixed points
of the ODEs (27). Among these is a student with exactly
the same weights as her teacher. The symmetry erf(z) =
−erf(−z) induces a student with weights {W̃1, W̃2} to have
the same test error as a sigmoidal student with weights
{−W̃1,−W̃2}. Thus, as illustrated in Fig. 3 c, the problem
of learning a teacher has various degenerate solutions. A
student trained with vanilla BP converges to any one of
these solutions, depending on the initial conditions.

Alignment phase A student trained using DFA has to
fulfil the same objective (zero test error), with an additional
constraint: her second-layer weights W2 need to align with
the feedback vector F1 to ensure the first-layer weights are
updated in the direction that minimises the test error. And
indeed, an analysis of the ODEs (cf. Sec. B) reveals that
in the early phase of training, Ẇ2 ∼ F and so W2 grows
in the direction of the feedback vector F1 resulting in an
increasing overlap between W2 and F1. In this alignment
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phase of learning, shown in Fig. 3 b, W2 becomes perfectly
aligned with F1. DFA has perfectly recovered the weight
updates for W1 of BP, but the second layer has lost its
expressivity (it is simply aligned to the random feedback
vector).

Memorisation phase The expressivity of the student is
restored in the memorisation phase of learning, where the
second layer weights move away from F1 and towards the
global miminum of the test error that maintains the highest
overlap with the feedback vector. In other words, students
solve this constrained optimisation problem by consistently
converging to the global minimum of the test loss that simul-
taneously maximises the overlap between W2 and F1, and
thus between the DFA gradient and the BP gradient. For
DFA, the global minima of the test loss are not equivalent,
this “degeneracy breaking” is illustrated in Fig. 3 c.

1.2. Degeneracy breaking requires
over-parametrisation for ReLU networks

The ReLU activation function possesses the continuous sym-
metry max(0, x) = γmax(0, x/γ) for any γ > 0 prevent-
ing ReLU networks to compensate a change of sign of W k

2

with a change of sign ofW k
1 . Consequently, a ReLU student

can only simultaneously align to the feedback vector F1 and
recover the teacher’s second layer W̃2 if at leastM elements
of F1 have the same sign as W̃2. The inset of Fig. 4 shows
that a student trained on a teacher with M = 2 second-layer
weights W̃m

2 = 1 only converges to zero test error if the
feedback vector has 2 positive elements (green). If instead
the feedback vector has only 0 (blue) or 1 (orange) positive
entry, the student will settle at a finite test error. More gen-
erally, the probability of perfect recovery for a student with
K ≥M nodes sampled randomly is given analytically as:

P (learn) =
1

2K

M∑
k=0

(
K

k

)
. (8)

As shown in Fig. 4, this formula matches with simulations.
Note that the importance of the “correct” sign for the feed-
back matrices was also observed in deep neural networks
by Liao et al. (2016).

1.3. Degeneracy breaking in deep networks

We explore to what extent degeneracy breaking occurs in
deep nonlinear networks by training 4-layer multi-layer
perceptrons (MLPs) with 100 nodes per layer for 1000
epochs with both BP and DFA, on the MNIST and CIFAR10
datasets, with Tanh and ReLU nonlinearities (cf. App. E.2
for further experimental details). The dynamics of the train-
ing loss, shown in the left of Fig. 5, are very similar for BP
and DFA.

From degeneracy breaking, one expects DFA to drive the

2 3 4 5 6 7 8
K

0.2

0.4

0.6

0.8

1.0

1.2

P(
le

ar
n)

Analytical
Numerical

t

g 0 pos
1 pos
2 pos

Figure 4. Over-parameterisation improves performance of
shallow ReLU networks. We show the learning dynamics of
a student with K = 3 hidden nodes trained on a teacher with
M = 2 nodes and W̃m

2 = 1 if the feedback vector has 0, 1, or
2 positive entries. Inset: Probability of achieving zero test error
(Eq. 8, line) compared to the fraction of simulations that con-
verged to zero test error (out of 50, crosses). Other parameters:
N = 500, η = 0.1, σ0 = 10−2.

optimization path towards a special region of the loss land-
scape determined by the feedback matrices. We test this
hypothesis by measuring whether networks trained with
the same feedback matrices from different initial weights
converge towards the same region of the landscape. The
cosine similarity between the vectors obtained by stacking
the weights of two networks trained independently using
BP reaches at most 10−2 (right of Fig. 5), signalling that
they reach very distinct minima. In contrast, when trained
with DFA, networks reach a cosine similarity between 0.5
and 1 at convergence, thereby confirming that DFA breaks
the degeneracy between the solutions in the landscape and
biases towards a special region of the loss landscape, both
for sigmoidal and ReLU activation functions.

