
34

Concurrent Incorrectness Separation Logic

AZALEA RAAD, Imperial College London and Meta, UK

JOSH BERDINE,Meta, UK

DEREK DREYER,MPI-SWS, Germany

PETER W. O’HEARN,Meta and University College London, UK

Incorrectness separation logic (ISL) was recently introduced as a theory of under-approximate reasoning, with

the goal of proving that compositional bug catchers find actual bugs. However, ISL only considers sequential

programs. Here, we develop concurrent incorrectness separation logic (CISL), which extends ISL to account

for bug catching in concurrent programs. Inspired by the work on Views, we design CISL as a parametric

framework, which can be instantiated for a number of bug catching scenarios, including race detection,

deadlock detection, and memory safety error detection. For each instance, the CISL meta-theory ensures the

soundness of incorrectness reasoning for free, thereby guaranteeing that the bugs detected are true positives.

CCS Concepts: • Theory of computation→ Concurrency; Semantics and reasoning; • Software and its
engineering → General programming languages.

Additional Key Words and Phrases: Concurrency, program logics, separation logic, bug catching

ACM Reference Format:
Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Concurrent Incorrectness Separation

Logic. Proc. ACM Program. Lang. 6, POPL, Article 34 (January 2022), 29 pages. https://doi.org/10.1145/3498695

1 INTRODUCTION
Recently there has been a successful trend in automated static analysis tools that use under-

approximate techniques to detect bugs in concurrent programs. The idea behind under-approximation

is to focus on a subset of program behaviours, to ensure one detects only true positives (real bugs)

rather than false positives (spurious bug reports). For instance, RacerD [Blackshear et al. 2018] uses

under-approximation to detect data races in Java programs, while Brotherston et al. [2021] utilise

under-approximation for deadlock detection. RacerD is the state-of-the-art tool in race detection,

significantly outperforming other race detectors in terms of bugs found and fixed: over 3k races

found by RacerD have been fixed before reaching production (see [Blackshear et al. 2018]). More

significantly, it supported the conversion of Facebook’s Android app to a multi-threaded UI model,

performing counter-factual reasoning to detect races that could exist if a class were placed in a

multi-threaded context, before it was placed there; thousands of classes were converted this way,

leading to performance gains in Facebook’s Android app. The deadlock detector of Brotherston et al.

[2021] has also been useful in practice, with over two-hundred deadlocks fixed by Facebook engi-

neers. Fixing deadlocks is especially impactful as they can lead to “app not responding” behaviour,

which can be more difficult for engineers to detect than plain crashes.

Authors’ addresses: Azalea Raad, Imperial College London and Meta, UK, azalea.raad@imperial.ac.uk; Josh Berdine, Meta,

UK, josh@berdine.net; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org; Peter W.

O’Hearn, Meta and University College London, UK, p.ohearn@ucl.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART34

https://doi.org/10.1145/3498695

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

https://doi.org/10.1145/3498695
https://doi.org/10.1145/3498695

34:2 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

These static tools are compositional and run quickly on code changes, often in time proportional

to the size of a code change rather than that of the global codebase. This distinguishes them from

whole-program dynamic testing tools, making them especially well-suited to deployment at code

review time within continuous integration systems (a deployment model emphasised by Google

and Facebook in articles on static analysis at scale [Sadowski et al. 2018; Distefano et al. 2019]).

Unfortunately, useful though they may be, there is currently no well-understood or unifying

theory underpinning such under-approximate analyses. As a result, each time such a tool is

developed, the authors spend a significant amount of technical effort proving a no-false-positives

(NFP) theorem, stating that the bugs found by the tool are indeed real bugs. For instance, in the

case of RacerD this took a separate technical effort by Gorogiannis et al. [2019] to establish its

NFP theorem. In the case of [Brotherston et al. 2021], the authors have developed a large corpus

of lemmas building towards their NFP theorem, requiring significant technical investment and

expertise. Furthermore, each such technical effort proves an NFP theorem for a bespoke tool or

technique, and one cannot easily port those results to other under-approximate tools or techniques.

Ideally, one would have a unifying theory that underpins concurrent under-approximate reasoning

(for proving incorrectness, i.e. the presence of bugs), in the same way that program logics such as

[O’Hearn 2004; Owicki and Gries 1976] provide a foundation for concurrent over-approximate

reasoning (for proving correctness, i.e. the absence of bugs). The key advantage of such a theory is

that tools and techniques underpinned by it are accompanied by an NFP theorem for free.

Fortunately, the recent work of O’Hearn [2019] on incorrectness logic (IL) and its later extension

to incorrectness separation logic (ISL) [Raad et al. 2020] have paved the way toward such a theory.

IL lays the groundwork for a general theory of compositional under-approximate reasoning, and

ISL has extended that to account for pointers and memory errors. However, these logics only apply

to sequential programs and do not support reasoning about concurrent bug catching analyses.

In this paper, we close the gap by extending ISL to support concurrency. This task is far from

straightforward, as witnessed in the correctness setting when extending separation logic (SL)

[O’Hearn et al. 2001] with concurrency. Specifically, the advent of SL at the turn of the century led

to a large body of work extending SL with concurrency, e.g. [O’Hearn 2004; Vafeiadis and Parkinson

2007; Dinsdale-Young et al. 2010; Nanevski et al. 2014; Jung et al. 2015; Raad et al. 2015], using

different techniques to address different verification needs. This led to Parkinson’s observation,

in “The next 700 separation logics” [Parkinson 2010], that there has been “a disturbing trend for

each new library or concurrency primitive to require a new separation logic”. He rightfully argued

“we shouldn’t be inventing new separation logics, but should find the right logic to reason about

interference”. This insight eventually led to the concurrent Views framework [Dinsdale-Young et al.

2013], a parametric meta-theory of concurrent reasoning that distils the essence of separation logic,

and can be instantiated to reason about different concurrent scenarios.

In the same spirit, in order to avoid inventing the “next 700 incorrectness separation logics”, we

develop concurrent incorrectness separation logic (CISL, pronounced “sizzle”), a unifying framework

for concurrent under-approximate reasoning that can be instantiated to prove true-positives

theorems for a range of concurrent bug catching scenarios. To our knowledge, CISL is the very

first formal theory for concurrent under-approximate reasoning and bug catching. As with ISL,

a key advantage of CISL is that it supports compositional reasoning, as needed to account for

compositional analyses like those mentioned above. Moreover, CISL adds compositionality in a

new dimension, namely thread-locality: we can reason about each concurrent thread in isolation.

Thanks to the soundness of CISL, each CISL instance is automatically accompanied by an NFP

theorem. In §4–7, we instantiate CISL to detect concurrency bugs such as data races, deadlocks, and

memory safety errors, along with a proof that the bugs found are real. Our CISL instantiations for

races and deadlocks are inspired by the under-approximate analyses of RacerD and [Brotherston

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:3

free(𝑥);
l: [𝑥] := 1

C

(a) A local memory

safety bug at l

l: free(𝑥) l
′
: free(𝑥)

(b) Data-agnostic (global)

memory safety bugs at l, l
′

free(𝑥);
[𝑧] := 1;

𝑎 := [𝑧];
if (𝑎=1) l: [𝑥] := 1

(c) A data-dependent (global)

memory safety bug at l

1. lock 𝑙 ;
2. unlock 𝑙 ;
3. [𝑥] := 1;

4. lock 𝑙 ;
5. [𝑥] := 2;

6. unlock 𝑙 ;

(d) A data-agnostic (global)

race between lines 3 and 5

1. lock 𝑙 ;
2. [𝑥] := 1;

3. [𝑦] := 1;

4. unlock 𝑙 ;

5. lock 𝑙 ;
6. 𝑎 := [𝑦];
7. unlock 𝑙 ;
8. if (𝑎=1) [𝑥] := 2;

(e) A non-racy program

1. lock 𝑙 ;
2. [𝑥] := 1;

3. [𝑦] := 1;

4. unlock 𝑙 ;

5. lock 𝑙 ;
6. 𝑎 := [𝑦];
7. unlock 𝑙 ;
8. if (*) [𝑥] := 2;

(f) A data-agnostic (global) race be-

tween lines 2 and 8

1. lock 𝑙 ;
2. [𝑧] := 1;

3. unlock 𝑙 ;
4. [𝑥] := 1;

5. lock 𝑙 ;
6. 𝑎 := [𝑧];
7. unlock 𝑙 ;
8. if (𝑎=1) [𝑥] := 2;

(g) A data-dependent (global) race

between lines 4 and 8

Fig. 1. Several examples of memory safety bugs and races where all memory locations 𝑥,𝑦, 𝑧 initially hold 0

et al. 2021], respectively. Additionally, we strengthen our instantiations to catch races that RacerD

could not, and to produce more informative assertions (i.e. with a witness trace) than those of

[Brotherston et al. 2021].

Contributions and Outline. Our contributions (detailed in §2) are as follows. In §3 we present

the general meta-theory of CISL. In §4 we instantiate CISL for race detection and compare it to

RacerD. In §5 we instantiate CISL for deadlock detection and compare it to [Brotherston et al.

2021]. In §6 we further generalise CISL to account for thread interference. Using this generalisation,

in §7 we instantiate CISL for subvariant reasoning (an under-approximate analogue of invariant

reasoning), and use it to detect memory safety bugs. We discuss related work and conclude in §8.

2 OVERVIEW OF CISL
CISL at a Glance. As with its sequential counterpart ISL, CISL allows us to prove triples of the

form [𝑝] C [𝜖 :𝑞], stating that every state in 𝑞 is reachable by executing C starting in some state in 𝑝 .

The 𝜖 denotes an exit condition that may be either ok to denote normal (non-erroneous) execution,

or 𝜖 ∈ ErExit to denote a buggy (erroneous) execution (ErExit is supplied to CISL as a parameter

to distinguish different classes of bugs such as memory safety errors, races and so forth). A key part

of CISL is its parallel composition rule, Par in Fig. 5 (p. 9), stating that if we prove [𝑝𝑖] C𝑖 [ok : 𝑞𝑖]
for each 𝑖 ∈ {1, 2} in isolation, then we can also prove [𝑝1 ∗ 𝑝2] C1 | | C2 [ok : 𝑞1 ∗ 𝑞2]. Note that Par
is identical to its over-approximate analogue in [O’Hearn 2004] and is similarly compositional:

we can identify a normal execution of C1 | |C2 by considering each thread in isolation. Observe

that Par only allows us to prove normal (ok) triples; as we describe below, CISL provides different

techniques for proving buggy triples, depending on the bug category.

The Three Faces of Concurrent Bugs (Errors). When using CISL to detect different classes

of bugs (e.g. memory safety errors and races), we have identified three bug categories: 1) local

(interleaving-agnostic) bugs; 2) global (interleaving-dependent), data-agnostic bugs; and 3) global,

data-dependent bugs. We describe these three categories through several examples in Fig. 1, where

we write 𝜏1 and 𝜏2 for the left and right threads in each example, respectively.

Local bugs are due to one thread, say 𝜏 , in that they arise even when 𝜏 executes in isolation (i.e.

sequentially) and are thus interleaving-agnostic. An example of this is shown in Fig. 1a: regardless

of the behaviour of C in 𝜏2 (the right thread), executing 𝜏1 (the left thread) leads to a use-after-free

(memory safety) bug at l as 𝑥 is accessed after it is deallocated. As we describe later in §3, local bugs

can be detected using the ParEr rule of CISL in Fig. 5 (on p. 9): due to the short-circuit semantics of

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:4 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

errors (whereby execution is terminated upon encountering an error), a bug is reached by executing

a concurrent program, [𝑝] C1 | | C2 [𝜖 : 𝑞], if it is reached by executing one thread, [𝑝] C1 [𝜖 : 𝑞].
In contrast to local bugs, global bugs are due to how concurrent threads interact with one

another and arise only under certain interleavings, i.e. they are interleaving-dependent. For instance,

Figures 1b and 1c both depict examples of global bugs. In particular, in an interleaving of Fig. 1b

where 𝜏1 is executed after (resp. before) 𝜏2, we reach a use-after-free bug at l (resp. l
′
). Analogously,

in an interleaving of Fig. 1c where 𝜏2 is executed after 𝜏1, the condition of the if statement is satisfied

and thus we reach a use-after-free bug at l. Note that there is a data dependency between 𝜏1 and 𝜏2
in Fig. 1c in that 𝜏1 may affect the control flow of 𝜏2: the value read in 𝑎 := [𝑧], and subsequently

the condition of if and whether l: [𝑥] := 1 is executed, depends on whether 𝜏2 executes 𝑎 := [𝑧]
before or after 𝜏1 executes [𝑧] := 1. As such, the bug at l is data-dependent. By contrast, the

threads in Fig. 1b cannot affect the control flow of one another and thus the bugs at l and l
′
are

data-agnostic. Intuitively, data dependence arises through deterministic (non-random) conditions

in if/loop statements, prescribing a certain execution path. Specifically, were we to replace the

(deterministic) condition 𝑎=1 in Fig. 1c with the non-deterministic expression * (which evaluates to

an arbitrary value), then the memory-safety error at l would be rendered data-agnostic.

DetectingGlobal Bugs. Due to their global nature, global bugs (be they data-agnostic/dependent)
cannot be detected using ParEr. Instead, as they manifest only under certain interleavings, they can

be detected using the ParSeq, ParL and ParR rules of CISL (in Fig. 5), which enable us to consider

certain interleavings. For instance, let C1=C3;C4 and C=C1 | |C2, and let 𝜖 denote an error that

manifests only in an interleaving of C in which C2 is executed between C3 and C4 as [𝑝] C1 | | C2

[𝜖 : 𝑞]. We can then detect 𝜖 as follows. First, we use ParL to execute C3 normally, (the [𝑝] C3

[ok : 𝑟] premise); and then show that the continuation C4 | | C2 yields error 𝜖 (the [𝑟] C4 | | C2 [𝜖 : 𝑞]
premise). To do this, we then use ParSeq to execute C2 before C4, i.e. we show [𝑟] C2;C4 [𝜖 : 𝑞].
Unfortunately, however, ParSeq, ParL and ParR are not compositional as they consider multiple

threads at every proof step, rather than examining each thread in isolation, and require the user

to determine an interleaving a priori. However, as we discuss below, in most cases we can detect

global bugs compositionally in CISL by encoding buggy executions as normal ones and then using

the compositional Par rule. We elaborate on this below through several examples of data races.

Data Races. Unlike memory safety bugs that may be local or global, data races (hereafter simply

races) belong solely to the global category. Specifically, two accesses (reads and writes) of a given

program C race with one another if 1) they are conflicting, i.e. they are by distinct threads, on the

same location, and at least one of them is a write; and 2) they appear next to each other in a given

interleaving (a.k.a. history) of C. As such, races are attributed to two threads (and are thus global)

and may manifest only under certain interleavings. To see this, consider the example in Fig. 1d,

and let us write 𝐻 = [1, · · · , 𝑛] for an interleaving where the instructions numbered 1 · · ·𝑛 are

executed in order. Note that the program in Fig. 1d induces several (partial) interleavings, including

𝐻 = [1, 2, 4, 3, 5] and 𝐻 ′ = [4, 5, 6, 1, 2, 3]. The two conflicting accesses on 𝑥 (lines 3 and 5) race in

𝐻 as they are adjacent in 𝐻 . By contrast, they do not race in 𝐻 ′
: thanks to the mutual exclusion

induced by the lock on 𝑙 , they cannot appear as adjacent accesses when 𝜏2 acquires 𝑙 first.

Data-Dependent Bugs in Practice. As shown by Blackshear et al. [2018] and Brotherston et al.

[2021], data-dependent bugs (due to deterministic conditions in if/while statements) make the task

of detecting true bugs (true positives) much more difficult. To see this, consider the example in

Fig. 1e and note that it does not allow any data races: both threads access 𝑦 while holding the lock

𝑙 , and 𝜏2 accesses 𝑥 only if 𝑎 = 1, i.e. 𝜏2 accesses 𝑥 only when its critical section is executed after

that in 𝜏1, forcing a happens-before order from [𝑥] := 1 to [𝑥] := 2. On the other hand, it is always

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:5

possible to find a race in Fig. 1f, when the value non-deterministically picked by * is non-zero, as
witnessed by the history [5, 6, 7, 1, 2, 8]. Note that the program in Fig. 1f only differs from the one

in Fig. 1e in that the deterministic condition (𝑎=1) is replaced with the non-deterministic *.
Although we can generalise the CISL theory to detect data-dependent bugs, ruling out data-

dependent bugs is non-trivial in practice (e.g. due to the happens-before order induced under certain

interleavings). This difficulty led Blackshear et al. [2018] and Brotherston et al. [2021] to focus only

on data-agnostic bugs by assuming that all program conditionals are non-deterministic (*) as in
Fig. 1f. As such, in the remainder of the paper, we follow the same practical approach and focus on

providing a theoretical foundation for data-agnostic bug catching.

CISL for Detecting Data-Agnostic Bugs. Returning to Fig. 1d, note that the race between lines

3 and 5 in 𝐻 = [1, 2, 4, 3, 5] is data-agnostic. As mentioned above, we can detect data-agnostic bugs

compositionally by treating buggy (here racy) executions as normal (non-erroneous) executions and

using the Par rule to analyse each thread in isolation and combine their results. More concretely,

to enable compositional reasoning, we do not treat races as errors. Rather, we compute a local

(sequential) history of each thread in isolation, combine them together using Par, and ultimately

examine them to detect data races and construct a global (concurrent) history witnessing the race.

[𝜏1 ↦→ [] ∗ 𝜏2 ↦→ []]
[𝜏1 ↦→ []]
1. lock 𝑙 ;

[ok : 𝜏1 ↦→ [1]]
2. unlock 𝑙 ;

[ok : 𝜏1 ↦→ [1, 2]]
3. [𝑥] := 1;

[ok : 𝜏1 ↦→ [1, 2, 3]]

[𝜏2 ↦→ []]
4. lock 𝑙 ;

[ok : 𝜏2 ↦→ [4]]
5. [𝑥] := 2;

[ok : 𝜏2 ↦→ [4, 5]]
6. unlock 𝑙 ;

[ok : 𝜏2 ↦→ [4, 5, 6]]
[ok : 𝜏1 ↦→ [1, 2, 3] ∗ 𝜏2 ↦→ [4, 5, 6]]// Par[
ok :

𝜏1 ↦→ [1, 2, 3] ∗ 𝜏2 ↦→ [4, 5, 6]
∧ race(3, 5, [1, 2, 4, 3, 5])

]
//Cons

Fig. 2. A CISL proof of the race in Fig. 1d

To see this, consider the CISL proof sketch of the race

in Fig. 1d in Fig. 2, where the sequential histories of 𝜏1
and 𝜏2 are initially both [], as denoted by 𝜏1 ↦→[] ∗ 𝜏2 ↦→[].
Using Par, for 𝑖 ∈ {1, 2} we reason about 𝜏𝑖 in isolation

starting from 𝜏𝑖 ↦→[]. Subsequently, we obtain 𝜏1↦→[1, 2, 3]
and 𝜏2 ↦→ [4, 5, 6] separately, and combine them using

Par into 𝜏1 ↦→ [1, 2, 3] ∗ 𝜏2 ↦→ [4, 5, 6]. Finally, we use the

CISL rule of consequence, Cons, to additionally obtain

race(3, 5, [1, 2, 4, 3, 5]), describing a race between lines 3

and 5, witnessed by global history [1, 2, 4, 3, 5]. A global

history of 𝜏1 ↦→𝐻1 and 𝜏2 ↦→𝐻2 is obtained by computing

all permutations of 𝐻1++𝐻2 (where ++ denotes concatena-

tion) and then filtering out those that are not well-formed.

