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Abstract

Can an algorithm create original and compelling fashion
designs to serve as an inspirational assistant? To help an-
swer this question, we design and investigate different im-
age generation models associated with different loss func-
tions to boost creativity in fashion generation. The dimen-
sions of our explorations include: (i) different Generative
Adversarial Networks architectures that start from noise
vectors to generate fashion items, (ii) a new loss function
that encourages creativity, and (iii) a generation process
following the key elements of fashion design (disentangling
shape and texture makers). A key challenge of this study is
the evaluation of generated designs and the retrieval of best
ones, hence we put together an evaluation protocol associ-
ating automatic metrics and human experiment studies that
we hope will help ease future research. We show that our
proposed creativity loss yields better overall appreciation
than the one employed in Creative Adversarial Networks.
In the end, about 61% of our images are thought to be cre-
ated by human designers rather than by a computer while
also being considered original.

1. Introduction

Artificial Intelligence (Al) research has been making huge
progress in the machine’s capability of human level under-
standing across the spectrum of perception, reasoning and
planning [[14} 1} 28]].

Another key yet still relatively understudied direction is cre-
ativity where the goal is for machines to generate original
items with realistic, aesthetic and/or thoughtful attributes,
usually in artistic contexts. We can indeed imagine Al to
serve as inspiration for humans in the creative process and
also to act as a sort of creative assistant able to help with
more mundane tasks, especially in the digital domain. Pre-

Figure 1: Training generative adversarial models with ap-
propriate losses leads to realistic and creative 512 x 512
fashion images.

vious work has explored writing pop songs [3]], imitating
the styles of great painters [9} [7] or doodling sketches [12]]
for instance. Howeyver, it is not clear how creative such at-
tempts can be considered since most of them mainly tend to
mimic training samples without expressing much original-

1ty.

Creativity is a subjective notion that is hard to define and
evaluate, and even harder for an artificial system to opti-
mize for. Colin Martindale put down a psychology based
theory that explains human creativity in art [22] by con-
necting creativity or acceptability of an art piece to novelty
with “the principle of least effort”. As originality increases,
people like the work more and more until it becomes too
novel and too far from standards to be understood. When
this happens, people do not find the work appealing any-
more because a lack of understanding and of realism leads
to a lack of appreciation. This behavior can be illustrated
by the Wundt curve that correlates the arousal potential (i.e.
novelty) to hedonic responses (e.g. likability of the work)
with an inverted U-shape curve.



Earlier works on computational creativity for generating
paintings have been using genetic algorithms [21} 20} 23]
to create new artworks by starting from existing human-
generated ones and gradually altering them using pixel
transformation functions. There, the creativity is guided by
pre-defined fitness functions that can be tuned to trade-off
novelty and realism. For instance, for generating portraits,
DiPaola and Gabora [6] define a family of fitness functions
based on specific painterly rules for portraits that can guide
creation from emphasizing resemblance to existing paint-
ings to promoting abstract forms.

Generative Adversarial Networks (GANSs) [10, 25] show a
great capability to generate realistic images from scratch
without requiring any existing sample to start the genera-
tion from. They can be applied to generate artistic content,
but their intrinsic creativity is limited because of their train-
ing process that encourages the generation of items close
to the training data distribution; hence they show limited
originality and overall creativity. Similar conservative be-
havior can be seen in recent deep learning models for music
generation where the systems are also mostly trained to re-
produce pattern from training samples, like Bach chorales
[[13]. Creative Adversarial Networks (CANSs) [8] have then
been proposed to adapt GANS to generate creative content
(paintings) by encouraging the model to deviate from exist-
ing painting styles. Technically, CAN is a Deep Convolu-
tional GAN (DCGAN) model [23]] associated with an en-
tropy loss that encourages novelty against known art styles.
The specific application domain of CANs (art paintings) al-
lows for very abstract generations to be acceptable but, as
a result, does reward originality a lot without judging much
how such enhanced creativity can be mixed with realism
and standards.

In this paper we study how Al can generate creative sam-
ples for fashion. Fashion is an interesting domain be-
cause designing original garments requires a lot of creativity
but with the constraints that items must be wearable. For
decades, fashion designers have been inventing styles and
innovating on shapes and textures while respecting clothing
standards (dimensions, etc.) making fashion a great play-
ground for testing Al creative agents while also having the
potential to impact everyday life.