This result suggests that heavily over-parametrised neural
networks used in practice can be trained successfully with
DFA because they have a large number of degenerate solu-
tions. We leave a more detailed exploration of the interplay
between DFA and the loss landscape for future work. As
we discuss in Sec. 3 the Align-then-Memorise mechanism
sketched in Fig. 3 c also occurs in deep non-linear networks.

2. How do gradients align in deep networks?
This section focuses on the alignment phase of learning. In
the two-layer setup there is a single feedback vector F1, of
same dimensions as the second layer W2, and to which W2

must align in order for the first layer to recover the true
gradient.
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Figure 5. Degeneracy breaking also occurs in deep neural networks. (Left) We plot the training accuracy and the cosine similarity
between the weights of four-layer fully-connected neural networks with sigmoidal and ReLU activations during training on MNIST and
CIFAR10. Averages taken over 10 runs; for exp. details see Sec. 1.3. (Right) Cartoon of the degeneracy breaking process in the loss
landscape of a deep network: while the optimization paths of models trained with SGD diverge in the loss landscape, with DFA they
converge to a region of the landscape determined by the feedback matrices.

In deep networks, as each layer Wl has a distinct feedback
matrix Fl of different size of Wl, it is not obvious how
the weights must align to ensure gradient alignment. We
study how the alignment occurs by considering deep linear
networks with L layers without bias, without any assump-
tion on the training data. While the expressivity of linear
networks is naturally limited, their learning dynamics is
non-linear and rich enough to give insights that carry over
to the non-linear case both for BP (Baldi & Hornik, 1989;
Le Cun et al., 1991; Krogh & Hertz, 1992; Saxe et al., 2014;
Advani et al., 2020) and for DFA (Lillicrap et al., 2016;
Nøkland, 2016; Frenkel et al., 2019).

2.1. Weight alignment as a natural structure

In the following, we assume that the weights are initialised
to zero. With BP, they would stay zero at all times, but
for DFA the layers become nonzero sequentially, from the
bottom to the top layer. In the linear setup, the updates of
the first two layers at time t can be written in terms of the
corresponding input and error vectors using Eq. (4)1:

δW t
1 = −η(F1et)x

T
t , δW t

2 = −η(F2et)(W1xt)
> (9)

Summing these updates shows that the first layer performs
Hebbian learning modulated by the feedback matrix F1:

W t
1 = −η

∑t−1

t′=0
F1et′x

>
t′ = F1A

t
1, (10)

At1 = −η
∑t−1

t′=0
et′x

>
t′ (11)

1We implicitly assume a minibatch size of 1 for notational
simplicity, but conclusions are unchanged in the finite-batch setup.

Plugging this result into δW t
2 , we obtain:

W t
2 = −η

t−1∑
t′=0

F2et(A
t′

1 xt′)
>F>1 = F2A

t
2F
>
1 , (12)

At2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(xt′ · xt′′)et′e>t′′ . (13)

When iterated, the procedure above reveals that DFA natu-
rally leads to weak weight alignment of the network weights
to the feedback matrices:

Weak WA: W t
1<l<L=FlA

t
lF
>
l−1, W t

L=AtLF
>
L−1,

(14)

where we defined the alignment matrices Atl≥2 ∈ RnL×nL :

Atl≥2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(Bt
′

l xt′) · (Bt
′′

l xt′′)et′e
>
t′′ . (15)

Bl ∈ RnL×nL is defined recursively as a function of the
feedback matrices only and its expression together with
the full derivation is deferred to App. C. These results can
be adapted both to DRTP (Frenkel et al., 2019), another
variant of feedback alignment where et = −yt and to FA
by performing the replacement Fl → FlFl+1 . . . FL−1.

2.2. Weight alignment leads to gradient alignment

Weak WA builds throughout training, but does not directly
imply GA. However, if the alignment matrices become pro-
portional to the identity, we obtain strong weight alignment:

Strong WA: W t
1<l<L ∝ FlF>l−1, W t

L ∝ F>L−1. (16)
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Figure 6. Global alignment dynamics of deep nonlinear net-
works exhibits Align-then-Memorise. Global weight and gradi-
ent alignments, as defined in (18), varying the activation function
and the dataset. Shaded regions represent the (small) variability
over 10 runs.