Intuitively, well-formed histories respect the mutual exclusion semantics of locks. For instance,

[1, 4, 2, 3, 5, 6] in Fig. 1d is not well-formed: it allows 𝜏2 to acquire 𝑙 (4) while it is held by 𝜏1 (at 1).

We formalise well-formed histories in §4.

Lastly, our presentation of histories thus far was abbreviated by merely recording line numbers.

However, to identify races, rather than recording line numbers (which requires examining the

code), we record execution events. For instance, the sequential history of 𝜏1 in Fig. 1f is 𝜏1 ↦→𝐻1 with

𝐻1= [L(𝜏1, 𝑙),W(𝜏1, 2, 𝑥),W(𝜏1, 3, 𝑦),U(𝜏1, 𝑙)] (abbreviated as [1, 2, 3, 4]), where L(𝜏1, 𝑙) and U(𝜏1, 𝑙)
respectively denote (the events for) locking and unlocking 𝑙 on lines 1 and 4, andW(𝜏1, 2, 𝑥) and
W(𝜏1, 3, 𝑦) respectively denote writing to 𝑥 and 𝑦 on lines 2 and 3. Similarly, a sequential history

of 𝜏2 is 𝜏2 ↦→ 𝐻2 with 𝐻2=[L(𝜏2, 𝑙),R(𝜏2, 6, 𝑦),U(𝜏2, 𝑙),W(𝜏2, 8, 𝑥)]. We combine 𝐻1 and 𝐻2 into

𝐻=[L(𝜏2, 𝑙), R(𝜏2, 6, 𝑦),U(𝜏2, 𝑙), L(𝜏1, 𝑙),W(𝜏1, 2, 𝑥),W(𝜏2, 8, 𝑥)], witnessing the race via the adjacent
conflicting accessesW(𝜏1, 2, 𝑥) andW(𝜏2, 8, 𝑥). Note that we do not record the labels (line numbers)

of lock/unlock events: labels are used to locate races which can only occur between memory

accesses. Moreover, as we focus on data-agnostic races, we need not record the values read/written.

That is, the values read/written do not affect the control flow and have no bearing on races. In the

remainder of the paper, we use both abbreviated histories (for exposition brevity) and full histories.

Summary: Compositional Reasoning with CISL. CISL proof rules (Fig. 5) support composi-

tional reasoning via: (1) Par for normal executions; and (2) ParEr for detecting local bugs. Moreover,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:6 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

(3) one can detect data-agnostic bugs by encoding buggy executions as normal ones and using Par

to detect them. In the case of (2), ParEr reduces concurrent bug detection to sequential, which can

be automated as in [Raad et al. 2020]. In the case of (3), we instantiate CISL to detect races (CISL
RD

),

deadlocks (CISL
DD

), and memory safety errors (CISL
SV
); CISL

RD
and CISL

DD
are inspired by the

under-approximate analyses of the [Blackshear et al. 2018] and [Brotherston et al. 2021] tools.

3 THE CISL FRAMEWORK

Programming Language

(Par. 1: Atomic Commands, Par. 3: Error Conditions)

High-Level CISL Logic

(Par. 2: Abstract State PCM, Par. 4: Axiomatisation)

Soundness

(Par. 7: Erasure, Par. 8: Axiom Soundness)

Low-Level CISL Operational Semantics

(Par. 5 Machine States, Par. 6: Atomic Semantics)

Fig. 3. An overview of the CISL framework

We present the CISL meta-theory. The CISL framework is

parametric and may be instantiated for concurrent, under-

approximate reasoning for a multitude of applications,

including e.g. CISL
DC

(CISL with disjoint concurrency) for

detecting memory safety bugs, CISL
RD

(CISL with race de-

tection) for detecting races on sharedmemory, and CISL
DD

(CISL with deadlock detection) for detecting deadlock sce-

narios. To instantiate CISL, one must supply CISL with

the specified parameters; the soundness of the instanti-

ated CISL reasoning then follows immediately from the

soundness of the framework (see Thm. 3.8). For clarity, we delineate the CISL parameters enclosed

in solid boxes. To provide a clearer account of CISL, we often follow CISL parameters with their

CISL
DC

instantiation for detecting memory safety bugs.

Programming Language. We build CISL on a simple programming language comprising

standard composite commands, and parametrised by a set of atomic commands. This allows us

to instantiate CISL for a number of use-cases without changing the underlying meta-theory. Our

programming language is given by the C grammar in Def. 3.1, and includes atomic commands (a)

supplied as a parameter (Par. 1), as well as the standard constructs of skip, sequential composition

(C1;C2), non-deterministic choice (C1 + C2), loops (C
★
) and parallel composition (C1 | | C2).

Parameter 1 (Atomic commands). Assume a set of atomic commands, Atom, ranged over by a.

Definition 3.1 (CISL language). The CISL programming language is defined as follows:

Comm ∋ C ::= a | skip | C1;C2 | C1 + C2 | C★ | C1 | | C2

Example 3.2 (CISLDC atomics). The CISLDC atomic commands, AtomDC, are defined as follows:

AtomDC ∋a ::= l: error | 𝑥 := 𝑣 | assume(𝐵) | 𝑥 := alloc() | l: free(𝑥) | l:𝑥 := [𝑦] | l: [𝑥] := 𝑦

The CISL
DC

atomic commands include explicit error statements (error), assume statements

(assume(𝐵)) to model deterministic conditionals/loops, assignment (𝑥 := 𝑣) and heap-manipulating

commands for allocation (𝑥 := alloc()), disposal (free(𝑥)), lookup (reading from the heap, 𝑥 := [𝑦])
and mutation (writing to the heap [𝑥] := 𝑦). We assume a set BAst of Boolean assertions; we use 𝐵

as a metavariable for a Boolean assertion, 𝑣, 𝑣 ′ · · · for values, and 𝑥,𝑦, 𝑧 for variables.
To better track memory safety errors and connect them to culprit instructions, we annotate

instructions that may cause such errors with a label l ∈ Label. As we demonstrate shortly, when

an error is encountered we report the label of the offending instruction (e.g. l). As such, we only

consider well-formed programs: those with unique labels across their constituent instructions. For

brevity, we drop the instruction labels when they are immaterial to the discussion.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:7

3.1 CISL Logic and Proof Rules
State PCM. Program logics, and reasoning frameworks in general, do not typically reason directly

about the low-level machine states. Rather, they provide a high-level (abstract) representation of the

state, often equipped with additional instrumentation that supports certain reasoning principles.

For instance, in order to reason about concurrent accesses to the memory, one can model the state

as a shared heap of memory locations, with each location instrumented with a fractional permission

𝜋 ∈ (0, 1], where 𝜋 = 1 on location 𝑥 denotes full ownership on 𝑥 granting permission for writing

to 𝑥 , while 0 < 𝜋 < 1 denotes partial ownership on 𝑥 sufficient for reading from 𝑥 .

In separation logic and its family of descendants, the high-level states are typically modelled

by a partial commutative monoid (PCM) of the form (State, ◦, State0), where State denotes the
set of states; ◦ : State × State ⇀ State denotes the partial state composition operator that is

commutative and associative; and State
0 ⊆ State denotes the set of unit states. The reasoning is

then carried out via 𝑝, 𝑞 ∈ View ≜ P(State), describing views (sets of states).

Parameter 2 (State PCM). Assume a partial commutative monoid (PCM) for states,

(State, ◦, State0), where State0 ⊆ State and:

• the composition function, ◦ : State × State ⇀ State, is commutative and associative;

• for all s ∈ State, there exists s0 ∈ State
0
such that s ◦ s0 = s; and

• for all s, s′ ∈ State and s0 ∈ State
0
, if s ◦ s0 = s

′
then s = s

′
.

Example 3.3 (CISLDC States). We model a CISL
DC

state s ∈ StateDC as a partial map associating

each program variable or location with a value and a fractional permission 𝜋 ∈ (0, 1]: StateDC ≜
(Var fin

⇀ Val × (0, 1]) ∪ (Loc fin

⇀ (Val ⊎ {⊥}) × (0, 1]). The designated value ⊥ ∉ Val is used to

track those locations that have been deallocated. That is, given 𝑙 ∈ Loc, if s(𝑙)=(𝑣,−) and 𝑣 ∈Val
then 𝑙 is allocated in s and holds value 𝑣 ; and if 𝑣=⊥ then 𝑙 has been deallocated.

CISL
DC

composition is standard: (s1◦DCs2) (𝑥) is 1) s𝑖 (𝑥) if 𝑥 ∈dom(s𝑖)\dom(s3−𝑖) for 𝑖 ∈ {1, 2};
2) (𝑣, 𝜋1+𝜋2) if s1 (𝑥)= (𝑣, 𝜋1), s2 (𝑥)= (𝑣, 𝜋2) and 𝜋1+𝜋2 ≤ 1. If there exists 𝑥 ∈ dom(s1) ∩dom(s2) s.t.
the conditions of 2) are not satisfied, the entire composition s1◦DC s2 is undefined. CISL

DC
unit set

is State
0

DC
≜ {∅}, where ∅ is an empty function. CISL

DC
state PCM is (StateDC, ◦DC, State0

DC
).

Definition 3.4 (Views). The set of views is View ≜ P(State).
Notation. We use 𝑝, 𝑞, 𝑟 as meta-variables for views (i.e. 𝑝, 𝑞, 𝑟 ∈ View). We write 𝑝 ∗ 𝑞 for{
s ◦ s′ s ∈ 𝑝 ∧ s

′ ∈ 𝑞
}
; 𝑝 ∧𝑞 for 𝑝 ∩𝑞; 𝑝 ∨𝑞 for 𝑝 ∪𝑞; false for ∅; and true for View. In the context

of CISL
DC

, we write emp for {∅} and 𝑙 𝜋↦→𝑣 (resp. 𝑥
𝜋↦→𝑣) for {[𝑙 ↦→ (𝑣, 𝜋)]} (resp. {[𝑥 ↦→ (𝑣, 𝜋)]}).

We write 𝑙 ↦→𝑣 (resp. 𝑥 ↦→𝑣) for 𝑙
1↦→𝑣 (resp. 𝑥

1↦→𝑣), 𝑙
𝜋

̸↦→ for 𝑙
𝜋↦→⊥, and 𝑙 ̸↦→ for 𝑙

1

̸↦→ .

Exit Conditions. The CISL theory uses under-approximate triples [O’Hearn 2019] of the form

[𝑝] C [𝜖 :𝑞], interpreted as: 𝑞 describes a subset of the states that can be reached from 𝑝 by executing

C, where 𝜖 denotes an exit condition indicating either normal or erroneous termination.

We define the set of exit conditions as Exit≜ {ok}⊎ErExit, where ok denotes normal termination,

and 𝜖 ∈ ErExit denotes an erroneous termination. Erroneous conditions are reasoning-specific

and thus supplied as a CISL parameter. For instance, an error condition in CISL
DC

denotes either a

memory safety bug or an explicit error (after executing error). Concretely, we define CISL
DC

error

conditions as ErExitDC ≜
{
mse(l), er (l) l∈Label

}
, where mse(l) denotes a memory safety bug

encountered at the l-labelled instruction and er (l) denotes an explicit error at l.

Parameter 3 (Error conditions). Assume a set of error conditions, ErExit, where ok ∉ ErExit.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:8 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

DC-Error

[emp] l: error [er (l) : emp]

DC-Assume[
∗

𝑥𝑖 ∈pvars (𝐵)
𝑥𝑖

𝜋𝑖↦→𝑣𝑖

]
assume(𝐵)

[
ok : ∗

𝑥𝑖 ∈pvars (𝐵)
𝑥𝑖

𝜋𝑖↦→𝑣𝑖 ∧ 𝐵 [𝑣𝑖/𝑥𝑖]
]

DC-Assign[
𝑥 ↦→𝑣 ′

]
𝑥 := 𝑣 [ok : 𝑥 ↦→𝑣]

DC-Load

[𝑥 ↦→𝑣 ′ ∗ 𝑦
𝜋𝑦

↦→𝑙 ∗ 𝑙 𝜋↦→𝑣] l:𝑥 := [𝑦] [ok : 𝑥 ↦→𝑣 ∗ 𝑦
𝜋𝑦

↦→𝑙 ∗ 𝑙 𝜋↦→𝑣]

DC-Alloc

[𝑥 ↦→𝑣 ′] 𝑥 := alloc() [ok : ∃𝑙 .𝑥 ↦→𝑙 ∗ 𝑙 ↦→𝑣]
DC-LoadEr

[𝑦
𝜋𝑦

↦→𝑙 ∗ 𝑙
𝜋
̸↦→] l:𝑥 := [𝑦] [mse(l) : 𝑦

𝜋𝑦

↦→𝑙 ∗ 𝑙
𝜋
̸↦→]

DC-Free

[𝑥 𝜋↦→𝑙 ∗ 𝑙 ↦→𝑣] l: free(𝑥) [ok : 𝑥 𝜋↦→𝑙 ∗ 𝑙 ̸↦→]
DC-Store

[𝑥 𝜋𝑥↦→𝑙 ∗ 𝑦
𝜋𝑦

↦→𝑣 ∗ 𝑙 ↦→𝑣 ′] l: [𝑥] := 𝑦 [ok : 𝑥 𝜋𝑥↦→𝑙 ∗ 𝑦
𝜋𝑦

↦→𝑣 ∗ 𝑙 ↦→𝑣]

DC-FreeEr

[𝑥 𝜋𝑥↦→𝑙 ∗𝑙
𝜋
̸↦→] l: free(𝑥) [mse(l) : 𝑥 𝜋𝑥↦→𝑙 ∗𝑙

𝜋
̸↦→]

DC-StoreEr

[𝑥 𝜋𝑥↦→𝑙 ∗ 𝑙
𝜋
̸↦→] l: [𝑥] := 𝑦 [mse(l) : 𝑥 𝜋𝑥↦→𝑙 ∗ 𝑙

𝜋
̸↦→]

Fig. 4. The CISL
DC

axioms

Atomic Axioms. We shortly define the under-approximate proof system of CISL. As atomic

commands are supplied as a parameter, the CISL proof system is accordingly parametrised by their

set of under-approximate axioms (Par. 4). An atomic axiom is a tuple of the form (𝑝, a, 𝜖, 𝑞), with
𝑝, 𝑞 ∈ View, a ∈ Atom and 𝜖 ∈ Exit, and is lifted to the CISL proof rule [𝑝] a [𝜖 :𝑞] (see Atom).

Parameter 4 (Axioms). Assume a set of axioms Axiom ⊆ View × Atom × Exit × View.

Example 3.5 (CISLDC axioms). The CISL
DC

axioms,AxiomDC, are given in Fig. 4 and are analogous

to those of Raad et al. [2020]. For better readability, we present the axioms as inference rules with

CISL triples of the form [𝑝] a [𝜖 :𝑞] in their conclusion, rather than tuples of the form (𝑝, a, 𝜖, 𝑞).

CISL Proof Rules. We present the under-approximate CISL proof system in Fig. 5. As in [Raad

et al. 2020; O’Hearn 2019], our triples are of the form: ⊢ [𝑝] C [𝜖 :𝑞], denoting that every state in

the postcondition 𝑞 is reachable from some state in the precondition 𝑝 under 𝜖 . That is, for each s𝑞

in 𝑞, there exists s𝑝 in 𝑝 such that executing C on s𝑝 terminates with 𝜖 and yields s𝑞 .

The Skip, SeqEr, Seq, Loop1, Loop2, Choice, Cons and Disj rules are as in [O’Hearn 2019; Raad et al.

2020]). Similarly, the Frame rule is analogous to that of [Raad et al. 2020], except that the ∗ operator
here denotes the general notion of composition defined by lifting the composition operator of the

underlying PCM to views (sets of states), rather than that of heap composition in [Raad et al. 2020].

TheAtom rule simply lifts atomic axioms as CISL proof rules. The Par rule is an under-approximate

analogue of the disjoint concurrency rule in concurrent separation logic (CSL) [O’Hearn 2004],

stating that if the states in 𝑞1 (resp. 𝑞2) are reachable from those in 𝑝1 (resp. 𝑝2) when executing C1

(resp. C2), then the combined states in 𝑞1 ∗ 𝑞2 are reachable from 𝑝1 ∗ 𝑝2 when executing C1 | | C2.

Note that, unlike in CSL where the composition operator imposes disjointness, the composition

operator in CISL does not and merely mandates composability as defined by the PCM (Par. 2).