In contrast to most generative models works, the creativity
angle we introduce makes us go beyond replicating images
seen during training. We choose fashion design generation
due to its impact in our life and that it opens the door for
breaking creativity into design elements (shape and texture
in our case), which is a novel aspect of our work in contrast
to CANs.

More specifically, this work explores various architectures
and losses that encourage GANSs to deviate from existing

fashion styles covered in the training dataset, while still gen-
erating realistic pieces of clothing without needing any im-
age as input. In the fashion industry, the design process
is traditionally organized around the collaboration between
pattern makers, responsible for the material, the fabric and
the texture, and sample makers, working on the shape mod-
els. As detailed in Table [T} we follow a similar process in
our exploration of losses and architectures. We compare the
relative impact of both shape and texture dimensions on fi-
nal designs using a comprehensive evaluation that jointly
assesses novelty, likeness and realism using both adapted
automatic metrics, and humans subject experiments per-
formed on Mechanical Turk. To the best of our knowl-
edge, this work is the first attempt at incorporating creative
fashion generation by explicitly relating it to its design ele-
ments.

Our contributions are the following:

e We are the first to propose a creativity loss on image
generation of fashion items with a specific condition-
ing of texture and shape, learning a deviation from ex-
isting ones, constituting a novel application.

e In addition, we are the first to propose the better lead-
ing results, more general, MCE criterion for learning
to deviate from existing shapes and textures.

e We re-purposed automatic entropy based evaluation
criteria for assessment of fashion items in terms of tex-
ture and shape; The correlations between the automatic
metrics that we proposed and our human study allowed
us to draw some conclusions with useful metrics re-
vealing human judgment.

e We proposed a concrete solution to make our Style
GAN model work in a non-deterministic way, and
trained it with creative losses, resulting in a novel and
powerful model.

As illustrated in Fig. [T] our best models manage to gener-
ate realistic images with high resolution 512 x 512 using
a relatively small dataset (about 5000 images). More than
60% of our generated designs are judged as being created
by a human designer while also being considered original,
showing that an Al could offer benefits serving as an effi-
cient and inspirational assistant.

2. Related work

There has been a growing interest in generating images us-
ing convolutional neural networks and adversarial training,
given their ability to generate appealing images uncondi-
tionally, or conditionally like from text, class labels, and
for paired and unpaired image translations [35]]. Introduced
by Goodfellow et al. [10], GANs allow image generation



Architecture Creativity Loss  Design Elements

DCGAN [5] CAN [8]] Texture
StackGAN (ours) MCE (ours) Shape
StyleGAN (ours) Shape and Texture

None

Table 1: Dimensions of our study (19 combinations)

from random numbers using two networks trained simulta-
neously: a generator is trained to fool an adversarial net-
work by generating images of increasing realism. The ini-
tial resolution of generated images was 32 x 32.

From this seminal work, some progresses were achieved in
generating higher resolution images. Using a cascade of
convolutional networks Denton et al. [S] increased it up to
96 x 96. Going deeper in their network architectures, Rad-
ford et al. [25] demonstrated the usefulness of the features
learned by the adversarial network, also called the discrim-
inator, in unsupervised image classification tasks. Odena et
al. introduced Auxiliary Classifier GANs [24] by adding a
label input in addition to the noise and training the discrim-
inator to classify the synthesized 128 x 128 images. Using
text inputs, Reeds et al. [26], and then Zhang et al. [33] al-
lowed the generative network to focus on the area of seman-
tic interest and generate photo-realistic 256 x 256 images.
Recently, impressive 1024 x 1024 results were obtained us-
ing a progressive growing of the generator and discrimina-
tor networks [18]], by training models during several tens of
days.

Neural style transfer methods [9,[17] opened the door to the
application of existing styles on clothes [4], the difference
with generative models being the constraint to start from an
existing image in input. Isola et al. [16]] relax this constraint
partly by starting from a binary image of edges, and present
some generation of handbags images. Another way to con-
trol the appearance of the result is to enforce some similarity
between input texture patch and the resulting image [32].
Using semantic segmentation and large datasets of people
wearing clothes, the works of Zhu et al. [36] and Lassner
et al. [19] are built to generate full bodies images and are
conditioning their outputs either on text descriptions, color
or pose information.

In this work, we are interested in exploring the creativity
of generative models and focus on presenting results using
only random or shape masks as inputs to leave freedom for
a full exploration of GANs creative power.