Additionally, since GA requires Fle ∝W>l+1δal+1 (Eqs. 4
and 2), strong WA directly implies GA if the feedback ma-
trices Fl≥2 are assumed left-orthogonal, i.e. F>l Fl = InL

.
Strong WA of (16) induces the weights, by the orthogonality
condition, to cancel out by pairs of two:

W>l+1δal+1 ∝ FlF>l+1Fl+1 . . . F
>
L−1FL−1e = Fle. (17)

The above suggests that taking the feedback matrices left-
orthogonal is favourable for GA. If the feedback matrices
elements are sampled i.i.d. from a Gaussian distribution,
GA still holds in expectation since E

[
F>l Fl

]
∝ InL

.

Quantifying gradient alignment Our analysis shows
that key to GA are the alignment matrices: the closer they
are to identity, i.e. the better their conditioning, the stronger
the GA. This comes at the price of restricted expressivity,
since layers are encouraged to align to a product of (ran-
dom) feedback matrices. In the extreme case of strong WA,
the freedom of layers l ≥ 2 is entirely sacrificed to allow
learning in the first layer! This is not harmful for the lin-
ear networks as the first layer alone is enough to maintain
full expressivity2. Nonlinear networks, as argued in Sec. 1,
rely on the Degeneracy Breaking mechanism to recover
expressivity.

3. The case of deep nonlinear networks
In this section, we show that the theoretical predictions of
the previous two sections hold remarkably well in deep
nonlinear networks trained on standard vision datasets.

3.1. Weight Alignment occurs like in the linear setup

To determine whether WA described in Sec. 2 holds in the
deep nonlinear setup of Sec. 1.3, we introduce the global

2such an alignment was indeed already observed in the linear
setup for BP (Ji & Telgarsky, 2019).
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Figure 7. Layerwise alignment dynamics reveal sequential
Align-then-Memorise. Layerwise weight and gradient align-
ments as defined in (19), for a ReLU network trained on CIFAR10
with 10% label corruption. Shaded regions represent the (small)
variability over 10 runs.

and layerwise alignment observables:

WA=] (F,W), GA=]
(
GDFA,GBP

)
(18)

WAl≥2 =](Fl,Wl), GAl≥2 =]
(
GDFA
l ,GBP

l

)
, (19)

where ](A,B) = Vec(A) ·Vec(B)/‖A‖‖B‖ and

F =
(
F2F

>
1 , . . . , FL−1F

>
L−2, F

>
L−1

)
,

W(t) =
(
W t

2 , . . . ,W
t
L−1,W

t
L

)
,

G(t) =
(
δat1, . . . , δa

t
L−1

)
.

Note that the layer-wise alignment of Wl with FlF>l−1 was
never measured before: it differs from the alignment of Fl
with Wl+1 . . .WL observed in (Crafton et al., 2019), which
is more akin to GA.

If W and F were uncorrelated, the WA defined in (18)
would be vanishing as the width of the layer grows large.
Remarkably, WA becomes of order one after a few epochs
as shown in Fig. 6 (left), and strongly correlates with GA
(right). This suggests that the layer-wise WA uncovered for
linear networks with weights initialized to zero also drives
GA in the general case.

3.2. Align-then-Memorise occurs from bottom layers to
top

As can be seen in Fig. 6, WA clearly reaches a maximum
then decreases, as expected from the Align-then-Memorise
process. Notice that the decrease is stronger for CIFAR10
than it is for MNIST, since CIFAR-10 is much harder to fit
than MNIST: more WA needs to be sacrificed. Increasing
label corruption similarly makes the datasets harder to fit,
and decreases the final WA, as detailed in SM E.2. However,
another question arises: why does the GA keep increasing
in this case, in spite of the decreasing WA?

To answer this question, we need to disentangle the dynam-
ics of the layers of the network, as in Eq. (19). In Fig. 7,
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Figure 8. Badly conditioned output statistics can hamper
alignment. WA and GA at the final point of training decrease
when the output classes are correlated (β < 1) or of different
variances (α < 1).

we focus on the ReLU network applied to CIFAR10, and
shuffle 10% of the labels in the training set to make the
Align-then-Memorise procedure more easily visible. Al-
though the network contains 4 layers of weights, we only
have 3 curves for WA and GA: WA is only defined for layers
2 to 4 according to Eq. (19), whereas GA of the last layer is
not represented here since it is always equal to one.