The ParEr rule is the concurrent analogue of SeqEr, describing the short-circuiting semantics

of concurrent executions: given 𝑖 ∈ {1, 2}, if running the smaller program C𝑖 results in an error,

then running the larger C1 | | C2 also results in an error. Intuitively, this is because the behaviours

of C1;C2 and C2;C1 are both included in those of C1 | |C2, in that they describe two possible

interleavings when executing C1 | | C2. As such, as in SeqEr, if running C1 (resp. C2) yield an error,

then the overall execution of the C1;C2 (resp. C2;C1) interleaving of C1 | | C2 also yields an error.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:9

Skip

⊢ [𝑝] skip [ok : 𝑝]

SeqEr

⊢ [𝑝] C1 [𝜖 : 𝑞] 𝜖 ∈ ErExit

⊢ [𝑝] C1;C2 [𝜖 : 𝑞]

Seq

⊢ [𝑝] C1 [ok : 𝑟] ⊢ [𝑟] C2 [𝜖 :𝑞]
⊢ [𝑝] C1;C2 [𝜖 :𝑞]

Loop1

⊢ [𝑝] C★ [ok : 𝑝]

Loop2

⊢ [𝑝] C★
;C [𝜖 :𝑞]

⊢ [𝑝] C★ [𝜖 :𝑞]

Atom

(𝑝, a, 𝜖, 𝑞) ∈ Axiom

⊢ [𝑝] a [𝜖 :𝑞]

Choice

⊢ [𝑝]C𝑖 [𝜖 :𝑞] for some 𝑖 ∈ {1, 2}
⊢ [𝑝] C1 + C2 [𝜖 :𝑞]

Frame

⊢ [𝑝] C [𝜖 :𝑞]
⊢ [𝑝 ∗ 𝑟] C [𝜖 :𝑞 ∗ 𝑟]

Cons

𝑝 ′⊆ 𝑝 ⊢
[
𝑝 ′
]
C

[
𝜖 :𝑞′

]
𝑞 ⊆ 𝑞′

⊢ [𝑝] C [𝜖 :𝑞]

Disj

⊢[𝑝1] C [𝜖 :𝑞1] ⊢[𝑝2] C [𝜖 :𝑞2]
⊢ [𝑝1 ∨ 𝑝2] C [𝜖 :𝑞1 ∨ 𝑞2]

Par

⊢[𝑝𝑖] C𝑖 [ok : 𝑞𝑖] for all 𝑖 ∈ {1, 2}
⊢ [𝑝1 ∗ 𝑝2] C1 | | C2 [ok : 𝑞1 ∗ 𝑞2]

ParEr

𝜖 ∈ ErExit ⊢ [𝑝] C𝑖 [𝜖 : 𝑞] for some 𝑖 ∈ {1, 2}
⊢ [𝑝] C1 | | C2 [𝜖 : 𝑞]

ParSeq

⊢ [𝑝] C1;C2 [𝜖 :𝑞] or ⊢ [𝑝] C2;C1 [𝜖 :𝑞]
⊢ [𝑝] C1 | | C2 [𝜖 :𝑞]

ParL

C1=C3;C4 ⊢[𝑝] C3 [ok : 𝑟] ⊢[𝑟] C4 | | C2 [𝜖 :𝑞]
⊢ [𝑝] C1 | | C2 [𝜖 :𝑞]

ParR

C2=C3;C4 ⊢[𝑝] C3 [ok : 𝑟] ⊢[𝑟] C1 | | C4 [𝜖 :𝑞]
⊢ [𝑝] C1 | | C2 [𝜖 :𝑞]

Fig. 5. The CISL proof rules

Finally, ParL, ParR and ParSeq are concurrent analogues of Seq, stating that the states in 𝑞 are

reachable from those in 𝑝 by executing C1 | | C2, if they are reachable under a particular interleaving

of C1 | | C2. For instance, when C1 = C3;C4, ParL captures the C3; (C4 | | C2) interleaving of C1 | | C2:

if executing C3 from 𝑝 terminates normally and yields 𝑟 (⊢ [𝑝] C3 [ok : 𝑟]) and executing the

continuation C4 | | C2 from 𝑟 yields 𝑞 under 𝜖 , then executing C1 | | C2 from 𝑝 results in 𝑞 under 𝜖 .

Observe that Par can be derived from ParSeq, Seq and Frame as follows:

⊢ [𝑝1] C1 [ok : 𝑞1]
⊢ [𝑝1 ∗ 𝑝2] C1 [ok : 𝑞1 ∗ 𝑝2]

Frame

⊢ [𝑝2] C2 [ok : 𝑞2]
⊢ [𝑞1 ∗ 𝑝2] C2 [ok : 𝑞1 ∗ 𝑞2]

Frame

⊢ [𝑝1 ∗ 𝑝2] C1;C2 [ok : 𝑞1 ∗ 𝑞2]
Seq

⊢ [𝑝1 ∗ 𝑝2] C1 | | C2 [ok : 𝑞1 ∗ 𝑞2]
ParSeq

Note that the Par rule enables compositional reasoning in that it is interleaving-agnostic, allowing

us to reason about the behaviour of each thread in isolation, i.e. locally, combining the results at the

end. Intuitively, this is because of the resources accessed by distinct threads are compatible with

one another, then their combined result is reachable regardless of their interleaving. That is, the

combined result is reachable under all possible interleavings of concurrent threads. Similarly, ParEr

enables compositional bug-catching by allowing us to reason about the erroneous behaviour of one

thread in isolation. This is thanks to the short-circuiting semantics of CISL for concurrent executions:

if one thread terminates erroneously, then the overall program also terminates erroneously. By

contrast, ParL, ParR and ParSeq are not compositional and correspond to a particular interleaving.

As discussed in §2, ParEr is used to detect local bugs, i.e. those bugs that are interleaving-agnostic

and can manifest by executing a single thread, regardless of the behaviour of concurrent threads.

For instance, when concurrent threads access disjoint heap resources, then memory safety bugs

such as use-after-free are instances of local bugs: if a thread 𝜏 accesses a memory location owned

by 𝜏 after it has already been freed (deallocated) by 𝜏 , then a use-after-free error can always be

encountered regardless of the behaviour of other threads running concurrently with 𝜏 .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:10 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

However, as discussed in §2, certain bugs are global (i.e. they depend on the behaviour of two or

more threads) and are interleaving-dependent in that they only manifest under certain interleavings.

For instance, data races and deadlocks are examples of bugs that may only occur under certain

interleavings of two or more threads. As such, ParEr cannot be used to detect such global bugs.

Although ParL and ParR can indeed be used to detect global bugs such as data races, they are not

ideal due to their non-compositionality. However, as discussed in §2, we can detect (global) data-

agnostic errors compositionally by encoding bugs as non-errors, whereby we treat buggy executions

as normal (non-erroneous) ones and use Par to analyse them compositionally. As such, we show

that Par and ParEr are indeed sufficient to detect a significant number of bugs compositionally.

3.2 CISL Model and Semantics
We next present the CISL operational semantics, parametrised by machine states (Par. 5 below).

Note that while the states in Par. 2 provide a high-level (often instrumented) state representation,

the machine states denote a low-level representation of the machine (without instrumentation). For

instance, CISL
DC

machine states forgo the fractional instrumentation of their high-level counterpart.

Parameter 5 (Machine states). Assume a set of machine states,MState, ranged over by m.

Example 3.6 (CISLDC machine states). ACISL
DC

machine statem ∈ MStateDC is a partial function

from variables and locations to Val ⊎ {⊥}: MStateDC : (Var fin

⇀ Val) ∪ (Loc fin

⇀ Val ⊎ {⊥}).

Atomic Semantics. As the set of atomic commands is supplied as a parameter to the CISL

programming language (Par. 1), the CISL operational semantics is further parametrised by the

semantics of atomic commands (Par. 6 below), defined as (machine) state transformers. For instance,

the CISL
DC

atomic semantics is analogous to its counterpart in [Raad et al. 2020].

Parameter 6 (Atomic semantics). Assume an atomic semantics function J.KA : Atom → Exit →
P(MState ×MState).

CISL operational semantics. We define the CISL operational semantics by separating its

control flow transitions from its state-transforming transitions. The former describe the sequential

execution steps in each thread, e.g. how a loop is unrolled; while the latter describe how the

underlying machine states determine the overall execution of a (concurrent) program.

The CISL control flow transitions at the top of Fig. 6 are standard and are of the form C

𝑙−→ C
′
,

where 𝑙 ∈ Lab ≜ Atom ⊎ {id} denotes the transition label. A transition label 𝑙 may be either id for

silent transitions (no-ops), or a∈Atom for executing the atomic command a.

We define the state-transforming function J.K : Lab → Exit → P(MState × MState) as an
extension of J.KA as follows. Given a transition label 𝑙 , we write J𝑙K𝜖 for 1) J𝑙KA𝜖 when 𝑙 ∈ Atom;

2) {(m,m) | m ∈ MState} when 𝑙=id and 𝜖=ok; and 3) ∅ when 𝑙=id and 𝜖 ∈ ErExit. That is, atomic

transitions transform the state according to their semantics as prescribed by J.KA (Par. 6), while

no-op transitions (denoted by id) always execute normally and leave the state unchanged.

The CISL state-transforming transitions are given at the bottom of Fig. 6 and are of the form

C,m
𝑛
=⇒ 𝜖,m′

with C ∈ Comm,m,m′ ∈ MState, 𝜖 ∈ Exit and 𝑛 ∈ N, stating that starting from state

m, program C terminates after 𝑛 steps in state m
′
under exit condition 𝜖 . The first transition states

that skip trivially terminates (after zero steps) successfully (with exit condition ok) and leaves

the underlying state unchanged. The second transition states that starting from m a program C

terminates erroneously (with 𝜖 ∈ ErExit) after one step in m
′
if it takes an erroneous step. Finally,

the last (inductive) transition states that if C takes one normal (non-erroneous) step transforming

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:11

a

a−→ skip

C1

𝑙−→ C
′
1

C1;C2

𝑙−→ C
′
1
;C2 skip;C

id−→ C

𝑖 ∈ {1, 2}

C1 + C2

id−→ C𝑖 C
★ id−→ skip C

★ id−→ C;C
★

C1

𝑙−→ C
′
1

C1 | | C2

𝑙−→ C
′
1
| | C2

C2

𝑙−→ C
′
2

C1 | | C2

𝑙−→ C1 | | C′
2

skip | | C id−→ C C | | skip id−→ C

skip,m
0

=⇒ ok,m

𝜖 ∈ ErExit C

𝑙−→ C
′ (m,m′) ∈ J𝑙K𝜖

C,m
1

=⇒ 𝜖,m′

C

𝑙−→ C
′ (m,m′′) ∈ J𝑙Kok
C
′,m′′ 𝑛

=⇒ 𝜖,m′

C,m
𝑛+1
==⇒ 𝜖,m′

Fig. 6. The CISL control flow transitions (above); the CISL operational semantics (below)

m to m
′′
, and the resulting program C

′′
subsequently terminates after 𝑛 steps with 𝜖 transforming

m
′′
to m

′
, then the overall program terminates after 𝑛+1 steps with 𝜖 transforming m to m

′
.

3.3 CISL Soundness
Erasure. In order to relate the CISL proof system to its operational semantics, it is necessary to

define a relationship between the abstract states and the concrete machine states. To this end, as

the abstract and machine states are both supplied as parameters to CISL, we further parametrise

CISL by an erasure function, relating each abstract state to a set of machine states. For instance, in

the case of CISL
DC

, the erasure function simply removes the instrumentation given by permissions.

Parameter 7 (Erasure). Assume an erasure function ⌊.⌋ : State → P(MState).

We lift the erasure function to views (sets of states) and define ⌊𝑝⌋ ≜ ⋃
s∈𝑝

⌊s⌋ for 𝑝 ∈ View.

Example 3.7 (CISLDC erasure). The CISLDC erasure function, ⌊.⌋DC, is defined as follows: where:

⌊s⌋DC = {m} def⇐⇒ dom(m)=dom(s) ∧ ∀𝑥, 𝑣 . m(𝑥)=𝑣 ⇒ s(𝑥)=(𝑣,−)

Semantic Incorrectness Triples. We next present the formal interpretation of CISL triples.

Recall that intuitively a CISL triple [𝑝] C [𝜖 :𝑞] states that every state in 𝑞 is reachable from some

state in 𝑝 under 𝜖 . Put formally: |= [𝑝] C [𝜖 :𝑞] def⇐⇒ ∃𝑛 ∈ N. reach𝑛 (𝑝,C, 𝜖, 𝑞), denoting that

each state in 𝑞 is reachable from some state in 𝑝 in at most 𝑛 steps, with:

reach𝑛 (𝑝,C, 𝜖, 𝑞)
def⇐⇒ ∀m𝑞 ∈ ⌊𝑞⌋ . ∃m𝑝 ∈ ⌊𝑝⌋, 𝑘 ≤ 𝑛. C,m𝑝

𝑘
=⇒ 𝜖,m𝑞

Atomic Soundness. In order to show that the CISL proof system is sound, we must show that

its (syntactic) triples in Fig. 5 induce valid semantics triples: if a triple ⊢ [𝑝] C [𝜖 :𝑞] is derivable
using the rules in Fig. 5, then |= [𝑝] C [𝜖 :𝑞] holds. Note that we must also show this for the

atomic axioms in Par. 4 as they are lifted to proof rules via Atom. Since atomic axioms are a CISL

parameter, we thus require (Par. 8 below) that they 1) induce valid semantic triples; and 2) preserve

all ∗-compatible views. The former ensures that if (𝑝, a, 𝜖, 𝑞) ∈Axiom, then |= [𝑝] a [𝜖 :𝑞] holds; i.e.
for all m𝑞 ∈ ⌊𝑞⌋, there exists m𝑝 ∈ ⌊𝑝⌋ such that (m𝑝 ,m𝑞) ∈ JaKA𝜖 . The latter ensures that atomic

commands of one thread preserve the states of concurrent threads in the environment and is

necessary for establishing the soundness of Frame. Putting the two conditions together, we require:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:12 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

Parameter 8 (Atomic soundness). Assume that for all (𝑝, a, 𝜖, 𝑞) ∈ Axiom the following holds:

∀s ∈ State,m𝑞 ∈ ⌊𝑞 ∗ {s}⌋ . ∃m𝑝 ∈ ⌊𝑝 ∗ {s}⌋ . (m𝑝 ,m𝑞) ∈ JaKA𝜖

We show the soundness of the CISL
DC

atomic axioms in the technical appendix [Raad et al. 2022].

Finally, in the following theorem we show that the CISL proof system is sound, with its full proof

given in the technical appendix [Raad et al. 2022].

Theorem 3.8 (Soundness). For all 𝑝,C, 𝜖, 𝑞, if ⊢ [𝑝] C [𝜖 :𝑞] is derivable using the rules in Fig. 5,

then |= [𝑝] C [𝜖 :𝑞] holds.

3.4 Generalising the Rule of Consequence (View Shifts)
View Shifts. As shown in the literature [Dinsdale-Young et al. 2013; Jung et al. 2015], it is

common to instrument abstract states with additional ghost states (e.g. auxiliary variables [Owicki

and Gries 1976]) that do not have a counterpart in the underlying machine states. As such, when

updating the ghost state, one can alter the abstract state without changing the underlying machine

state. To capture such updates, following the literature we define a view shift relation. A view shift

from abstract states 𝑝 to those in 𝑞, written 𝑝 ⪯ 𝑞, describes updating each abstract state s𝑝 ∈𝑝 to

some abstract state s𝑞 ∈𝑞 without altering the underlying machine state and while preserving all

∗-compatible states (i.e. frames). This is captured in Def. 3.9 below. We can then generalise the rule

of consequence Cons in Fig. 5 to use view shifts in its premise rather than implications, as shown

in GCons below. In the technical appendix [Raad et al. 2022] we show that GCons is sound.

GCons

𝑝 ′ ⪯ 𝑝 ⊢ [𝑝 ′] C [𝜖 :𝑞′] 𝑞 ⪯ 𝑞′

⊢ [𝑝] C [𝜖 :𝑞]
Definition 3.9 (View shift). The view shift relation, ⪯⊆ View × View, is defined as follows:

𝑝 ⪯ 𝑞
def⇐⇒ ∀s ∈ State. ⌊𝑝 ∗ {s}⌋ ⊆ ⌊𝑞 ∗ {s}⌋

4 CISLRD: CISL FOR RACE DETECTION
We present CISL

RD
for detecting data-agnostic races such as that in Fig. 1f. We follow the approach

of the RacerD tool [Blackshear et al. 2018] and assume all program conditions are non-deterministic.

We compare CISL
RD

with RacerD and show how it detects races that RacerD cannot.

Lazy versus Eager Race Reporting. Recall from §2 that we use CISL
RD

to detect races by

encoding erroneous (here racy) executions as normal ones. This has an additional advantage in that

it allows us to uncover all potential races at once. More concretely, when combining the sequential

histories of threads, we can either adopt a lazy approach where we only report the first global

history that witnesses a race, or adopt an eager approach where we consider and find a witness for

each possible race. For instance, let C denote extending the program in Fig. 1d with a third thread

𝜏3 executing 7. [𝑥] := 3, thus yielding the sequential history [7]. The lazy approach then produces a

trace witnessing a single race, e.g. [1, 2, 3, 7], whereas the eager approach produces a witness trace

for each of the three data races, namely between lines 3 and 5 (witness [1, 2, 4, 3, 5]), lines 3 and 7

(witness [1, 2, 3, 7]), and lines 5 and 7 (witness [4, 5, 7]).

Simplifying Assumption: Races. As CISL (and by extension CISL
RD

) is an under-approximate

analysis, it is sound to aim for a subset of races. As such, for simplicity, rather than aiming to

detect all races, we initially focus on a specific class of races. Specifically, we target races between

conflicting accesses 𝑒 and 𝑒 ′ where the set of locks held by at least one access is empty. This way,

given two sequential histories of the form𝐻 =𝐻0++𝑒 ++− and𝐻 ′=𝐻 ′
0
++𝑒 ′++−, when the set of locks

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:13

𝐻 ∈ Hist ≜
{
𝐸 ∈ Seq⟨Event⟩ wf (𝐸)

}
𝑒 ∈Event ≜

{
R(l, 𝜏, 𝑥),W(l, 𝜏, 𝑥),
L(𝜏, 𝑥),U(𝜏, 𝑥)

l∈Label ∧ 𝜏 ∈TId
∧ 𝑥 ∈Loc

}
s∈StateRD ≜

{
𝑓 ∈ TId

fin

⇀ Hist
∀𝜏, 𝐻, 𝑒. 𝑓 (𝜏)=𝐻 ∧ 𝑒 ∈ 𝐻 ⇒ tid(𝑒)=𝜏

}
m ∈ MStateRD ≜ Hist

wf (𝐻) def⇐⇒ ∀𝑥, 𝜏, 𝐻 ′. 𝐻 = 𝐻 ′ ++ U(𝜏, 𝑥) ++ − =⇒ 𝑥 ∈ alocks(𝐻 ′, 𝜏)
∧ ∀𝑥, 𝜏, 𝐻 ′. 𝐻 = 𝐻 ′ ++ L(𝜏, 𝑥) ++ − =⇒ ∀𝜏 ′. 𝑥 ∉ alocks(𝐻 ′, 𝜏 ′)

alocks([], 𝜏) ≜ ∅ alocks(𝑒 ++ 𝐻, 𝜏) ≜
{
{𝑥} ∪ alocks(𝐻, 𝜏) if 𝑒 = L(𝜏, 𝑥) ∧ U(𝜏, 𝑥) ∉ 𝐻

alocks(𝐻, 𝜏) otherwise

Fig. 7. The CISL
RD

model domain

held at 𝑒 is empty, then we can always construct the well-formed witness history𝐻0 ++ 𝐻 ′
0
++ 𝑒 ++ 𝑒 ′.

For instance, when 𝑒 and 𝑒 ′ respectively denote the accesses on lines 3 and 5 of Fig. 1d, then

the set of locks held by 𝜏1 at 𝑒 is empty. As such, given the sequential histories 𝐻 = [1, 2, 3] and
𝐻 ′ = [4, 5, 6], we can construct the history [1, 2, 4, 3, 5] witnessing the race, i.e. 𝐻0 = [1, 2] and
𝐻 ′
0
= [4]. As we describe shortly in §4.1, this is because when the set of locks held at 𝑒 is empty (i.e.

𝐻0 contains no active locks), then the history 𝐻0 ++ 𝐻 ′
0
++ 𝑒 ++ 𝑒 ′ is always well-formed.

1. lock𝜏 𝑙 ;
2. l: [𝑥] :=𝜏 1;
3. unlock𝜏 𝑙 ;

4. lock𝜏′ 𝑙
′
;

5. l
′
: [𝑥] :=𝜏 ′ 2;

6. unlock𝜏′ 𝑙
′
;

(Race1)

Caveat and Relation to RacerD. The subset of racy execu-

tions described above coincide precisely with those detected by

RacerD [Blackshear et al. 2018]. Nevertheless, both our simple

approach described above and RacerD fail to detect races where

e.g. two threads with conflicting accesses hold a disjoint set of

locks, as shown in Race1. Specifically, as the two threads acquire two distinct locks (𝑙 and 𝑙 ′), Race1
induces the racy interleaving 𝐻 = [1, 4, 2, 5] in which the conflicting accesses on 𝑥 (on lines 2

and 5) are adjacent. However, neither RacerD nor our simple CISL
RD

instantiation detect this race.

Nevertheless, in §4.2 we show how we can generalise and strengthen CISL
RD

to detect such races.

4.1 CISLRD Formalism
CISLRD Atomic Commands (Par. 1). We assume a set of shared memory locations ranged

over by 𝑥,𝑦, 𝑙 , and a set of local variables (registers) ranged over by 𝑎, 𝑏, 𝑐 . We instantiate CISL
RD

with a simple set of atomic commands comprising reads and writes (accesses) on shared memory

locations, and locking constructs used as a synchronisation mechanism to avoid races:

AtomRD ∋ a ::= l:𝑎 :=𝜏 [𝑥] | l: [𝑥] :=𝜏 𝑎 | lock𝜏 𝑙 | unlock𝜏 𝑙
To identify races, we annotate instructions with a thread id 𝜏 . Moreover, to locate races we further

annotate memory accesses with a label l. As such, we assume that a CISL
RD

program C is well-

formed in that (1) the labels across C are unique; (2) instructions of the same thread are associated

with the same thread id; and (3) concurrent instructions in C have distinct thread ids.

Note thatAtomRD does not include the assume(.) construct, and thus since the CISL programming

language (Def. 3.1) only supports non-deterministic choice (C1 + C2) and loops (C
★
), we rule out

deterministic conditionals and loops from CISL
RD

.
1

CISLRD State PCM (Par. 2). The CISL
RD

states, StateRD, are as defined in Fig. 7, where a state

s is a map from thread identifiers to well-formed histories. A history records a sequence of events

executed by the thread thus far, where an event may be either 1) R(l, 𝜏, 𝑥) denoting a read access on
𝑥 by 𝜏 at l; 2)W(l, 𝜏, 𝑥) denoting a write access on 𝑥 by 𝜏 at l; 3) L(𝜏, 𝑙) denoting a lock acquisition

1
Recall that if (b) thenC1 elseC2 can be encoded as (assume(b) ;C1) + (assume(¬b) ;C2) , and while (b)C can be

encoded as (assume(b) ;C)★; assume(¬b) .

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:14 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

on 𝑙 by 𝜏 ; or 4) U(𝜏, 𝑙) denoting a lock release on 𝑙 by 𝜏 . The functions tid and lab respectively return

the thread and label of an event, where applicable; e.g. tid(𝑒)=𝜏 and lab(𝑒)=l when 𝑒 =R(l, 𝜏, 𝑥).
A history is well-formed, written wf (𝐻), iff it respects the lock semantics. Specifically, if 𝐻

contains a lock release on 𝑥 by 𝜏 , then it must contain an earlier lock acquisition on 𝑥 by 𝜏 (first

conjunct); i.e. a lock can only be released by the thread that acquired it last. Moreover, if 𝐻 contains

a lock acquisition on 𝑥 by 𝜏 , then no thread must have previously acquired 𝑥 without releasing it

(second conjunct). Note that given a history 𝐻 and a thread 𝜏 , the alocks(𝐻, 𝜏) denotes the active
locks of 𝜏 in 𝐻 , namely those locks that have been acquired by 𝜏 in 𝐻 but not released.

The CISL
RD

PCM is (StateRD,⊎, ∅), where ⊎ denotes disjoint function union and ∅ denotes a

map with an empty domain. We write 𝜏 ↦→ 𝐻 for the set 𝑝={[𝜏 ↦→ 𝐻]}. We define the conflict

relation, ⊲⊳, as follows, where 𝑅s
denotes the symmetric closure of 𝑅:

⊲⊳ ≜
(
(Event × Event) ∩

{
(R(l, 𝜏, 𝑥),W(l′, 𝜏 ′, 𝑥)), (W(l, 𝜏, 𝑥),W(l′, 𝜏 ′, 𝑥)) 𝜏 ≠ 𝜏 ′

})
s

CISLRD Error Conditions (Par. 3). As discussed above, we do not treat data races as errors

and thus define the set of erroneous exit conditions for CISL
RD

as the empty set: ErExitRD ≜ ∅

The Race Assertion. Recall from §4 that we aim to detect races between conflicting accesses 𝑒1
and 𝑒2 where the set of locks held by at least one access is empty. This is captured by race(l1, l2, 𝐻)
below, denoting a data race between l1 and l2 with the witness history (trace) 𝐻 :

race(l1, l2, 𝐻) def⇐⇒ ∃𝜏1, 𝜏2, 𝑒1, 𝑒2, 𝐻1, 𝐻2 . 𝜏1 ↦→𝐻1 ++ 𝑒1 ++ − ∗ 𝜏2 ↦→𝐻2 ++ 𝑒2 ++ − ∗ 𝑒1 ⊲⊳ 𝑒2
∗ lab(𝑒1)=l1 ∗ lab(𝑒2)=l2 ∗ alocks(𝐻1, 𝜏1) = ∅ ∗ 𝐻=𝐻1 ++ 𝐻2 ++ [𝑒1, 𝑒2]

Specifically, if the history of 𝜏1 is of the form 𝐻1 ++ 𝑒1 ++ − with 𝑒1 at l1, the history of 𝜏2 is

𝐻2 ++ 𝑒2 ++ − with 𝑒2 at l2, the accesses 𝑒1 and 𝑒2 are conflicting, and (without loss of generality)

the set of locks held by 𝜏1 prior to 𝑒1 is empty, then there is a race between 𝑒1 and 𝑒2 which can be

witnessed by𝐻1 ++ 𝐻2 ++ [𝑒1, 𝑒2]. For instance, let 𝑒𝑖 denote the event associated with the instruction
on line 𝑖 in Fig. 1d; i.e. 𝑒3 and 𝑒5 denote the conflicting accesses on lines 3 and 5, respectively. Then

race(3, 5, [𝑒1, 𝑒2, 𝑒4, 𝑒3, 𝑒5]) holds, capturing the race between 𝑒3 and 𝑒5.

Note that requiring that 𝜏1 hold an empty lock set upon the 𝑒1 access simplifies the task of

constructing a witness history. Specifically, as the set of locks held by 𝜏1 at the end of 𝐻1 is empty,

the combined history𝐻1 ++ 𝐻2 ++ [𝑒1, 𝑒2] is always well-formed (see Fig. 7). We shortly demonstrate

how race can be used for identifying races in an execution.

CISLRD Axioms (Par. 4). The CISL
RD

axioms, AxiomRD, are defined below, where assignments

require no resource (they do not extend the history as their behaviour is local), while each non-local

instruction of 𝜏 simply extends its history thus far with an associated event. For instance, when the

current state is 𝜏 ↦→ 𝐻 , i.e. the current history of 𝜏 is given by 𝐻 , then executing lock𝜏 𝑙 updates
the state to 𝜏 ↦→ 𝐻 ++ L(𝜏, 𝑙). Note that when 𝜏 already holds the lock on 𝑙 (i.e. 𝑙 ∈ alocks(𝐻, 𝜏)),
then the resulting history 𝐻 ++ L(𝜏, 𝑙) is not well-formed, and thus 𝜏 ↦→ 𝐻 ++ L(𝜏, 𝑙) describes an
empty set, rendering the triple vacuously true. For better readability, we present the axioms as

inference rules with CISL triples of the form [𝑝] a [𝜖 :𝑞], rather than tuples of the form (𝑝, a, 𝜖, 𝑞).

RD-Read

[𝜏 ↦→𝐻] l:𝑎 :=𝜏 [𝑥] [ok : 𝜏 ↦→𝐻 ++ R(l, 𝜏, 𝑥)]
RD-Write

[𝜏 ↦→𝐻] l: [𝑥] :=𝜏 𝑎 [ok : 𝜏 ↦→𝐻 ++ W(l, 𝜏, 𝑥)]

RD-Assign

[emp] 𝑥 := e [ok : emp]
RD-Lock

[𝜏 ↦→𝐻] lock𝜏 𝑙 [ok : 𝜏 ↦→𝐻 ++L(𝜏, 𝑙)]
RD-Unlock

[𝜏 ↦→𝐻] unlock𝜏 𝑙 [ok : 𝜏 ↦→𝐻 ++U(𝜏, 𝑙)]

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:15

[𝜏1 ↦→ [] ∗ 𝜏2 ↦→ []]
[𝜏1 ↦→ []]

lock𝜏1 𝑙 ; //RD-Lock
[ok : 𝜏1 ↦→ [L(𝜏1, 𝑙)]]

l𝑥 : [𝑥] :=𝜏1 1; //RD-Write

[ok : 𝜏1 ↦→ [L(𝜏1, 𝑙),W(l𝑥 , 𝜏1, 𝑥)]]
l𝑦 : [𝑦] :=𝜏1 1; //RD-Write

[ok : 𝜏1 ↦→ [L(𝜏1, 𝑙),W(l𝑥 , 𝜏1, 𝑥),W(l𝑦, 𝜏1, 𝑦)]]
unlock𝜏1 𝑙 ; //RD-Unlock

[ok :𝜏1 ↦→ [L(𝜏1, 𝑙),W(l𝑥 , 𝜏1, 𝑥),W(l𝑦, 𝜏1, 𝑦),U(𝜏1, 𝑙)]]

[𝜏2 ↦→ []]
lock𝜏2 𝑙 ; //RD-Lock

[ok : 𝜏2 ↦→ [L(𝜏2, 𝑙)]]
l
′
𝑦 :𝑎 :=𝜏2 [𝑦]; //RD-Read

[ok : 𝜏2 ↦→ [L(𝜏2, 𝑙),R(l′𝑦, 𝜏2, 𝑦)]]
unlock𝜏1 𝑙 ; //RD-Unlock

[ok : 𝜏2 ↦→ [L(𝜏2, 𝑙),R(l′𝑦, 𝜏2, 𝑦),U(𝜏2, 𝑙)]]
(l′𝑥 : [𝑥] :=𝜏2 2 + skip) //Choice, RD-Write

[ok :𝜏2 ↦→ [L(𝜏2, 𝑙),R(l′𝑦, 𝜏2, 𝑦),U(𝜏2, 𝑙),W(l′𝑥 , 𝜏2, 𝑥)]]
// Par

[ok : 𝜏1 ↦→ [L(𝜏1, 𝑙),W(l𝑥 , 𝜏1, 𝑥),W(l𝑦, 𝜏1, 𝑦),U(𝜏1, 𝑙)] ∗ 𝜏2 ↦→ [L(𝜏2, 𝑙),R(l′𝑦, 𝜏2, 𝑦),U(𝜏2, 𝑙),W(l′𝑥 , 𝜏2, 𝑥)]]
//Cons[

ok :

𝜏1 ↦→ [L(𝜏1, 𝑙),W(l𝑥 , 𝜏1, 𝑥),W(l𝑦, 𝜏1, 𝑦),U(𝜏1, 𝑙)] ∗ 𝜏2 ↦→ [L(𝜏2, 𝑙),R(l′𝑦, 𝜏2, 𝑦),U(𝜏2, 𝑙),W(l′𝑥 , 𝜏2, 𝑥)]
∧ race

(
l𝑥 , l

′
𝑥 , [L(𝜏2, 𝑙),R(l′𝑦, 𝜏2, 𝑦),U(𝜏2, 𝑙), L(𝜏1, 𝑙),W(l𝑥 , 𝜏1, 𝑥),W(l′𝑥 , 𝜏2, 𝑥)]

)]
Fig. 8. A proof sketch of the race in Fig. 1f (see Example 4.2)

Example 4.1. Let 𝑒 ≜W(l, 𝜏, 𝑥) and 𝑒 ′≜W(l′, 𝜏 ′, 𝑥). We then have:

[𝜏 ↦→ []] l: [𝑥] :=𝜏 1 [ok : 𝜏 ↦→ [𝑒]] RD-Write [𝜏 ′ ↦→ []] l′: [𝑥] :=𝜏 ′ 2 [ok : 𝜏 ′ ↦→ [𝑒 ′]] RD-Write

[𝜏 ↦→ [] ∗ 𝜏 ′ ↦→ []] l: [𝑥]:=𝜏1 | | l′: [𝑥]:=𝜏 ′2 [ok : 𝜏 ↦→ [𝑒] ∗ 𝜏 ′ ↦→ [𝑒 ′]] Par

[𝜏 ↦→ [] ∗ 𝜏 ′ ↦→ []] l: [𝑥]:=𝜏1 | | l′: [𝑥]:=𝜏 ′2 [ok : (𝜏 ↦→ [𝑒] ∗ 𝜏 ′ ↦→ [𝑒 ′]) ∧ race(l, l′, [𝑒, 𝑒 ′])] Cons

At the last step of the derivation above, we apply the Cons rule of CISL to obtain race(l, l′, [𝑒, 𝑒 ′]).
Specifically, note that (𝜏 ↦→ [𝑒] ∗ 𝜏 ′ ↦→ [𝑒 ′]) ∧ race(l, l′, [𝑒, 𝑒 ′]) ⇔ 𝜏 ↦→ [𝑒] ∗ 𝜏 ′ ↦→ [𝑒 ′], and we are

only required to show that (𝜏 ↦→ [𝑒] ∗ 𝜏 ′ ↦→ [𝑒 ′]) ∧ race(l, l′, [𝑒, 𝑒 ′]) ⇒ 𝜏 ↦→ [𝑒] ∗ 𝜏 ′ ↦→ [𝑒 ′].

Duplicate Races. Observe that using the same reasoning steps above, we can also derive

race(l′, l, [𝑒 ′, 𝑒]), identifying the same race between l and l
′
with a different witness history. How-

ever, duplicate race reporting can be avoided by simply inspecting the labels of racing instructions.

For instance, once we report the race between l and l
′
via race(l, l′, [𝑒, 𝑒 ′]), we can suppress all

other witnesses of the form race(l, l′,−) or race(l′, l,−).

Example 4.2 (Fig. 1f). We present a proof outline of the race in Fig. 1f in Fig. 8, where we have

annotated instructions with their thread identifiers and labels (where applicable). Note that we

have encoded if (*) l′𝑥 : [𝑥] :=𝜏2 1 in the right thread using the non-deterministic choice (+) of CISL
as l

′
𝑥 : [𝑥] :=𝜏2 2 + skip. For brevity, rather than giving the full derivation, we follow the classical

Hoare logic proof outline, annotating each line of the code with its pre- and post-condition. We

further commentate each proof step and write e.g. // RD-Lock to denote an application of RD-Lock.

CISLRD Machine States (Par. 5) and Erasure (Par. 7). While a CISL
RD

state s ∈ StateRD

records the local (sequential) history associated with each thread, a CISLRD machine state, m ∈
MStateRD in Fig. 7, records the global execution history. A global history is obtained (through the

CISL
RD

erasure function) by combining all local thread histories into a well-formed history. That is,

the CISLRD erasure function is as defined below, where 𝐻 |𝜏 denotes restricting 𝐻 to the events of 𝜏 :

⌊s⌋RD ≜
{
𝐻 ∀𝜏 . s(𝜏) = 𝐻 ′ ⇒ 𝐻 |𝜏 = 𝐻 ′}

.

CISLRD Atomic Semantics (Par. 6). The CISL
RD

atomic semantics is defined below, where each

instruction of 𝜏 extends the current history (machine state) 𝐻𝑔 by inserting an associated event 𝑒 in

𝐻𝑔 such that 𝑒 is the last event of 𝜏 in the extended history, and the extended history is well-formed

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:16 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

(i.e. is inHist). That is, whenever𝐻𝑔 can be split as𝐻𝜏 ++ 𝐻 such that𝐻 does not contain any events

associated with 𝜏 , then executing an instruction associated with 𝑒 may update 𝐻𝑔 to 𝐻𝜏 ++ 𝑒 ++ 𝐻 .

Note that such splitting of 𝐻𝑔 may not be unique; e.g. when 𝐻𝑔 = [𝑒1 · · · 𝑒𝑛] and none of 𝑒1 · · · 𝑒𝑛
are associated with 𝜏 , then R(l, 𝜏, 𝑥) may be inserted anywhere within 𝐻𝑔 . Intuitively, this captures

the different ways executing the instructions of one thread may be interleaved with those of others.