As can be seen, the second layer is the first to start align-
ing: it reaches its maximal WA around 1000 epochs (orange
dashed line), then decreases. The third layer starts align-
ing later and reaches its maximal WA around 2000 epochs
(green dashed line), then decreases. As for the last layer,
the WA is monotonically increasing. Hence, the Align-
then-Memorise mechanism operates in a layerwise fashion,
starting from the bottom layers to the top layers.

Note that the WA of the last layers is the most crucial, since
it affects the GA of all the layers below, whereas the WA
of the second layer only affects the GA of the first layer.
It therefore makes sense to keep the WA of the last layers
high, and let the bottom layers perform the memorization
first. This is reminiscent of the linear setup, where all the
layers align except for the first, which does all the learning.
In fact, this strategy enables the GA of each individual layer
to keep increasing until late times: the diminishing WA of
the bottom layers is compensated by the increasing WA of
the top layers.

4. What can hamper alignment?
We demonstrated that GA is enabled by the WA mechanism,
both theoretically for linear networks and numerically for
nonlinear networks. In this section, we leverage our analysis
of WA to identify situations in which GA fails.
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Figure 9. Label corruption hampers alignment in the early
stages of training. We see that the higher the label corruption, the
more time WA and GA take to start increasing, since the network
initially predicts equal probabilities over the output classes.

4.1. Alignment is data-dependent

In the linear case, GA occurs if the alignment matrices pre-
sented in Sec. 2 are well conditioned. Note that if the output
size nL is equal to one, e.g. for scalar regression or binary
classification tasks, then the alignment matrices are simply
scalars, and GA is guaranteed. When this is not the case,
one can obtain the deviation from GA by studying the ex-
pression of the alignment matrices (15). They are formed by
summing outer products of the error vectors et′e>t′′ , where
et = ŷt−yt. Therefore, good conditioning requires the
different components of the errors to be uncorrelated and of
similar variances. This can be violated by (i) the targets y,
or (ii) the predictions ŷ.

(i) Structure of data The first scenario can be demon-
strated in a simple regression task on i.i.d. Gaussian inputs
x ∼ R10. The targets y ∈ R2 are randomly sampled from
the following distribution:

y∼N (0,Σ), Σ=

(
1 α(1− β)

α(1− β) α2

)
, α, β≤ 1.

(20)

In Fig. 8, we show the final WA and GA of a 3-layer ReLU
network trained for 103 epochs on 103 examples sampled
from this distribution (further details in SM E.3). As pre-
dicted, imbalanced (α < 1) or correlated (β < 1) target
statistics hamper WA and GA. Note that the inputs also
come into play in Eq. (15): a more detailed theoretical anal-
ysis of the impact of input and target statistics on alignment
is deferred to SM D.

(ii) Effect of noise For classification tasks, the targets y
are one-hot encodings whose statistics are naturally well
conditioned. However, alignment can be degraded if the
statistics of the predictions ŷ become correlated.

One can enforce such a correlation in CIFAR10 by shuffling
a fraction p of the labels. The WA and GA dynamics of
a 3-layer ReLU network are shown in Fig. 9. At high p,
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the network can only perform random guessing during the
first few epochs, and assigns equal probabilities to the 10
classes. The correlated structure of the predictions prevents
alignment until the network starts to fit the random labels:
the predictions of the different classes then decouple and
WA takes off, leading to GA.

4.2. Alignment is impossible for convolutional layers

A convolutional layer with filters Hl can be represented by
a large fully-connected layer whose weights are represented
by a block Toeplitz matrix φ(Hl) (d’Ascoli et al., 2019).
This matrix has repeated blocks due to weight sharing, and
most of its weights are equal to zero due to locality. In
order to verify WA and therefore GA, the following con-
dition must hold: φ(Hl) ∝ FlF

>
l−1. Yet, due to the very

constrained structure of φ(Hl), this is impossible for a gen-
eral choice of Fl. Therefore, the WA mechanism suggests
a simple explanation for why GA doesn’t occur in vanilla
CNNs, and confirms the previously stated hypothesis that
CNNs don’t have enough flexibility to align (Launay et al.,
2019).