Jl:𝑎 :=𝜏 [𝑥]KAok ≜
{
(𝐻𝜏 ++ 𝐻,𝐻𝜏 ++ 𝑒 ++ 𝐻) ∈ Hist

2 𝑒=R(l, 𝜏, 𝑥) ∧ ∀𝑒 ′ ∈ 𝐻. 𝑒 ′.tid ≠ 𝜏
}

Jl: [𝑥] :=𝜏 𝑎KAok ≜
{
(𝐻𝜏 ++ 𝐻,𝐻𝜏 ++ 𝑒 ++ 𝐻) ∈ Hist

2 𝑒=W(l, 𝜏, 𝑥) ∧ ∀𝑒 ′ ∈ 𝐻. 𝑒 ′.tid ≠ 𝜏
}

Jlock𝜏 𝑙KAok ≜
{
(𝐻𝜏 ++ 𝐻,𝐻𝜏 ++ 𝑒 ++ 𝐻) ∈ Hist

2 𝑒=L(𝜏, 𝑙) ∧ ∀𝑒 ′ ∈ 𝐻. 𝑒 ′.tid ≠ 𝜏
}

Junlock𝜏 𝑙KAok ≜
{
(𝐻𝜏 ++ 𝐻,𝐻𝜏 ++ 𝑒 ++ 𝐻) ∈ Hist

2 𝑒=U(𝜏, 𝑙) ∧ ∀𝑒 ′ ∈ 𝐻. 𝑒 ′.tid ≠ 𝜏
}

Note that the atomic semantics of lock𝜏 𝑙 returns an empty set when the lock 𝑙 is already held by

𝜏 , thanks to the well-formedness condition on histories (see Fig. 7). Specifically, when the current

machine state is 𝐻1 = 𝐻𝜏 ++ 𝐻 (where 𝐻 contains no actions by 𝜏) and 𝜏 then attempts to acquire

the lock on 𝑙 , then the resulting history 𝐻2 = 𝐻𝜏 ++ L(𝜏, 𝑙) ++ 𝐻 is well-formed and thus defined

only if no other thread already holds the lock on 𝑙 in𝐻𝜏 . That is,𝐻2 is not well-formed (wf (𝐻2) does
not hold) according to the definition in Fig. 7 when 𝑙 ∈ alocks(𝐻𝜏 , 𝜏

′) for some 𝜏 ′. Consequently,
when some thread 𝜏 ′ already holds the lock on 𝑙 , 𝐻2 is not defined, rendering the {(𝐻1, 𝐻2)} set
empty. Similarly, thanks to the well-formedness condition on histories, the atomic semantics of

unlock𝜏 𝑙 returns an empty set when the lock 𝑙 is not already held by 𝜏 .

CISLRD Atomic Soundness (Par. 8). Finally, in the technical appendix [Raad et al. 2022] we

demonstrate that the CISL
RD

atomic instructions are sound.

4.2 Generalising CISLRD
Recall that the CISL

RD
formalism in §4.1 (as with RacerD) cannot detect races such as that in Race1.

This is because the definition of the race predicate simply requires that the set of locks held at the

time of one of the conflicting accesses be empty, and thus fails to detect the race in Race1 where

the conflicting access occur while their threads hold disjoint (but non-empty) sets of locks.

We next generalise the race predicate to account for races such as Race1. Note that we cannot

naively update the race predicate to require that the set of locks held at the time of conflicting

accesses be disjoint as this leads to false positives. To see this, consider the examples below:

1. lock𝜏 𝑙 ;
2. lock𝜏 𝑙

′
;

3. unlock𝜏 𝑙
′
;

4. l: [𝑥] :=𝜏 1;
5. unlock𝜏 𝑙 ;

6. lock𝜏′ 𝑙
′
;

7. lock𝜏′ 𝑙 ;
8. unlock𝜏′ 𝑙 ;
9. l

′
: [𝑥] :=𝜏 ′ 2;

10. unlock𝜏 ′ 𝑙
′
;

(NoRace1)

1. lock𝜏 𝑙
′
;

2. lock𝜏 𝑙 ;
3. unlock𝜏 𝑙

′
;

4. l: [𝑥] :=𝜏 1;
5. unlock𝜏 𝑙 ;

6. lock𝜏′ 𝑙 ;
7. lock𝜏′ 𝑙

′
;

8. unlock𝜏 ′ 𝑙 ;
9. l

′
: [𝑥] :=𝜏′ 2;

10. unlock𝜏 ′ 𝑙
′
;

(NoRace2)

In the case of NoRace1, although at the time of the conflicting accesses on 𝑥 (at l and l
′
) the

corresponding threads (resp. 𝜏 and 𝜏 ′) hold disjoint sets of locks (resp. {𝑙} and {𝑙 ′}), the two

accesses do not race thanks to the synchronisation induced by the additional locks acquired in each

thread (e.g. 𝑙 ′ in the left thread). That is, even though these additional locks are released before the

conflicting accesses and thus the locks held at the time of the conflicting accesses are disjoint, their

mere acquisition induces additional synchronisation (‘happens-before’ ordering) that renders the

program non-racy.
2
As such, reporting a race between l and l

′
would constitute a false positive.

2
We encourage the reader to attempt to construct a history to witness a race in NoRace1 and note that this cannot be done.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:17

Similarly, the synchronisation induced by the additional locks in NoRace2 (e.g. 𝑙 ′ in the left

thread) renders the programs non-racy. Note that NoRace2 is obtained from NoRace1 by swap-

ping the order in which the two locks are acquired in each thread. That is, while the lock ac-

quisitions in NoRace1 are balanced (well-nested), those in NoRace2 are not. Lock acquisition is

balanced when acquired locks are released in the reverse acquisition order. Balanced locks are

tantamount to synchronized blocks in Java, in that lock 𝑙 ; C; unlock 𝑙 is commensurate with

synchronized(𝑙){C}. For simplicity, here we assume that the lock acquisitions are balanced as in

RacerD (which allows lock acquisition only through (balanced) synchronized blocks). Nonetheless,
it is straightforward to lift this assumption and generalise our formalism of CISL

RD
yet again.

Generalising the race Assertion. We present our general race assertion in Fig. 9 and describe

it shortly. Given history 𝐻 and thread 𝜏 , a lock acquired by 𝜏 in 𝐻 is active if it is not released

subsequently by 𝜏 in 𝐻 , i.e. is in alocks(𝐻, 𝜏). Conversely, a lock acquired by 𝜏 in 𝐻 is passive if it

is released subsequently by 𝜏 in 𝐻 , i.e. is in syncs(𝐻, 𝜏) defined Fig. 9.

We compute the set of passive locks to account for the additional synchronisation induced by them

as in NoRace1. More concretely, to avoid false positives such as that in NoRace1 while identifying

races such as that in Race1, given 𝜏 and 𝜏 ′ and their respective histories𝐻++𝑒 and𝐻 ′++𝑒 ′ such that 𝑒

and 𝑒 ′ are conflicting, we identify a race between 𝑒 and 𝑒 ′ if the (active) locks held by 𝜏 prior to 𝑒 are
disjoint from all (both active and passive) locks of 𝜏 ′ or vice versa: alocks(𝐻, 𝜏) ∩ locks(𝐻 ′, 𝜏 ′)=∅
or alocks(𝐻 ′, 𝜏 ′) ∩ locks(𝐻, 𝜏)=∅, where locks(𝐻, 𝜏) ≜ alocks(𝐻, 𝜏) ∪ syncs(𝐻, 𝜏). For instance, let
𝐻=[1, 2, 3] and 𝐻 ′=[6, 7, 8] respectively denote (partial) histories of 𝜏 and 𝜏 ′ in NoRace1, with

𝑛 denoting the event associated with the instruction at line 𝑛. We then have alocks(𝐻, 𝜏)={𝑙},
alocks(𝐻 ′, 𝜏 ′)={𝑙 ′}, syncs(𝐻, 𝜏)={𝑙 ′}, syncs(𝐻 ′, 𝜏 ′)={𝑙} and locks(𝐻, 𝜏)=locks(𝐻 ′, 𝜏 ′)={𝑙, 𝑙 ′}; thus
alocks(𝐻, 𝜏) ∩ locks(𝐻 ′, 𝜏 ′)={𝑙}≠∅ and alocks(𝐻 ′, 𝜏 ′) ∩ locks(𝐻, 𝜏)={𝑙 ′}≠∅.

1. lock𝜏 𝑙
′
;

2. unlock𝜏 𝑙
′
;

3. lock𝜏 𝑙 ;
4. l: [𝑥] :=𝜏 1;
5. unlock𝜏 𝑙 ;

6. lock𝜏 ′ 𝑙 ;
7. unlock𝜏′ 𝑙 ;
8. lock𝜏 ′ 𝑙

′
;

9. l
′
: [𝑥] :=𝜏′ 2;

10. unlock𝜏′ 𝑙
′
;

(Race3)

Finally, note that when computing the passive locks prior to

an access 𝑒 , we must only consider those passive locks that have

been acquired after an active lock. To see this, consider a variant

of NoRace1 in Race3where the inner passive locks are promoted

to the beginning of each thread. Observe that the accesses at l

and l
′
race as witnessed by 𝐻 = [1, 2, 6, 7, 3, 8, 4, 9]. That is, unlike

in NoRace1, the additional locks acquired by each thread at

the beginning do not induce synchronisation when accessing 𝑥 .

Intuitively, this is because unlike in NoRace1, the passive locks are no longer preceded by an

active lock, and thus when constructing a witness history as in 𝐻 , they can always be acquired and

released before the active locks.

To this end, given threads 𝜏1 and 𝜏2 and their respective histories 𝐻1 ++ 𝑒1 and 𝐻2 ++ 𝑒2 such that

𝑒1 and 𝑒2 are conflicting, we identify a race between 𝑒1 and 𝑒2 if 1) the active locks held by 𝜏1 prior

to 𝑒1 are disjoint from all locks of 𝜏2 or vice versa (as explained above); and 2) thread histories can

be partitioned as 𝐻1=𝐻𝑝 ++ 𝐻𝑙 and 𝐻2=𝐻
′
𝑝 ++ 𝐻 ′

𝑙
, where 𝐻𝑝 (resp. 𝐻 ′

𝑝) is the maximal prefix of 𝐻1

(resp. 𝐻2) such that alocks(𝐻𝑝 , 𝜏1)=∅ (resp. alocks(𝐻 ′
𝑝 , 𝜏2)=∅). We then construct a global history

witnessing the race as 𝐻𝑝 ++ 𝐻 ′
𝑝 ++ 𝐻𝑙 ++ 𝐻 ′

𝑙
++ [𝑒1, 𝑒2], as shown in Fig. 9.

Note that thewitness history𝐻𝑝 ++𝐻 ′
𝑝 ++𝐻𝑙 ++𝐻 ′

𝑙
++ [𝑒1, 𝑒2] is alwayswell-formed: 1) alocks(𝐻𝑝 , 𝜏1)

= alocks(𝐻 ′
𝑝 , 𝜏2)=∅ (see partition) ensures that 𝐻𝑝 ++𝐻 ′

𝑝 is well-formed and that there are no locks

held at the end of 𝐻𝑝 ++𝐻 ′
𝑝 ; and 2) alocks(𝐻𝑙 , 𝜏1) ∩ locks(𝐻 ′

𝑙
, 𝜏2)=∅, and thus the (active or passive)

locks acquired by 𝜏2 in 𝐻 ′
𝑙
are disjoint from those that are held by 𝜏1 at the end of 𝐻𝑙 .

Example 4.3 (Race3). Let C and C
′
denote the sequential programs of 𝜏 and 𝜏 ′ in Race3 above,

respectively. Let 𝐻𝑝 ≜ [L(𝜏, 𝑙 ′),U(𝜏, 𝑙 ′)], 𝐻 ′
𝑝 ≜ [L(𝜏 ′, 𝑙),U(𝜏 ′, 𝑙)], 𝐻𝑙 ≜ [L(𝜏, 𝑙)], 𝐻 ′

𝑙
≜ [L(𝜏 ′, 𝑙 ′)],

𝑤 ≜ W(l, 𝜏, 𝑥),𝑤 ′ ≜ W(𝜏 ′, l′, 𝑥), 𝐻 ≜ 𝐻𝑝 ++ 𝐻𝑙 ++ [𝑤] and 𝐻 ′ ≜ 𝐻 ′
𝑝 ++ 𝐻 ′

𝑙
++ [𝑒 ′]. We then have:

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:18 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

race(l1, l2, 𝐻) def⇐⇒ ∃𝜏1, 𝜏2, 𝐻1, 𝐻2, 𝑒1, 𝑒2, 𝐻𝑝 , 𝐻
′
𝑝 , 𝐻𝑙 , 𝐻

′
𝑙
. 𝜏1 ↦→𝐻1 ++ 𝑒1 ++ − ∗ 𝜏2 ↦→𝐻2 ++ 𝑒2 ++ −

∗ 𝑒1 ⊲⊳𝑒2 ∗ lab(𝑒1)=l1 ∗ lab(𝑒2)=l2∗partition(𝐻1, 𝜏1, 𝐻𝑝 , 𝐻𝑙) ∗ partition(𝐻2, 𝜏2, 𝐻
′
𝑝 , 𝐻

′
𝑙
)

∗ 𝐻=𝐻𝑝 ++𝐻 ′
𝑝 ++𝐻𝑙 ++𝐻 ′

𝑙
++ [𝑒1, 𝑒2]∗alocks(𝐻𝑙 , 𝜏1) ∩ locks(𝐻 ′

𝑙
, 𝜏2)=∅

partition(𝐻, 𝜏, 𝐻1, 𝐻2)
def⇐⇒ 𝐻=𝐻1++𝐻2 ∧ alocks(𝐻1, 𝜏)=∅ ∧ ∀𝐻 ′

1
. 𝐻=𝐻 ′

1
++− ∧ alocks(𝐻 ′

1
, 𝜏)=∅ ⇒ 𝐻 ′

1
⊆ 𝐻1

locks(𝐻, 𝜏) ≜ alocks(𝐻, 𝜏) ∪ syncs(𝐻, 𝜏)
syncs([], 𝜏) ≜ ∅ syncs(𝑒 ++ 𝐻, 𝜏) ≜

{
𝑥 ∪ syncs(𝐻, 𝜏) if 𝑒 = L(𝜏, 𝑥) ∧ U(𝜏, 𝑥) ∈ 𝐻

syncs(𝐻, 𝜏) otherwise

Fig. 9. The general race assertion; the highlighted text denotes the extensions generalising race on p. 14

(derived via Seq,Atom and CISL
RD

axioms on p. 14)
[𝜏 ↦→ []] C1 [ok : 𝜏 ↦→𝐻]

(derived via Seq,Atom and CISL
RD

axioms on p. 14)

[𝜏 ′ ↦→ []] C2 [ok : 𝜏 ′ ↦→𝐻 ′]
[𝜏 ↦→ [] ∗ 𝜏 ′ ↦→ []] C | | C′ [ok : 𝜏 ↦→𝐻 ∗ 𝜏 ′ ↦→𝐻 ′] Par

[𝜏 ↦→ [] ∗ 𝜏 ′ ↦→ []] C | | C′
[
ok : (𝜏 ↦→𝐻 ∗ 𝜏 ′ ↦→𝐻 ′) ∧ race(l, l′, 𝐻𝑝 ++𝐻 ′

𝑝 ++𝐻𝑙 ++𝐻 ′
𝑙
++ [𝑤,𝑤 ′])

] Cons

5 CISLDD: CISL FOR DEADLOCK DETECTION
As with races, deadlocks are global errors (due to two or more threads). We present CISL

DD
for

detecting data-agnostic deadlocks. To this end, we follow the approach of Brotherston et al. [2021]

and assume that all program conditions are non-deterministic. We compare CISL
DD

to the work of

[Brotherston et al. 2021] and show how the CISL
DD

deadlock assertion is more expressive in that it

can produce a history witnessing the deadlock. As in CISL
RD

, we do not treat deadlocks as errors;

instead, we compute a sequential history of each thread in isolation, combine them using Par, and

examine them to detect deadlocks and construct a concurrent history witnessing the deadlock.

Deadlocks and Critical Pairs. As with races, deadlocks may only manifest under certain

interleavings. To see this, consider the example shown in DL, where Clu, C
′
lu
denote arbitrary

code without lock/unlock instructions. The program in DL induces several (abbreviated) histories,

including 𝐻=[1, 5] and 𝐻 ′=[1, 2, 3, 4, 5, 6, 7, 8]. However, the deadlock between lines 1, 2 and lines

5, 6 only manifest in 𝐻 and not 𝐻 ′
. That is, after 𝜏 and 𝜏 ′ respectively execute lines 1 and 5, then

neither thread can proceed further as they each need to acquire a lock already held by the other.

1. l1: lock𝜏 𝑙 ;
2. l2: lock𝜏 𝑙

′
;

Clu

3. unlock𝜏 𝑙
′
;

4. unlock𝜏 𝑙 ;

5. l5: lock𝜏′ 𝑙
′
;

6. l6: lock𝜏′ 𝑙 ;
C
′
lu

7. unlock𝜏′ 𝑙 ;
8. unlock𝜏′ 𝑙

′
;

(DL)

Specifically, note that as part of the history we do not record the

instructions associated with Clu/C
′
lu
: as we discuss below, the only

instructions relevant to deadlocks are locks and unlocks, and thus

the instructions in Clu, C
′
lu
are immaterial. In particular, since

all conditions are non-deterministic, threads cannot affect the

control flow of each other; as such, we do ignore memory accesses

(read/write instructions) altogether (unlike in races).

The notion of deadlocks is captured by Brotherston et al. [2021] in terms of critical pairs. Specifi-

cally, a critical pair of a thread 𝜏 is a pair (𝐴, 𝑙) such that in some execution 𝜏 attempts to acquire

a lock 𝑙 while already holding the set of locks (i.e. active locks) 𝐴. For instance, after executing

lines 1 and 5 in DL, the critical pairs of 𝜏 and 𝜏 ′ are given by (𝑙 ′, {𝑙}) and (𝑙, {𝑙 ′}), respectively. Two
threads 𝜏1 and 𝜏2 deadlock iff they respectively yield critical pairs 𝑐1= (𝑙1, 𝐴1) and 𝑐2= (𝑙2, 𝐴2) such
that 𝑙1 ∈𝐴2, 𝑙2 ∈𝐴1 and 𝐴1 ∩ 𝐴2 = ∅, as is the case for (𝑙 ′, {𝑙}) and (𝑙, {𝑙 ′}) of 𝜏 and 𝜏 ′ in DL. This

intuition can be generalised to 𝑛 threads: threads 𝜏1, · · · , 𝜏𝑛 with critical pairs (𝑙1, 𝐴1), · · · , (𝑙𝑛, 𝐴𝑛)
deadlock iff for all 𝑖 ∈ {1 · · ·𝑛}, 𝑙𝑖 ∈

⋃
𝑗≠𝑖 𝐴 𝑗 and 𝐴𝑖 ∩

⋃
𝑗≠𝑖 𝐴 𝑗 = ∅.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:19

𝐻 ∈ Hist ≜
{
𝐸 ∈ Seq⟨Event⟩ wf (𝐸)

}
𝑒 ∈Event ≜

{
L(l, 𝜏, 𝑥),U(𝜏, 𝑥) l∈Label ∧ 𝜏 ∈TId ∧ 𝑥 ∈Loc

}
s∈StateDD ≜

{
𝑓 ∈ TId

fin

⇀ Hist
∀𝜏, 𝐻, 𝑒. 𝑓 (𝜏)=𝐻 ∧ 𝑒 ∈ 𝐻 ⇒ tid(𝑒)=𝜏

}
m ∈ MStateDD ≜ Hist

Fig. 10. The CISL
DD

Model Domain, where the wf(.) definition is analogous to that in Fig. 7

We can capture the notion of critical pairs using our histories as defined in §4. For instance, the

sequential history of 𝜏 in DL is 𝜏 ↦→𝐻 with 𝐻 = [L(l1, 𝜏, 𝑙), L(l2, 𝜏, 𝑙 ′),U(𝜏, 𝑙 ′),U(𝜏, 𝑙)], which yields

the critical pair 𝑐1: 𝐻 can be decomposed as 𝐻1 ++ [L(l2, 𝜏, 𝑙 ′)] ++ −, with 𝐻1= [L(l1, 𝜏, 𝑙)] and the

𝜏 active locks in 𝐻1 is given by 𝐴1 (alocks(𝐻1, 𝜏)=𝐴1); i.e. 𝜏 attempts to acquire 𝑙 ′ (via L(l2, 𝜏, 𝑙 ′))
while holding the locks in 𝐴1. Analogously, the sequential history of 𝜏 ′ yields the critical pair 𝑐2.

We next present our CISL
DD

formalism and show how we use it to detect deadlocks using a

deadlock assertion. Our formalism is inspired by that of Brotherston et al. [2021] and uses their

notion of critical pairs. We then demonstrate how we can strengthen our deadlock assertion to go

beyond the critical pairs of Brotherston et al. [2021] and produce a history witnessing the deadlock.

CISLDD Atomic Commands (Par. 1). As before, we assume a set of (shared) memory locations

ranged over by 𝑥,𝑦, 𝑧. We instantiate CISL
DD

with a simple set of atomic commands comprising

constructs for acquiring and releasing locks, assignment and accessing the memory:

AtomDD ∋ a ::= l: lock𝜏 𝑥 | unlock𝜏 𝑦 | 𝑎 := e | 𝑎 := [𝑥] | [𝑥] := 𝑎

To identify and locate deadlocks, we annotate each lock instruction with a label, l, and each

lock/unlock with a thread id, 𝜏 . Since conditions are non-deterministic, threads cannot affect the

control flow of one another via (reading) in-memory values. As such, assignments and memory

accesses have no bearing on deadlocks and thus need not be annotated. Similarly, when reporting

a deadlock, we identify the culprit lock instructions, and thus do not label unlock instructions. As

in CISL
DD

we assume that a CISL
DD

program is well-formed: it meets conditions (1)–(3) on p. 13.

CISLDD State PCM (Par. 2) andErrorConditions (Par. 3). TheCISL
DD

PCM is (StateDD,⊎, ∅),
where StateDD is defined in Fig. 10, ⊎ denotes disjoint function union and ∅ denotes a map with

an empty domain. As before, we write 𝜏 ↦→𝐻 for 𝑝={𝜏 ↦→ 𝐻 }; the CISL
DD

functions alocks, syncs

and locks are defined analogously to those of CISL
RD

in Figures 7 and 9. As discussed, we do not

treat deadlocks as errors and thus define the CISL
DD

erroneous exit conditions as: ErExitDD ≜ ∅.

CISLDD Axioms (Par. 4). The set of CISL
DD

axioms, AxiomDD, is defined below, where assign-

ment and memory accesses require no resource: they have no bearing on deadlocks (recall that we

prohibit deterministic conditions) and thus are not included in the history. By contrast, lock and

unlock instructions extend their thread history with an associated event. As before, when 𝜏 already

holds the lock on 𝑙 (i.e. 𝑙 ∈ alocks(𝐻, 𝜏)), then the resulting history 𝐻 ++ L(𝜏, 𝑙) is not well-formed,

and thus 𝜏 ↦→ 𝐻 ++ L(𝜏, 𝑙) in the postcondition of lock would render the triple vacuously valid.

DD-Lock

[𝜏 ↦→𝐻] l: lock𝜏 𝑙 [ok : 𝜏 ↦→𝐻 ++L(l, 𝜏, 𝑙)]
DD-Unlock

[𝜏 ↦→𝐻] unlock𝜏 𝑙 [ok : 𝜏 ↦→𝐻 ++U(𝜏, 𝑙)]

DD-Assign

[emp] 𝑎 := e [ok : emp]
DD-Read

[emp] 𝑎 := [𝑥] [ok : emp]
DD-Write

[emp] [𝑥] := 𝑎 [ok : emp]

A Simple Deadlock Assertion. Recall that we can formulate a deadlock between two threads

in terms of their critical pairs which in turn can be derived from the sequential thread histories.

This is formulated in the DL(𝑙1, 𝐴1, 𝑙2, 𝐴2) assertion below:

DL(𝑙1, 𝐴1, 𝑙2, 𝐴2)
def⇐⇒∃𝜏1,𝜏2,𝐻1,𝐻2.𝜏1 ↦→𝐻1 ++ L(−, 𝜏1, 𝑙1) ++ − ∗ alocks(𝐻1, 𝜏1)=𝐴1 ∗ 𝑙2 ∈𝐴1

∗𝜏2 ↦→𝐻2++L(−, 𝜏2, 𝑙2) ++− ∗ alocks(𝐻2, 𝜏2)=𝐴2 ∗ 𝑙1 ∈𝐴2 ∗𝐴1∩𝐴2=∅

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:20 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

[𝜏 ↦→ [] ∗ 𝜏 ′ ↦→ []]
[𝜏 ↦→ []]

l1: lock𝜏 𝑙 ; //DD-Lock
[ok : 𝜏 ↦→ [L(l1, 𝜏, 𝑙)]]

l2: lock𝜏 𝑙
′
; //DD-Lock

[ok : 𝜏 ↦→ [L(l1, 𝜏, 𝑙), L(l2, 𝜏, 𝑙 ′)]]
C
lu
;

// Frame + DD-Assign/DD-Read/DD-Write

[ok : 𝜏 ↦→ [L(l1, 𝜏, 𝑙), L(l2, 𝜏, 𝑙 ′)]]
unlock𝜏 𝑙

′
; //DD-Unlock

[ok : 𝜏 ↦→ [L(l1, 𝜏, 𝑙), L(l2, 𝜏, 𝑙 ′),U(𝜏, 𝑙 ′)]]
unlock𝜏 𝑙 ; //DD-Unlock

[ok : 𝜏 ↦→ [L(l1, 𝜏, 𝑙), L(l2, 𝜏, 𝑙 ′),U(𝜏, 𝑙 ′),U(𝜏, 𝑙)]]

[𝜏 ′ ↦→ []]
l5: lock𝜏 ′ 𝑙

′
; //DD-Lock

[ok : 𝜏 ′ ↦→ [L(l5, 𝜏 ′, 𝑙 ′)]]
l6: lock𝜏 ′ 𝑙 ; //DD-Lock

[ok : 𝜏 ′ ↦→ [L(l5, 𝜏 ′, 𝑙 ′), L(l6, 𝜏 ′, 𝑙)]]
C
′
lu
;

// Frame + DD-Assign/DD-Read/DD-Write

[ok : 𝜏 ′ ↦→ [L(l5, 𝜏 ′, 𝑙 ′), L(l6, 𝜏 ′, 𝑙)]]
unlock𝜏′ 𝑙 ; //DD-Unlock

[ok : 𝜏 ′ ↦→ [L(l5, 𝜏 ′, 𝑙 ′), L(l6, 𝜏 ′, 𝑙),U(𝜏 ′, 𝑙)]]
unlock𝜏′ 𝑙

′
; //DD-Unlock

[ok : 𝜏 ′ ↦→ [L(l5, 𝜏 ′, 𝑙 ′), L(l6, 𝜏 ′, 𝑙),U(𝜏 ′, 𝑙)U(𝜏 ′, 𝑙 ′)]]
// Par

[ok : 𝜏 ↦→ [L(l1, 𝜏, 𝑙), L(l2, 𝜏, 𝑙 ′),U(𝜏, 𝑙 ′),U(𝜏, 𝑙)] ∗ 𝜏 ′ ↦→ [L(l5, 𝜏 ′, 𝑙 ′), L(l6, 𝜏 ′, 𝑙),U(𝜏 ′, 𝑙)U(𝜏 ′, 𝑙 ′)]]
//Cons[

ok :

𝜏 ↦→ [L(l1, 𝜏, 𝑙), L(l2, 𝜏, 𝑙 ′),U(𝜏, 𝑙 ′),U(𝜏, 𝑙)] ∗ 𝜏 ′ ↦→ [L(l5, 𝜏 ′, 𝑙 ′), L(l6, 𝜏 ′, 𝑙),U(𝜏 ′, 𝑙)U(𝜏 ′, 𝑙 ′)]
∧ SDL(𝑙 ′, 𝑙, [L(l1, 𝜏, 𝑙), L(l5, 𝜏 ′, 𝑙 ′), L(l2, 𝜏, 𝑙 ′), L(l6, 𝜏 ′, 𝑙)])

]
Fig. 11. A proof sketch of the deadlock in DL

That is, a deadlock exists between 𝜏1, 𝜏2 when they respectively yield critical pairs (𝑙1, 𝐴1) and
(𝑙1, 𝐴1), and their respective critical pairs clash as described above. Specifically, a thread 𝜏1 attempts

to lock 𝑙1 after having locked 𝑙2, while another thread 𝜏2 attempts to lock 𝑙2 after having locked 𝑙1,

thus leading to a deadlock. The DL assertion corresponds to the deadlock reporting mechanism of

Brotherston et al. [2021] using critical pairs; as discussed, this can be generalised to 𝑛 threads.

A More Expressive Deadlock Assertion. Note that the DL assertion above (and that of

Brotherston et al. [2021]) merely reports the presence of a deadlock, rather than how a deadlock may

be encountered. Specifically, DL does not reflect how one may construct a history witnessing the

deadlock. However, thanks to the sequential histories recorded for each thread in CISL
DD

, we can

indeed strengthen the DL assertion as follows to record a history (trace) 𝐻 witnessing the deadlock,

where the highlighted sections denote the extensions strengthening DL:

SDL(𝑙1,𝑙2,𝐻) def⇐⇒∃𝜏1, 𝜏2, 𝐻 ′
1
, 𝐻 ′

2
, 𝐻1, 𝐻2, 𝑒1, 𝑒2, 𝐴1, 𝐴2, 𝑃2 .

𝜏1 ↦→𝐻 ′
1
++𝐻1++𝑒1++− ∗ 𝑒1=L(−, 𝜏1, 𝑙1) ∗ alocks(𝐻1,𝜏1)=𝐴1 ∗ 𝑙2 ∈𝐴1

∗𝜏2 ↦→𝐻 ′
2
++𝐻2++𝑒2++− ∗ 𝑒2=L(−, 𝜏2, 𝑙2) ∗ alocks(𝐻2, 𝜏2)=𝐴2 ∗ 𝑙1 ∈𝐴2 ∗ locks(𝐻2,𝜏2)=𝑃2

∗alocks(𝐻 ′
1
, 𝜏1)=alocks(𝐻 ′

2
, 𝜏2)=∅ ∗𝐴1 ∩ 𝑃2 = ∅ ∗ 𝐻 =𝐻 ′

1
++𝐻 ′

2
++𝐻1++𝐻2++𝑒1++𝑒2

The 𝐻 ′
1
and 𝐻 ′

2
prefixes allow the two deadlocking threads to acquire the same lock so long as they

release it before the deadlocking accesses (alocks(𝐻 ′
1
, 𝜏1) = alocks(𝐻 ′

2
, 𝜏2) = ∅).

1. 𝜏1: lock𝜏 𝑥 ;
2. 𝜏1: lock𝜏 𝑧;
3. 𝜏1: lock𝜏 𝑦;

4. 𝜏2: lock𝜏 𝑦;
5. 𝜏2: lock𝜏 𝑧;
6. unlock𝜏2 𝑧;
7. 𝜏2: lock𝜏 𝑥 ;

(DL1)

The 𝐴1 ∩ 𝑃2=∅ ensures that the histories of 𝜏1, 𝜏2 can be combined

into a well-formed global history. That is, (without loss of generality)

we require that the locks (active or passive) acquired by 𝜏2 (in 𝐻2) on

the way to acquiring 𝑙2 (via 𝑒2) do not intersect with the active locks

held by 𝜏1 thus far; were this not the case and 𝜏2 attempted to acquire a

lock already held by 𝜏1, then appending 𝐻2 after 𝐻1 would not yield a

well-formed history. To see this, consider DL1 and let 𝐻 ′
1
=𝐻 ′

2
=[], 𝐻1=[1, 2], 𝐻2=[4, 5, 6], and let 𝑒1

and 𝑒2 be the events of locks on lines 3 and 7, respectively. We then have 𝐴1=alocks(𝐻1,𝜏1)={𝑥, 𝑧}
and 𝑃2= locks(𝐻2,𝜏2)={𝑦, 𝑧}, rendering the combined history 𝐻 =𝐻 ′

1
++𝐻 ′

2
++𝐻1 ++𝐻2 ++𝑒1 ++𝑒2 not

well-formed, as 𝜏2 attempts to acquire 𝑧 (line 5 in 𝐻2) which is already held by 𝜏1 (line 2 in 𝐻1).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:21

Example 5.1. We present a proof sketch of the deadlock in DL in Fig. 11. Note that since Clu (resp.

C
′
lu
) contain no luck/unlock instructions, and the remaining CISL

DD
instructions (assignment, read

and write) do not alter the history, it is straightforward to show that after executing Clu (resp. C
′
lu
)

the sequential thread histories remain unchanged.

1. 𝜏1: lock𝜏 𝑧;
2. 𝜏1: lock𝜏 𝑦;
3. unlock𝜏1 𝑦;
4. 𝜏1: lock𝜏 𝑥 ;
5. 𝜏1: lock𝜏 𝑦;

6. 𝜏2: lock𝜏 𝑤 ;

7. 𝜏2: lock𝜏 𝑥 ;
8. unlock𝜏2 𝑥 ;
9. 𝜏2: lock𝜏 𝑦;
10. 𝜏2: lock𝜏 𝑥 ;

(DL2)

The SDL versus DL Assertion. Note that the SDL assertion

is stronger (stricter) than DL, in that SDL may fail to catch

deadlocks that DL can catch. To see this, consider the program

in DL2, where the deadlock between lines 4, 5, 9 and 10 can

be captured by DL as DL(𝑦, {𝑧, 𝑥}, 𝑥, {𝑤,𝑦}), but not by SDL.

However, our aim with SDL is not to detect more deadlocks,

but rather to provide a more expressive assertion that provides

the user with a trace witnessing the deadlock. This is indeed a tradeoff: while DL can identify all

potential deadlocks, it does not describe how the deadlock may arise (e.g. via a witness trace), and

it is not always immediately obvious how the deadlock may be encountered, which can be crucial

when fixing the deadlock. By contrast, SDL provides a witness trace that may aid the deadlock

fixing process, albeit at the cost of missing some deadlocks. Note that given the under-approximate

nature of CISL, it is sound to miss some deadlocks in the case of SDL.

Machine States (Par. 5) and Erasure (Par. 7). As in CISL
RD
, a CISLDD machine state, m ∈

MStateDD in Fig. 10, records the global execution history, obtained by combining the thread

histories (in StateDD) into a well-formed history via the CISLDD erasure function below, where 𝐻 |𝜏
is as defined in §4:

⌊s⌋DD ≜
{
𝐻 ∀𝜏 . s(𝜏) = 𝐻 ′ ⇒ 𝐻 |𝜏 = 𝐻 ′}

CISLDD Atomic Semantics (Par. 6). The CISL
DD

atomic semantics is defined below, where

(as in CISL
RD
) each instruction of 𝜏 extends the current history (machine state) 𝐻𝑔 by inserting

an associated event 𝑒 in 𝐻𝑔 such that 𝑒 is the last event of 𝜏 in the extended history, and the

extended history is well-formed (i.e. is in Hist). As before, the atomic semantics of l: lock𝜏 𝑙 (resp.
unlock𝜏 𝑙) returns an empty set when the lock 𝑙 is already held (resp. not held) by 𝜏 , thanks to the

well-formedness condition on histories (see Fig. 10).

Jl: lock𝜏 𝑙KAok ≜
{
(𝐻𝜏 ++ 𝐻,𝐻𝜏 ++ 𝑒 ++ 𝐻) ∈ Hist

2 𝑒=L(l, 𝜏, 𝑙) ∧ ∀𝑒 ′ ∈ 𝐻. 𝑒 ′.tid ≠ 𝜏
}

Junlock𝜏 𝑙KAok ≜
{
(𝐻𝜏 ++ 𝐻,𝐻𝜏 ++ 𝑒 ++ 𝐻) ∈ Hist

2 𝑒=U(𝜏, 𝑙) ∧ ∀𝑒 ′ ∈ 𝐻. 𝑒 ′.tid ≠ 𝜏
}

J𝑎 := eKAok = J𝑎 := [𝑥]KA = J[𝑥] := 𝑎KA ≜
{
(𝐻,𝐻) 𝐻 ∈ Hist

}
CISLDD Atomic Soundness (Par. 8). In the technical appendix [Raad et al. 2022] we demon-

strate that the CISL
DD

atomic instructions are sound.

6 GENERALISING CISL TO PCMSWITH INTERFERENCE
Interference. Our notion of views thus far (Def. 3.4) describes abstract states constructed in

such a way that are stable, i.e. immune to interference (modification) from concurrent threads. For

instance, let 𝜏 and 𝜏 ′ denote two concurrent threads in CISL
DC

, with their current states respectively

given by s and s
′
, such that their composition (s ◦DC s

′
) is defined (otherwise they cannot run

concurrently). From CISL
DC

axioms we then know 𝜏 (resp. 𝜏 ′) can only modify an entry in s (resp.

s
′
) for which it has full permission (𝜋=1), which (by definition of ◦DC) cannot be in the domain of

s
′
(resp. s). As such, 𝜏 and 𝜏 ′ cannot modify the states (and by lifting the views) of one another.

In our CISL instantiations so far, views are stable by construction. Although stable-by-construction

views are simpler, and are indeed sufficient for our CISL instantiations so far, they are not strictly

necessary. In particular, in reasoning frameworks with finer-grained permissions such as those of

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:22 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

FrameInter

⊢ [𝑝] C [𝜖 :𝑞] stable(𝑟)
⊢ [𝑝 ∗ 𝑟] C [𝜖 :𝑞 ∗ 𝑟]

ParInter

(stable(𝑝1, 𝑞2) ∨ stable(𝑝2, 𝑞1)) ⊢ [𝑝𝑖] C𝑖 [ok : 𝑞𝑖] for all 𝑖 ∈ {1, 2}
⊢ [𝑝1 ∗ 𝑝2] C1 | | C2 [ok : 𝑞1 ∗ 𝑞2]

Fig. 12. Generalised rules of frame and parallel composition in the presence of interference

[Jung et al. 2015; Dinsdale-Young et al. 2010], views need not be stable by construction, so long

as they are stable with respect to interference from other threads. Accordingly, the rules of frame

and parallel composition are adapted to admit views that are stable with respect to interference.