In the case of convolutional layers, this lack of alignment
makes learning near to impossible, and has lead practition-
ers to design alternatives (Han & Yoo, 2019; Moskovitz
et al., 2018). However, the extent to which alignment corre-
lates with good performance in the general setup (both in
terms of fitting and generalisation) is a complex question
which we leave for future work. Indeed, nothing prevents
DFA from finding a good optimization path, different from
the one followed by BP. Conversely, obtaining high gradient
alignment at the end of training is not a sufficient condi-
tion for DFA to retrieve the results of BP, e.g. if the initial
trajectory leads to a wrong direction.
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organising the Les Houches 2020 workshop on Statisti-
cal Physics and Machine Learning where this work was
initiated. We thank Florent Krzakala, Giulio Biroli, Char-
lotte Frenkel, Julien Launay, Martin Lefebvre, Leonardo
Petrini, Iacopo Poli, Levent Sagun and Mihiel Straat for
helpful discussions. MR acknowledges funding from the
French Agence Nationale de la Recherche under grant ANR-
19-P3IA-0001 PRAIRIE. SD acknowledges funding from
PRAIRIE for a visit to Trieste to collaborate on this project.
RO acknowledges funding from the Region Ile-de-France.

References
Advani, M. S., Saxe, A. M., and Sompolinsky, H. High-

dimensional dynamics of generalization error in neural

networks. Neural Networks, 132:428 – 446, 2020.

Aubin, B., Maillard, A., Barbier, J., Krzakala, F., Macris,
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A. Derivation of the ODE
The derivation of the ODE’s that describe the dynamics of
the test error for shallow networks closely follows the one
of Saad & Solla (1995a) and Biehl & Schwarze (1995) for
back-propagation. Here, we give the main steps to obtain
the analytical curves of the main text and refer the reader to
their paper for further details.

As we discuss in Sec. 1, student and teacher are both two-
layer networks with K and M hidden nodes, respectively.
For an input x ∈ RN , their outputs ŷ and y can be written
as

ŷ = φθ(x) =

K∑
k=1

W k
2 g
(
λk
)
,

y = φθ̃(x) =

M∑
m=1

W̃m
2 g (νm) , (21)

where we have introduced the pre-activations λk ≡
W k

1 x/
√
N and νm ≡ W̃m

1 x/
√
N . Evaluating the test error

of a student with respect to the teacher under the squared
loss leads us to compute the average

εg

(
θ, θ̃
)

=
1

2
E x

[
K∑
k=1

W k
2 g
(
λk
)
−

M∑
m=1

W̃m
2 g (νm)

]2
,

(22)
where the expectation is taken over inputs x for a fixed
student and teacher. Since x only enters Eq. (22) via the
pre-activations λ = (λk) and ν = (νm), we can replace the
high-dimensional average over x by a low-dimensional av-
erage over the K +M variables (λ, ν). The pre-activations
are jointly Gaussian since the inputs are drawn element-wise
i.i.d. from the Gaussian distribution. The mean of (λ, ν) is
zero since Exi = 0, so the distribution of (λ, ν) is fully
described by the second moments

Qkl = Eλkλl = W k
1 ·W l

1/N, (23)

Rkm = Eλkνm = W k
1 · W̃m

1 /N, (24)

Tmn = E νmνn = W̃m
1 · W̃n

1 /N. (25)

which are the “order parameters” that we introduced in the
main text. We can thus rewrite the generalisation error (5) as
a function of only the order parameters and the second-layer
weights,

lim
N→∞

εg(θ, θ̃) = εg(Q,R, T,W2, W̃2) (26)

As we update the weights using SGD, the time-dependent
order parameters Q,R, and W2 evolve in time. By choos-
ing different scalings for the learning rates in the SGD up-
dates (4), namely

ηW1 = η, ηW2 = η/N

for some constant η, we guarantee that the dynamics of
the order parameters can be described by a set of ordinary
differential equations, called their “equations of motion”.
We can obtain these equations in a heuristic manner by
squaring the weight update (4) and taking inner products
with W̃m

1 , to yield the equations of motion for Q and R
respectively:

dRkm

dα
= −ηF k1 E

[
g′(λk)νme

]
(27a)

dQk`

dα
= −ηF k1 E

[
g′(λk)λ`e

]
− ηF `1E

[
g′(λ`)λke

]
+ η2F k1 F

`
1E
[
g′(λk)g′(λ`)e2

]
, (27b)

dW k
2

dα
= −ηE

[
g(λk)e

]
(27c)

where, as in the main text, we introduced the error e =
φθ(x)−φθ̃(x). In the limitN →∞, the variable α = µ/N
becomes a continuous time-like variable. The remaining
averages over the pre-activations, such as

E g′(λk)λ`g(νm),

are simple three-dimensional integral over the Gaussian
random variables λk, λ` and νm and can be evaluated an-
alytically for the choice of g(x) = erf(x/

√
2) (Biehl &

Schwarze, 1995) and for linear networks with g(x) = x.
Furthermore, these averages can be expressed only in term
of the order parameters, and so the equations close. We
note that the asymptotic exactness of Eqs. 27 can be proven
using the techniques used recently to prove the equations of
motion for BP (Goldt et al., 2019).

We provide an integrator for the full system of ODEs for
any K and M in the Github repository.

B. Detailed analysis of DFA dynamics
In this section, we present a detailed analysis of the ODE dy-
namics in the matched case K = M for sigmoidal networks
(g(x) = erf (x/

√
2)).

The Early Stages and Gradient Alignment We now use
Eqs. (27) to demonstrate that alignment occurs in the early
stages of learning, determining from the start the solution
DFA will converge to (see Fig. 3 which summarises the
dynamical evolution of the student’s second layer weights).

Assuming zero initial weights for the student and orthogonal
first layer weights for the teacher (i.e. Tnm is the identity
matrix), for small times (t� 1), one can expand the order
parameters in t:

Rkm(t) = tṘkm(0) +O(t2),

Qkl(t) = tQ̇kl(0) +O(t2),

W k
2 (t) = tẆ k

2 (0) +O(t2). (28)
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where, due to the initial conditions, R(0) = Q(0) =
W2(0) = 0. Using Eq. 27, we can obtain the lowest or-
der term of the above updates:

Ṙkm(0) =

√
2

π
ηW̃m

2 F
k
1 ,

Q̇kl(0) =
2

π
η2
(

(W̃ k
2 )2 + (W̃ l

2)2
)
F l1F

k
1 ,

Ẇ k
2 (0) = 0 (29)

Since both Ṙ(0) and Q̇(0) are non-zero, this initial condi-
tion is not a fixed point of DFA. To analyse initial alignment,
we consider the first order term of Ẇ2. Using Eq. (28) with
the derivatives at t = 0 (29), we obtain to linear order in t:

Ẇ k
2 (t) =

2

π2
η2||W̃2||2F k1 t. (30)

Crucially, this update is in the direction of the feedback vec-
tor F1. DFA training thus constrains the student to initially
grow in the direction of the feedback vector and align with
it. This implies gradient alignment between BP and DFA
and dictates into which of the many degenerate solutions in
the energy landscape the student converges.

Plateau phase After the initial phase of learning with
DFA where the test error decreases exponentially, similarly
to BP, the student falls into a symmetric fixed point of the
Eqs. (27) where the weights of a single student node are
correlated to the weights of all the teacher nodes ((Saad &
Solla, 1995a; Biehl & Schwarze, 1995; Engel & Van den
Broeck, 2001)). The test error stays constant while the
student is trapped in this fixed point. We can obtain an
analytic expression for the order parameters under the as-
sumption that the teacher first-layer weights are orthogonal
(Tnm = δnm). We set the teacher’s second-layer weights
to unity for notational simplicity (W̃m

2 = 1) and restrict to
linear order in the learning rate η, since this is the dominant
contribution to the learning dynamics at early times and on
the plateau (Saad & Solla, 1995b). In the case where all
components of the feedback vector are positive, the order
parameters are of the form Qkl = q,Rkm = r,W k

2 = w2

with:

q =
1

2K − 1
, r =

√
q

2
, w2 =

√
1 + 2q

q(4 + 3q)
. (31)

If the components of the feedback vector are not all positive,
we instead obtain Rkm = sgn(F k)r, W k

2 = sgn(F k)w2

and Qkl = sgn(F k) sgn(F l)q. This shows that on the
plateau the student is already in the configuration that max-
imises its alignment with F1. Note that in all cases, the
value of the test error reached at the plateau is the same for
DFA and BP.