We can analogously generalise CISL to allow for interference. An interference relation describes

how the states of one thread can be modified by other threads in the environment. As states are

supplied as a CISL parameter, CISL is also parametric in their associated interference. In all our

examples thus far, interference can be denoted by the identity relation as threads do not interfere

by construction. Later in §7 we present a CISL instance with a non-identity interference relation.

Parameter 9 (Interference). Assume an interference relation I ⊆ State × State such that:

• I is reflexive and transitive;

• for all s, s1, s2, s
′
, if s=s1 ◦ s2 and (s, s′) ∈ I, then there exist s

′
1
, s′

2
such that s

′=s′
1
◦ s′

2
and

(s1, s′1), (s2, s′2) ∈ I; and
• for all s0 ∈ State

0
and s ∈ State, if (s, s0) ∈ I, then s ∈ State

0
.

Example 6.1. We illustrate how interference can be used to construct views by revisiting the

states in CISL
DC

(Example 3.3). Specifically, rather than modelling states as maps with non-zero

permissions, we can additionally allow zero permissions: State
z

DC
≜ Var

fin

⇀ (Val×[0, 1])∪(Loc fin

⇀

Val⊎{⊥}× [0, 1]), with composition ◦DC and units State
0

DC
defined as before. The zero permission

on 𝑘 denotes the absence of ownership on 𝑘 and confers no resources; as such, the CISL
DC

axioms

remain unchanged. However, the interference is no longer the identity relation as we should

account for other threads modifying those entries for which the current thread has zero permission:

I ≜
{
(s, s′) ∀𝑘. s(𝑘) = (−, 𝜋) ∧ 𝜋 > 0 ⇒ s(𝑘) = s

′(𝑘)
}
. That is, concurrent threads may modify

those entries that are not (partially) owned by the current thread.

We next define the notion of stable views as those views that are invariant under interference.

Definition 6.2 (Stability). Given the interference relation I (Par. 9), a view 𝑝 is stable, written

stable(𝑝), iff I−1 (𝑝) ⊆ 𝑝 , where I−1 (𝑝) ≜ ⋃
s∈𝑝 I−1 (s) and I−1 (s) ≜

{
s
′ ∃s ∈ 𝑝. (s′, s) ∈ I

}
.

Note that unlike in correctness settings where stability is defined in the forward direction on

I, namely stable(𝑝) ⇐⇒ I(𝑝) ⊆ 𝑝 with I(s) ≜
{
s
′ (s, s′) ∈ I

}
, in the incorrectness setting of

CISL stability is defined in the backward direction via I−1
. To see why, let 𝑝 ≜ 𝑥

1↦→2, 𝑞 ≜ 𝑥
1↦→3,

𝑟 ≜𝑥
0↦→3 and C≜𝑥 := 3. Using the DC-Assign axiom we obtain [𝑝] C [ok : 𝑞]. Subsequently, we can

apply Frame to get [𝑝 ∗ 𝑟] C [ok : 𝑞 ∗ 𝑟], i.e. [false] C [ok : 𝑞 ∗ 𝑟]. The resulting triple is invalid: it

states that each state in 𝑞 ∗ 𝑟 is reachable from some state in the empty state set false! Similarly,

using Skip we have [𝑟]skip[ok : 𝑟] and we can apply Par to get [false] C | | skip [ok : 𝑞 ∗ 𝑟]!
In other words, when interference is a non-identity relation, we jeopardise the soundness of Frame

and Par. In the example above, as the frame 𝑟 holds zero permission on 𝑥 , it should anticipate the

environment to modify it. That is, 𝑟 should be (but it is not) stable under I as defined in Example 6.1.

As such, even though 𝑟 is compatible with 𝑞 (𝑞∗𝑟 is defined), when 𝑥 is modified by the environment,

this change is not anticipated by 𝑟 and thus 𝑝 ∗ 𝑟 ≡ false. By contrast, 𝑟 ′ ≜ ∃𝑣 . 𝑥 0↦→ 𝑣 is stable,

resulting in valid triples [𝑝 ∗ 𝑟 ′] C [ok : 𝑞 ∗ 𝑟 ′] and [𝑝 ∗ 𝑟 ′] C | | skip [ok : 𝑞 ∗ 𝑟 ′].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:23

As such, we adapt the Frame and Par rules as shown in Fig. 12, where we write stable(𝑝1, 𝑝2)
as a shorthand for stable(𝑝1) ∧ stable(𝑝2). Note that in ParInter it is sufficient for either 𝑝1, 𝑞2 or

𝑝2, 𝑞1 to be stable. Intuitively, this is because it suffices to show [𝑝1 ∗ 𝑝2] C1 | | C2 [ok : 𝑞1 ∗ 𝑞2] holds
for one interleaving of C1 | | C2. In particular, C1;C2 is a valid interleaving of C1 | | C2, and so long as

we have stable(𝑝2, 𝑞1) and [𝑝𝑖] C𝑖 [ok : 𝑞𝑖] for 𝑖 ∈ {1, 2}, we can derive:

[𝑝1] C1 [ok : 𝑞1] stable(𝑝2)
[𝑝1 ∗ 𝑝2] C1 [ok : 𝑞1 ∗ 𝑝2]

FrameInter

[𝑝2] C2 [ok : 𝑞2] stable(𝑞1)
[𝑞1 ∗ 𝑝2] C1 [ok : 𝑞1 ∗ 𝑞2]

FrameInter

[𝑝1 ∗ 𝑝2] C1;C2 [ok : 𝑞1 ∗ 𝑞2]
Seq

[𝑝1 ∗ 𝑝2] C1 | | C2 [ok : 𝑞1 ∗ 𝑞2]
ParSeq

Analogously, stable(𝑝1, 𝑞2) allows us to derive [𝑝1 ∗ 𝑝2] C2;C1 [ok : 𝑞1 ∗ 𝑞2] as another interleaving
of C1 | |C2. Lastly, we generalise axiom soundness accordingly to allow for interference: atomic

commands may modify compatible frames (of concurrent threads) up to their interference.

Parameter 10 (General axiom soundness). Assume for all (𝑝, 𝑙, 𝜖, 𝑞) ∈ Axiom the following holds:

∀s ∈ State,m𝑞 ∈ ⌊𝑞 ∗ {s}⌋ . ∃m𝑝 ∈ ⌊𝑝 ∗ I−1 (s)⌋ . (m𝑝 ,m𝑞) ∈ J𝑙K𝜖

7 CISLSV: CISL FOR SHARED CONCURRENCYWITH RESOURCE SUBVARIANTS
We next develop CISL

SV
as an instance of CISL with non-identity interference. CISL

SV
is the under-

approximate analogue of concurrent separation logic (CSL) [O’Hearn 2004], used for reasoning

about shared concurrency with resource invariants. In the correctness setting of CSL one must show

that a shared resource r always satisfies an invariant that over-approximates the possible states of r,
after it has been accessed (within a critical section) an arbitrary number for times. However, in

the incorrectness setting of CISL such over-approximation is of little use. Instead, we appeal to a

resource subvariant that under-approximates the possible states of r. Specifically, a subvariant S
associated with resource r is a map from natural numbers to states, with S(𝑛) under-approximating

the possible states of r after it has been accessed 𝑛 times; i.e. the initial state of r is given by S(0).

CISLSV Atomic Commands (Par. 1). CISL
SV

atomics include the heap-manipulating constructs

of CISL
DC

, as well as commands for accessing shared resources: 1) acq𝜏 r for acquiring the shared

resource r∈RId within a critical section of thread 𝜏 ; and 2) rel𝜏 r for releasing the shared resource

r held by 𝜏 . As in CSL, we assume shared resources are declared sequentially before forking parallel

threads: we focus on programs of the form resource r1 · · · r𝑘 ;C1 | | · · · | | C𝑛 . As noted in [O’Hearn

2004], it is possible to consider nested resource declarations and parallel compositions; however, for

brevity we focus on this restricted form. We write with𝜏 r do C as a shorthand for acq𝜏 r;C; rel𝜏 r.

AtomSV ∋ a ::= 𝑥 := 𝑣 | 𝑥 := alloc() | l: free(𝑥) | l:𝑥 := [𝑦] | l: [𝑥] := 𝑦 | acq𝜏 r | rel𝜏 r
In what follows we first present the CISL

SV
axioms using an intuitive description of CISL

SV

states, and then present the formal definition of CISL
SV

states and their interference.

CISLSV Atomic Axioms. We present the CISL
SV

axioms in Fig. 13. The res
r
S (𝜏 :𝑛) (defined

shortly below) in the precondition of SV-Acq describes the resources necessary for 𝜏 to acquire r
with subvariant S, where 𝑛 denotes the contribution of 𝜏 on r: the number of times 𝜏 has accessed r.
That is, res

r
S (𝜏 :𝑛) reflects the contribution of 𝜏 only, and not that of other threads; as such, the total

contribution on r is unknown and may be any value𝑚 ≥ 𝑛, as captured by the disjunction in the

SV-Acq postcondition. Given the total contribution𝑚 ≥ 𝑛, once 𝜏 acquires r, it claims the resources

of r (S(𝑚)) and changes res
r
S (𝜏 :𝑛) for cs

r
S (𝜏 :𝑛,𝑚). That is, once 𝜏 acquires r, others can no longer

access r and thus its total contribution𝑚 remains unchanged and can be reflected in cs
r
S (𝜏 :𝑛,𝑚).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:24 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

SV-Acq[
res

r
S (𝜏 :𝑛)

]
acq𝜏 r

[
ok :

∨
𝑚≥𝑛

(S(𝑚) ∗ csrS (𝜏 :𝑛,𝑚))
] SV-Rel[∨

𝑚≥𝑛
(S(𝑚+1) ∗ csrS (𝜏 :𝑛,𝑚))

]
rel𝜏 r

[
ok : res

r
S (𝜏 :𝑛+1)

]
SV-Acq-G[
res

r
S (𝑚)

]
acq𝜏 r

[
ok : S(𝑚) ∗ csrS (𝜏,𝑚)

] SV-Rel-G[
S(𝑚+1) ∗ csrS (𝜏,𝑚)

]
rel𝜏 r

[
ok : res

r
S (𝑚+1)

]
SV-CS

∀𝑚 ≥ 𝑛. [𝑝 ∗ S(𝑚)] C [ok : 𝑞 ∗ S(𝑚+1)] stable(𝑝, 𝑞)[
𝑝 ∗ resrS (𝜏 :𝑛)

]
with𝜏 r do C

[
ok : 𝑞 ∗ resrS (𝜏 :𝑛+1)

] SV-CS-G

[𝑝 ∗ S(𝑛)] C [ok : 𝑞 ∗ S(𝑛+1)][
𝑝 ∗ resrS (𝑛)

]
with𝜏 r do C

[
ok : 𝑞 ∗ resrS (𝑛+1)

]
Fig. 13. CISL

SV
axioms (excerpt); SV-CS and SV-CS-G are derived from SV-Acq, SV-Rel and CISL proof rules

Upon successful acquisition of r, 𝜏 enters a critical section and may freely modify S(𝑚). However,
prior to exiting the critical section, it must re-establish the subvariant for its incremented contribu-

tion, namely S(𝑚+1), as shown in the precondition of SV-Rel. Once 𝜏 releases r, it relinquishes
S(𝑚+1) and increments its contribution to 𝑛+1 by changing cs

r
S (𝜏 :𝑛,𝑚) for resrS (𝜏 :𝑛+1).

While res
r
S (𝜏 :𝑛) describes the resources needed for 𝜏 to acquire r and thus denotes a 𝜏-local view,

the res
r
S (𝑛) describes those needed for all threads, denoting a global view. That is, res

r
S (𝑛) grants

full permission on r, the environment cannot interfere with r and thus we can stably reflect the total

contribution of all threads (𝑚). Similarly, cs
r
S (𝜏,𝑚) denotes a global analogue of csrS (𝜏 :𝑛,𝑚). Note

that a global view may always be split to its constituent local views via the following equivalence:

res
r
S (𝑘) ⇔ ∃𝑘1 · · ·𝑘𝑛 . 𝑘 =

∑︁
𝑘𝑖 ∗ ∗

𝜏𝑖 ∈TId
res

r
S (𝜏𝑖 :𝑘𝑖) (Subv-Split)

We use the global views in SV-Acq-G and SV-Rel-G which denote global analogues of the local

SV-Acq and SV-Rel rules. In contrast to the local, in the global rules we know the precise total

contribution𝑚 and thus no longer need the outer disjunct (∨𝑚≥𝑛).
The SV-CS for executing C within a critical section of r can be derived using SV-Acq, SV-Rel and

other CISL rules, where 𝑝, 𝑞 denote additional resources needed for executing C, provided that

they are stable (as they will be framed off when applying SV-Acq and SV-Rel, respectively). The

remaining axioms of CISL
SV

(e.g. for free(𝑥)) are the same as their CISL
DC

counterparts in Fig. 4.

Example 7.1. Assume that location 𝑥 is shared within resource r (i.e. can only be accessed within

a critical section), and let disp𝜏 𝑥 be defined as follows to dispose (free) 𝑥 atomically:

disp𝜏 𝑥 ≜ with𝜏 r do C1 +C2 C1 ≜ assume(¬flag); free(𝑥); flag := 1 C2 ≜ assume(flag); skip

That is, if flag is set, then 𝑥 is already deallocated and disp𝜏 𝑥 does nothing; otherwise 𝑥 is

deallocated and flag is set. Let S(0) ≜ flag ↦→0 ∗ 𝑥 ↦→− and S(𝑛) ≜ flag ↦→1 ∗ 𝑥 ̸↦→ for 𝑛 ≥ 1.

We present a proof derivation of disp𝜏1 𝑥 | | disp𝜏1 𝑥 in Fig. 14 (top), where we assume TId = {𝜏1, 𝜏2}.
Note that we use the Subv-Split equivalence together with the CISL Cons rule to split the global

view into thread-local ones and subsequently pass them on to respective threads via Par.

Example 7.2. Let disp𝜏 𝑥 and S be as in Example 7.1, and C ≜ disp𝜏1 𝑥 ;C3 | | C′
for an arbitrary

C
′
and with C3 ≜ with𝜏1 r do l: free(𝑥). There is a local memory safety error at l: after executing

disp𝜏1 𝑥 , the location at 𝑥 is guaranteed to be deallocated and thus the call to free(𝑥) at l causes a
memory safety error. We present a CISL proof of this error using ParEr in Fig. 14 (middle).

CISLSV States. A CISL
SV

state is a triple s= (l, p, 𝜌), where l∈LState is a local state, p∈Perm is

a permission and 𝜌 ∈RMap is a shared resource map, provided that s is well-formed (defined below).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:25

𝑃 (𝜏1)[
res

r
S (𝜏1: 0)

]
disp𝜏1 𝑥

[
ok : res

r
S (𝜏1: 1)

] 𝑃 (𝜏2)[
res

r
S (𝜏2: 0)

]
disp𝜏2 𝑥

[
ok : res

r
S (𝜏2: 1)

]
[
res

r
S (𝜏1: 0) ∗ res

r
S (𝜏2: 0)

]
disp𝜏1 𝑥 | | disp𝜏2 𝑥

[
ok : res

r
S (𝜏1: 1) ∗ res

r
S (𝜏2: 1)

] Par

[
res

r
S (0)

]
disp𝜏1 𝑥 | | disp𝜏2 𝑥

[
ok : res

r
S (2)

] Cons, Subv-Split

𝑃 (𝜏1)[
res

r
S (𝜏1: 0)

]
disp𝜏1 𝑥

[
ok : res

r
S (𝜏1: 1)

] [flag ↦→1 ∗ 𝑥 ̸↦→] l: free(𝑥) [mse(l) : flag ↦→1 ∗ 𝑥 ̸↦→]
∀𝑛 ≥ 1. [S(𝑛)] l: free(𝑥) [mse(l) : S(𝑛+1)][

res
r
S (𝜏1: 1)

]
C3

[
mse(l) : resrS (𝜏1: 2)

] SV-CS

[
res

r
S (𝜏1: 0)

]
disp𝜏1 𝑥 ;C3

[
mse(l) : resrS (𝜏1: 2)

] SeqEr

[
res

r
S (𝜏1: 0) ∗ res

r
S (𝜏2: 0)

]
C

[
mse(l) : resrS (𝜏1: 2) ∗ res

r
S (𝜏2: 0)

] ParEr

[
res

r
S (0)

]
C

[
mse(l) : resrS (2)

] Cons

...

[S(0)] C1 [ok : S(1)]
[S(0)] C1 + C2 [ok : S(1)] Choice

...

∀𝑛 ≥ 1. [S(𝑛)] C2 [ok : S(𝑛+1)]
∀𝑛 ≥ 1. [S(𝑛)] C1 + C2 [ok : S(𝑛+1)] Choice

∀𝑛 ≥ 0. [S(𝑛)] C1 + C2 [ok : S(𝑛+1)][
res

r
S (𝜏 : 0)

]
disp𝜏 𝑥

[
ok : res

r
S (𝜏 : 1)

] SV-CS

𝑃 (𝜏)
Fig. 14. Proof derivations of Example 7.1 (top) and Example 7.2 (middle), with 𝑃 (𝜏) as defined at the bottom

Intuitively, a local state denotes the resources owned locally by a thread and is given by a PCM.

The PCM choice, (LState, ◦l, LState0), can be supplied as a parameter to CISL
SV
. For clarity, here

we instantiate it with the CISL
DC

PCM in §3: LState ≜ StateDC, ◦l ≜ ◦DC and LState
0 ≜ LState

0
.