Memorisation phase and Asymptotic Fixed Point At
the end of the plateau phase, the student converges to its
final solution, which is often referred to as the specialised
phase (Saad & Solla, 1995a; Biehl & Schwarze, 1995; Engel
& Van den Broeck, 2001). The configuration of the order
parameters is such that the student reproduces her teacher
up to sign changes that guarantee the alignment between
W2 and F1 is maximal, i.e. sgn(W k

2 ) = sgn(F k1 ). The
final value of the test error of a student trained with DFA is
the same as that of a student trained with BP on the same
teacher.

100 102 104 106

t
10 4

10 3

10 2

10 1

100

g

Random
Orthogonal

Figure 10. Test error of a sigmoidal student started with zero initial
weights. The feedback vector F1 is chosen random (blue) and
orthogonal to the teacher’s second layer weights W̃2 (orange).
Parameters: η = 0.1,K =M = 2.

Choice of the feedback vector In the main text, we saw
how a wrong choice of feedback vector F1 can prevent a
ReLU student from learning a task. Here, we show that also
for sigmoidal student, a wrong choice of feedback vector
F1 is possible. As Fig. 10 shows, in the case where the F1

is taken orthogonal to the teacher second layer weights, a
student whose weights are initialised to zero remains stuck
on the plateau and is unable to learn. In contrast, when the
F1 is chosen with random i.i.d. components drawn from the
standard normal distribution, perfect recovery is achieved.

C. Derivation of weight alignment
Since the network is linear, the update equations are (con-
sider the first three layers only):

δW1 = −η(F1e)x
T , (32)

δW2 = −η(F2e)(W1x)>, (33)

δW3 = −η(F3e)(W2W1x)> (34)
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First, it is straightforward to see that

W t
1 = −η

t−1∑
t′=0

F1et′x
>
t′ = F1A

t
1 (35)

At1 = −η
t−1∑
t′=0

et′x
>
t′ (36)

This allows to calculate the dynamics of W t
2 :

δW t
2 = −ηF2et(A

t
1xt)

>F>1 (37)

W t
2 = −η

t−1∑
t′=0

F2et(A
t′

1 xt′)
>F>1 = F2A

t
2F
>
1 (38)

At2 = −η
t−1∑
t′=0

et′(A
t′

1 xt′)
> = η2

t−1∑
t′=0

t′−1∑
t′′=0

(xt′ · xt′′)et′e>t′′ .

(39)

Which in turns allows to calculate the dynamics of W t
3 :

δW t
3 = −ηF3et(F2A

t′

2 F
>
1 F1A

t′

1 xt)
> (40)

W t
3 = −η

t−1∑
t′=0

F3et′(F2A
t′

2 F
>
1 F1A

t′

1 xt)
> = F3A

t
3F
>
2

(41)

At3 = −η
t−1∑
t′=0

F3et′(A
t′

2 F
>
1 F1A

t′

1 xt′)
> (42)

= η2
t−1∑
t′=0

t′−1∑
t′′=0

(At
′

1 xt′) · (At
′′

1 xt′′)et′e
>
t′′ . (43)

By induction it is easy to show the general expression:

At1 = −η
t−1∑
t′=0

et′x
>
t′ (44)

At2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(xt′ · xt′′)et′e>t′′ (45)

Atl≥3 = η2
∑
t,t′=0

(At
′

l−2 . . . A
t′

1 xt′) · (At
′′

l−2 . . . A
t′′

1 xt′′)et′e
>
t′′

(46)

Defining A0 ≡ In0
, one can rewrite this as in Eq. 15

Atl≥2 = η2
t−1∑
t′=0

t′−1∑
t′′=0

(Bt
′

l xt′) · (Bt
′′

l xt′′)et′e
>
t′′ , (47)

Bl = Al−2 · · ·A0. (48)

D. Impact of data structure
To study the impact of data structure on the alignment, the
simplest setup to consider is that of Direct Random Target

Projection (Frenkel et al., 2019). Indeed, in this case the
error vector et = −yt does not depend on the prediction of
the network: the dynamics become explicitly solvable in the
linear case.

For concreteness, we consider the setup of (Lillicrap et al.,
2016) where the targets are given by a linear teacher, y =
Tx, and the inputs are i.i.d Gaussian. We denote the input
and target correlation matrices as follows:

E
[
xx>

]
≡ Σx ∈ Rn0×n0 , (49)

E
[
TT>

]
≡ Σy ∈ RnL×nL (50)

If the batch size is large enough, one can write xtx>t =
E
[
xx>

]
= Σx. Hence the dynamics of Eq. 9 become:

δW t
1 = −η(F1et)x

T
t = ηF1Txtx

>
t = ηF1TΣx (51)

δW t
2 = −η(F2et)(W1xt)

>
= ηF2TΣxW

>
1 (52)

= η2F2

(
TΣ2

xT
>)F>1 (53)

δW t
3 = −η(F3et)(W2W1xt)

>
= ηF3TΣxW

>
1 W

>
2

(54)

= η3F3

(
TΣ2

xT
>) (TΣ2

xT
>)F>2 (55)

From which we easily deduce At1 = ηTΣxt, and the expres-
sion of the alignment matrices at all times:

Atl≥2 = ηl
(
TΣ2

xT
>)l−1 t (56)

As we saw, GA depends on how well-conditioned the aligne-
ment matrices are, i.e. how different it is from the identity.
To examine deviation from identity, we write Σx = In0

+Σ̃x
and Σy = InL

+ Σ̃y , where the tilde matrices are small per-
turbations. Then to first order,

Atl≥2 − InL
∝ (l − 1)

(
Σ̃y + 2T Σ̃xT

>
)

(57)

Here we see that GA depends on how well-conditioned the
input and target correlation matrices Σx and Σy are. In
other words, if the different components of the inputs or the
targets are correlated or of different variances, we expect
GA to be hampered, observed in Sec. 4. Note that due to
the l − 1 exponent, we expect poor conditioning to have an
even more drastic effect in deeper layers.

Notice that in this DRTP setup, the norm of the weights
grows linearly with time, which makes DRTP inapplicable
to regression tasks, and over-confident in classification tasks.
It is clear in this case the the first layer learns the teacher, and
the subsequent layers try to passively transmit the signal.

E. Details about the experiments
E.1. Direct Feedback Alignment implementation

We build on the Pytorch implementation of DFA
implemented in (Launay et al., 2020), accessi-
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ble at https://github.com/lightonai/
dfa-scales-to-modern-deep-learning/
tree/master/TinyDFA. Note that we do not use the
shared feedback matrix trick introduced in this work. We
sample the elements of the feedback matrix Fl from a
centered uniform distribution of scale 1/

√
nl + 1.

E.2. Experiments on realistic datasets

We trained 4-layer MLPs with 100 nodes per layer for 1000
epochs using vanilla SGD, with a batch size of 32 and a
learning rate of 10−4. The datasets considered are MNIST
and CIFAR10, and the activation functions are Tanh and
ReLU.

We initialise the networks using the standard Pytorch ini-
tialization scheme. We do not use any momentum, weight
decay, dropout, batchnorm or any other bells and whistles.
We downscale all images to 14× 14 pixels to speed up the
experiments. Results are averaged over 10 runs.

For completeness, we show in Fig. 11 the results in the main
text for 4 different levels of label corruption. The transition
from Alignment phase to Memorisation phase can clearly be
seen in all cases from the drop in weight alignment. Three
important remarks can be made:

• Alignment phase: Increasing label corruption slows
down the early increase of weight alignment, as noted
in Sec. 4.1.

• Memorization phase: Increasing label corruption
makes the datasets harder to fit. As a consequence,
the network needs to give up more weight alignment
in the memorization phase, as can be seen from the
sharper drop in the weight alignment curves.

• Transition point: the transition time between the
Alignement and Memorization phases coincides with
the time at which the training error starts to decrease
sharply (particularly at high label corruption), and is
hardly affected by the level of label corruption.

E.3. Experiment on the structure of targets

We trained a 3-layer linear MLP of width 100 for 1000
epochs on the synthetic dataset described in the main text,
containing 104 examples. We used the same hyperparame-
ters as for the experiment on nonlinear networks. We choose
5 values for α and β: 0.2, 0.4, 0.6, 0.8 and 1.

In Fig. 12, we show the dynamics of weight alignment for
both ReLU and Tanh activations. We again see the Align-
then-Memorise process distinctly. Notice that decreasing α
and β hampers both the mamixmal weight alignment (at the
end of the alignment phase) and the final weight alignment
(at the end of the memorisation phase).

https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA
https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA
https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA
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(a) No label corruption
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(b) 50% label corruption
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(c) 90% label corruption

Figure 11. Effect of label corruption on training observables. A: Training error. B and C: Weight and gradient alignment, as defined in the
main text. D: Cosine similarity of the weight during training.
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Figure 12. WA is hampered when the output dimensions are correlated (β < 1) or of different variances (α < 1).