Permissions are used for accessing shared resources and are defined as Perm ≜ (RId×TId) → N.
Intuitively, given a permission p, a shared resource r and a thread 𝜏 , the p(r, 𝜏) is held locally by 𝜏

and grants it the permission to access r within a critical section. Moreover, when p(r, 𝜏) = 𝑛, then

𝑛 denotes the contribution of 𝜏 on r: the number of times 𝜏 has accessed r.
The set of resource maps is: 𝜌 ∈RMap ≜ RId

fin

⇀ (TId⊎{⊥})×SubV×TMap and describes shared

resources. Specifically, a resource map 𝜌 associates a resource r with a triple of the form (𝑜,S, 𝑡),
where 𝑜 ∈TId ⊎ {⊥} denotes the owner ; S∈SubV ≜ N→ P(LState) denotes the subvariant; and
𝑡 ∈TMap denotes a thread map. Intuitively, 𝑜 =𝜏 ∈TId denotes that r is currently being accessed

within a critical section by 𝜏 (and thus 𝜏 owns the resources of r). Conversely, 𝑜 =⊥ denotes that r is
not currently being accessed. The S denotes the resource subvariant as described above, with S(𝑘)
denoting the possible resources associated with r after it has been accessed 𝑘 times. Lastly, the

set of thread maps is 𝑡 ∈ TMap ≜ TId → N. Intuitively, when 𝑡 is associated with r, 𝑡 (𝜏) denotes
the contribution of 𝜏 to r (i.e. the number of times 𝜏 has accessed r). As such, as we formalise

below, 𝑡 (𝜏) and the permission p(r, 𝜏) held locally by 𝜏 on r must agree. When accessing r within a

critical section, 𝜏 can then use p(r, 𝜏) to increment p(r, 𝜏) and 𝑡 (𝜏) in tandem, reflecting its added

contribution. Given a thread map 𝑡 , we write count (𝑡) for ∑𝜏 ∈dom(𝑡) 𝑡 (𝜏). Given a resource r and
resource map 𝜌 with 𝜌 (r)= (−,−, 𝑡), we define count (𝜌, r) ≜ count (𝑡) and count (𝜌, r, 𝜏) ≜ 𝑡 (𝜏).

Note that count (𝜌, r) denotes the total number of times r has been accessed (by all threads). As

such, when count (𝜌, r)=𝑛: 1) if 𝜌 (r)= (⊥,S,−) (i.e. r is not being accessed), then the resources of

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:26 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

r are unclaimed and are given by S(𝑛); and 2) if 𝜌 (r)= (𝜏,S,−), then 𝜏 has acquired the resources

of r (S(𝑛)) and transferred them to its local state; upon exiting the critical section, 𝜏 increments its

contribution and releases the r resources, now given by S(𝑛+1), returning them to the shared state.

A triple (l, p, 𝜌) is well-formed if 1) the composition of the local state l and the resource of each r
in 𝜌 is defined; and 2) the contribution of p for each (r, 𝜏) agrees with its counterpart in 𝜌 . We thus

define the set of CISL
SV

states as follows, whereL ≜
{
S(𝑛) ∃r. 𝜌 (r) = (⊥,S, 𝑡) ∧ count (𝜌, r) =𝑛

}
:

StateSV ≜
{
(l, p, 𝜌) ∈ LState × Perm × RMap

{l} ∗ ∗
𝐿𝑖 ∈L

𝐿𝑖 ≠ ∅ ∧ ∀r, 𝜏, 𝑛. p(r, 𝜏)=𝑛 ⇒ count (𝜌, r, 𝜏) =𝑛
}

The CISLSV state composition is defined component-wise as ◦SV ≜ (◦l,⊎, ◦=), where 𝜌1 ◦= 𝜌2=𝜌1 if
𝜌1=𝜌2 and is otherwise undefined. The CISLSV unit set is

{
(l0, ∅, 𝜌) l0 ∈LState0 ∧ 𝜌 ∈RMap

}
.

CISLSV Interference. The CISL
SV

interference is I ≜ (StateSV × StateSV) ∩ (I𝑎 ∪I𝑟)∗, where
(I𝑎 ∪ I𝑟)∗ denotes the transitive closure of (I𝑎 ∪ I𝑟), and:
I𝑎 ≜

{(
(l, p, 𝜌),(l, p, 𝜌 ′)

)
∃r,S, 𝑡, 𝜏 . 𝜌 (r)=(⊥,S, 𝑡)∧(r, 𝜏) ∉dom(p)∧𝜌 ′=𝜌 [r ↦→ (𝜏,S, 𝑡)]

}
I𝑟 ≜

{(
(l, p, 𝜌),(l, p, 𝜌 ′)

)
∃r,S, 𝑡, 𝜏 . 𝜌 (r)=(𝜏,S, 𝑡)∧(r, 𝜏) ∉dom(p)∧𝜌 ′=𝜌 [r ↦→ (⊥,S, 𝑡 [𝜏 ↦→𝑡 (𝜏)+1])]

}
The I𝑎 describes how a concurrent thread 𝜏 may modify a state (l, p, 𝜌) of the current thread to

(l, p, 𝜌 ′) when acquiring r (entering a critical section on r). Note that (r, 𝜏) ∉dom(p) ensures the
current thread holds no permission on (r, 𝜏), i.e. 𝜏 is a thread in the environment. Moreover, 𝜏 does

not alter the local state (l) and permission (p) of the current thread, and its modification is limited

to the shared state 𝜌 . Specifically, 𝜏 acquires r by first checking it is not currently being accessed

(the first component of 𝜌 (r) is ⊥) and subsequently changing it to reflect it is being accessed by 𝜏 .

Dually, I𝑟 describes how 𝜏 may modify a CISL
SV

state when releasing r (exiting a critical section

on r). As before, the changes are limited to the shared state, whereby the first component of 𝜌 (r) is
updated from 𝜏 (the releasing thread) to ⊥, denoting that r is no longer being accessed. Moreover,

the thread map of r (𝑡) is updated to increment the number of accesses on r by 𝜏 .

CISLSV Stable Views. Recall that the CISL
SV

axioms in Fig. 13 use the stable views below:

res
r
S (𝜏 :𝑛) ≜

{
(l0, p, 𝜌) l0 ∈ LState

0 ∧ ∃𝑜, 𝑡 . 𝜌 (r)= (𝑜,S, 𝑡) ∧ 𝑜≠𝜏 ∧ 𝑛=𝑡 (𝜏) ∧ p= [(r, 𝜏) ↦→ 𝑛]
}

res
r
S (𝑚) ≜

{
(l0, p, 𝜌) l0 ∈ LState

0 ∧ ∃𝑡 . 𝜌 (r) = (⊥,S, 𝑡) ∧𝑚=count (𝑡) ∧ p=⊎𝜏 ∈TId [(r, 𝜏) ↦→ 𝑡 (𝜏)]
}

cs
r
S (𝜏 :𝑛,𝑚) ≜

{
(l0, p, 𝜌) l0 ∈ LState

0 ∧ ∃𝑡 . 𝜌 (r) = (𝜏,S, 𝑡) ∧ 𝑛=𝑡 (𝜏) ∧ p= [(r, 𝜏) ↦→ 𝑛] ∧𝑚=count (𝑡)
}

cs
r
S (𝜏,𝑚) ≜

{
(l0, p, 𝜌) l0 ∈ LState

0 ∧ ∃𝑡 . 𝜌 (r) = (𝜏,S, 𝑡) ∧𝑚=count (𝑡) ∧ p=⊎𝜏 ∈TId [(r, 𝜏) ↦→ 𝑡 (𝜏)]
}

The res
r
S (𝜏 :𝑛) describes the resources necessary for 𝜏 to acquire r (as in the precondition of SV-Acq):

no local resources are needed (l0), 𝜏 has not already acquired r (𝑜 ≠ 𝜏) and the current state holds

the permission for 𝜏 to access r with matching contributions (𝑛=𝑡 (𝜏) ∧ p= [(r, 𝜏) ↦→ 𝑛]). Note that
res

r
S (𝜏 :𝑛) does not require 𝑜 =⊥ and thus allows for the possibility that another thread 𝜏 ′≠𝜏 may

be currently accessing r (i.e. allows for 𝑜 =𝜏 ′). Were we to stipulate 𝑜 =⊥, then res
r
S (𝜏 :𝑛) would no

longer be stable, as another thread 𝜏 ′ could release r and change 𝑜 from 𝜏 ′ to ⊥ as per I𝑟 .
Analogously, res

r
S (𝜏 :𝑛) only reflects the contribution of 𝜏 , and not that of other threads (as this

could change as per I𝑟). Once 𝜏 acquires r, it changes resrS (𝜏 :𝑛) for cs
r
S (𝜏 :𝑛,𝑚) by updating 𝑜 to 𝜏 ,

where𝑚 ≥ 𝑛 is the total contribution on r. As such, once 𝜏 acquires r, threads can no longer access

r and thus its total contribution remains unchanged and can be stably reflected in cs
r
S (𝜏 :𝑛,𝑚).

Recall that res
r
S (𝜏 :𝑛) denotes a 𝜏-local view, while res

r
S (𝑛) denotes a global view. As such,

the current state in res
r
S (𝑛) must hold the permissions of all threads (p=⊎𝜏 ∈TId [(r, 𝜏) ↦→ 𝑡 (𝜏)]).

Moreover, since the current state holds all thread permissions, the environment cannot interfere

and thus we can stably 1) stipulate that r not be currently accessed (𝑜 =⊥); and 2) reflect the total

contribution of all threads (𝑚=count (𝑡)). The csrS (𝜏,𝑚) is defined analogously to cs
r
S (𝜏 :𝑛,𝑚).

The remaining CISL
SV

axioms (e.g. for free(𝑥)) are as in Fig. 4, provided that we lift CISL
DC

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

Concurrent Incorrectness Separation Logic 34:27

views to CISL
SV
. Specifically, in CISL

SV
we write emp and 𝑥

𝜋↦→ 𝑣 for the stable views {(∅, ∅,−)}
and {([𝑥 ↦→ (𝑣, 𝜋)], ∅,−)}, respectively. We then write 𝑥 ↦→𝑣 for 𝑥

1↦→𝑣 , and so forth.

CISLSV Soundness. We define the remaining CISL
SV

parameters (Parameters 5 to 7) in the

technical appendix [Raad et al. 2022], proving that CISL
SV

atomic instructions are sound (Par. 8).

8 CONCLUSIONS AND RELATEDWORK
This work builds on CSL (concurrent separation logic) [O’Hearn 2004], IL (incorrectness logic)

[O’Hearn 2019], and ISL (incorrectness separation logic) [Raad et al. 2020].

CSL spawned a wealth of prior research; see the survey article of Brookes and O’Hearn [2016] for

an account of work in the area up to 2016. All of this prior work has focussed on over-approximation,

used for proving the absence of violations of safety properties. The impact of this work has remained,

however, largely academic. In contrast, the two under-approximate static analyses [Blackshear et al.

2018; Brotherston et al. 2021]—both intuitively (but not formally) related to separation logic—have

already had a great deal of real-world impact beyond the academic subject area. These analyses

share some of the pre-formal intuitions with CSL: both systems are based on compositional and

thread-modular reasoning—the under-approximate analyses just use such modular reasoning to find

bugs rather than exclude them. This commonality is unsurprising, given that—as O’Hearn [2018]

explains—CSL-based ideas were in fact the genesis of RacerD, even if formally the connection was

tenuous. In this paper, we bring these threads back together, by showing that the two analyses can

in fact be understood in terms of a concurrent separation logic, but an under-approximate one,

CISL, rather than the original CSL or one of its other successors.

IL and ISL are very young. The ISL paper [Raad et al. 2020] makes a partial but not full connection

to an in-production static analyser, Pulse. The present paper makes a fuller connection to different

analyses which have already proven effective in practice, and which also rely crucially on the

compositional nature of reasoning as formalised in IL and CISL. This new account of recent, novel

analysers adds significantly to the known ability of IL to describe legacy testing and symbolic

execution reasoning techniques.

There is a body of work on static concurrency analysis which often is thread-modular (but not

always compositional), exemplified by such papers as [Gotsman et al. 2007; Berdine et al. 2008;

Li et al. 2019]. Noteworthy advances have been made on automated reasoning about concurrent

programs in these works and, even if the technical expression of the ideas has tended to use

over-approximation, it makes sense to consider in these and many other cases whether under-

approximate variants would be possible or useful.

There is a fairly well-developed tradition of dynamic analysis techniques for concurrency, some

of which has crossed over to have industrial impact. Prominent examples include probabilistic

concurrency testing [Burckhardt et al. 2010], context-bounded model checking [Qadeer and Rehof

2005], and dynamic race detection as exemplified by Google’s Thread Sanitizer [Serebryany and

Iskhodzhanov 2009]. It is not yet clear whether CISL has anything to offer these techniques directly,

but their insights might be transferred to static under-approximate concurrency analysis, and

merging with CISL could conceivably open doors to more compositional and scalable techniques

which are fast enough for deployment in code review on pull requests.

Finally, in addition to CSL, the Owicki-Gries [Owicki and Gries 1976] and Rely-Guarantee [Jones

1983] proof methods produced fundamental insights into reasoning about safety properties for

concurrency, which were particularly well-suited to programs with more interference and less

resource separation. We wonder whether under-approximate variants of these theories exist with

similarly compelling intuitive bases, and whether such under-approximation might open yet further

avenues for automated analyses of concurrent programs.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

34:28 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn

ACKNOWLEDGMENTS
We thank the POPL 2022 reviewers and Viktor Vafeiadis for their valuable feedback. This research

was supported in part by a UKRI Future Leaders Fellowship [grant number MR/V024299/1] and a

European Research Council (ERC) Consolidator Grant for the project “RustBelt”, funded under the

European Union’s Horizon 2020 Framework Programme (grant agreement no. 683289).

REFERENCES
Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel Sagiv. 2008. Thread Quantification for Concurrent

Shape Analysis. In Computer Aided Verification, 20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14,

2008, Proceedings (Lecture Notes in Computer Science, Vol. 5123), Aarti Gupta and Sharad Malik (Eds.). Springer, 399–413.

https://doi.org/10.1007/978-3-540-70545-1_37

Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: Compositional Static Race Detection.

Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (Oct. 2018), 28 pages. https://doi.org/10.1145/3276514

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent separation logic. SIGLOG News 3, 3 (2016), 47–65. https:

//dl.acm.org/citation.cfm?id=2984457

James Brotherston, Paul Brunet, Nikos Gorogiannis, and Max Kanovich. 2021. A Compositional Deadlock Detector for

Android Java. http://www0.cs.ucl.ac.uk/staff/J.Brotherston/ASE21/deadlocks.pdf

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. 2010. A randomized scheduler with

probabilistic guarantees of finding bugs. In Proceedings of the 15th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA, March 13-17, 2010, James C.

Hoe and Vikram S. Adve (Eds.). ACM, 167–178. https://doi.org/10.1145/1736020.1736040

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and Hongseok Yang. 2013. Views: Com-

positional Reasoning for Concurrent Programs. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages (Rome, Italy) (POPL ’13). ACM, New York, NY, USA, 287–300. https:

//doi.org/10.1145/2429069.2429104

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP 2010 – Object-Oriented Programming, Theo D’Hondt (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 504–528.

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Facebook.

Commun. ACM 62, 8 (2019), 62–70. https://doi.org/10.1145/3338112

Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True Positives Theorem for a Static Race Detector. Proc.

ACM Program. Lang. 3, POPL, Article 57 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290370

Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. 2007. Thread-Modular Shape Analysis. In Proceedings of the

28th ACM SIGPLAN Conference on Programming Language Design and Implementation (San Diego, California, USA) (PLDI

’07). Association for Computing Machinery, New York, NY, USA, 266–277. https://doi.org/10.1145/1250734.1250765

C. B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans. Program. Lang. Syst.

5, 4 (Oct. 1983), 596–619. https://doi.org/10.1145/69575.69577

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for

Computing Machinery, New York, NY, USA, 637–650. https://doi.org/10.1145/2676726.2676980

Yanze Li, Bozhen Liu, and Jeff Huang. 2019. SWORD: a scalable whole program race detector for Java. In Proceedings of the

41st International Conference on Software Engineering: Companion Proceedings, ICSE 2019, Montreal, QC, Canada, May

25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 75–78. https://doi.org/10.1109/ICSE-

Companion.2019.00042

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In Programming Languages and Systems, Zhong Shao (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 290–310.

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, Philippa

Gardner and Nobuko Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 49–67.

Peter W. O’Hearn. 2018. Experience Developing and Deploying Concurrency Analysis at Facebook. In Static Analysis,

Andreas Podelski (Ed.). Springer International Publishing, Cham, 56–70.

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (Dec. 2019), 32 pages.

http://doi.acm.org/10.1145/3371078

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

https://doi.org/10.1007/978-3-540-70545-1_37
https://doi.org/10.1145/3276514
https://dl.acm.org/citation.cfm?id=2984457
https://dl.acm.org/citation.cfm?id=2984457
http://www0.cs.ucl.ac.uk/staff/J.Brotherston/ASE21/deadlocks.pdf
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/3338112
https://doi.org/10.1145/3290370
https://doi.org/10.1145/1250734.1250765
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1109/ICSE-Companion.2019.00042
https://doi.org/10.1109/ICSE-Companion.2019.00042
http://doi.acm.org/10.1145/3371078

Concurrent Incorrectness Separation Logic 34:29

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France,

September 10-13, 2001, Proceedings. 1–19. https://doi.org/10.1007/3-540-44802-0_1

Susan Owicki and David Gries. 1976. An axiomatic proof technique for parallel programs I. Acta Informatica 6, 4 (01 Dec

1976), 319–340. https://doi.org/10.1007/BF00268134

Matthew Parkinson. 2010. The Next 700 Separation Logics. In Verified Software: Theories, Tools, Experiments, Gary T. Leavens,

Peter O’Hearn, and Sriram K. Rajamani (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 169–182.

Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of Concurrent Software. In Tools and Algorithms for

the Construction and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in

Computer Science, Vol. 3440), Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 93–107. https://doi.org/10.1007/978-

3-540-31980-1_7

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About

the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang

(Eds.). Springer International Publishing, Cham, 225–252.

Azalea Raad, Josh Berdine, Derek Dreyer, and Peter O’Hearn. 2022. Technical Appendix. https://www.soundandcomplete.

org/papers/POPL2022/CISL/appendix.pdf

Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent Local Subjective Logic. In Programming

Languages and Systems, Jan Vitek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 710–735.

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from Building

Static Analysis Tools at Google. Commun. ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race detection in practice. In Proceedings of

the Workshop on Binary Instrumentation and Applications. 62–71.

Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR 2007 –

Concurrency Theory, Luís Caires and Vasco T. Vasconcelos (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 256–271.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 34. Publication date: January 2022.

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://www.soundandcomplete.org/papers/POPL2022/CISL/appendix.pdf
https://www.soundandcomplete.org/papers/POPL2022/CISL/appendix.pdf
https://doi.org/10.1145/3188720

	Abstract
	1 Introduction
	2 Overview of CISL
	3 The CISL Framework
	3.1 CISL Logic and Proof Rules
	3.2 CISL Model and Semantics
	3.3 CISL Soundness
	3.4 Generalising the Rule of Consequence (View Shifts)

	4 RD: CISL for Race Detection
	4.1 RDFormalism
	4.2 Generalising RD

	5 DD: CISL for Deadlock Detection
	6 Generalising CISL to PCMs with Interference
	7 SV: CISL for Shared Concurrency with Resource Subvariants
	8 Conclusions and Related Work
	Acknowledgments
	References