3. Models: architectures and losses

Table [T| summarizes our models and losses exploration. Let
us consider a dataset D of N images. Let x; be a real image

sample and z; a vector of n of real numbers sampled from
a normal distribution. In practice n = 100.

3.1. GANs

As in [10} 25]], the generator parameters 6 are learned to
compute examples classified as real by D:

Helén ['G real/fake = HHICI;H %ﬁtn log(l - D(G('zl)))

The discriminator D is trained to classify the true samples
as 1 and the generated ones as 0:

min £p realftake =
Op

min > —log D(z;) —log(1 — D(G(2:))). (1)
b x, €D
z; ER™

3.2. GANs with classification loss

Following [24]], we use shape and texture labels to learn a
shape classifier and a texture classifier in the discriminator.
Adding those labels improves over the plain model and sta-
bilizes the training for larger resolution. Let us define the
texture and shape integer labels of an image sample = by
t and § respectively. We are adding to the discriminator
network either one branch for texture D; or shape D, clas-
sification or two branches for both shape and texture clas-
sification Dy 5. In the following section, for genericity,
we employ the notation Dy, ;;, designating the output of the
classification branch b for class k € {1,..., K}, where K
is the number of different possible classes of the considered
branch (shape or texture). We add to the discriminator loss
the following classification loss:

Lp = Ap, LD realffake + AD, LDclassit With

LD aasit = — Y, log(softmax(Dy ¢, (,))),
x, €D

where ¢; is the label of the image x; for branch b.
3.3. Creativity losses

Because GANs learn to generate images very similar to the
training images, we explore ways to make them deviate
from this replication by studying the impact of two addi-
tional losses for the generator. The final loss of the genera-
tor that are optimizing jointly with Lp is:

£G = )\GT.EG’ real/fake + )\Ge ACG creativity

In the following, we denote models employing a creativity
loss by Creative Adversarial Networks.



Binary cross entropy loss (CAN [8]) Given the adversar-
ial network’s branch D, trained to classify different textures
or shapes, we can use the CAN loss Lcan as LG creativity tO
create a new style that confuses Dy:

K
Lo == 3 3 g os(o(Dunta))

K-1
+

log(1 — o(Dypx (1))

where o denotes the sigmoid function.

Holistic CAN loss exploiting multi-class cross entropy
We propose to use as L creaiiviy the Multi-class Cross En-
tropy (MCE) loss between the class prediction of the dis-
criminator and the uniform distribution. The goal is for the
generator to make the generations hard to classify by the
discriminator.

1
LMCE = — Z e log softmax (Dy(z;))
1 : eDv.¢; (i)

We denote this criterion as CAN(H), for Creative Ad-
versarial Network with Holistic loss. In contrast to the
CAN loss that treats every classification independently, the
CAN(H) loss should better exploit the class information
in a global way. Both MCE and sum of binary cross en-
tropies losses encourage deviation from existing categories
(shapes/textures here). Since the generator is trained with
generated images that are not associated with any label,
the CAN loss can not contrast against negatives and hence
merely look at each dimension interdependently encourag-
ing it to get close to % . Our holistic loss is in fact equiv-
alent to a KL loss between a uniform distribution and the
softmax output, since the entropy term of the uniform dis-
tribution is constant. It is more meaningful conceptually to
define the deviation over the joint distribution over the cat-
egories which is what we modeled by the KL divergences
between the softmax probabilities and the prior (defined as
uniform in our case), as it also opens the door to study other
divergence measures. Finally, the CAN(H) loss requires
less compute comparing to CAN.

3.4. Network architectures

We experiment using three architectures : modified versions
of the DCGAN model[25]], StackGANs [33]] with no text
conditioning, and our proposed styleGAN.

DCGAN The DCGAN generator’s architecture was only
modified to output 256 x 256 or 512 x 512 images. The
discriminator architecture also includes these modifications
and contains additional classification branches depending
on the employed loss function.

Unconditional StackGAN Conditional StackGAN [33]
has been recently proposed to generate 256 x 256 images
conditioned on captions for mainly birds and flowers. The
method first generates a low resolution 64 x 64 image con-
ditioned on text. Then, the generated image and the text are
tiled on a 16 x 16 x 512 feature map extracted from the
64 x 64 generated image to compute the final 256 x 256
image. We adapted the architecture by removing the con-
ditional units (i.e. the text) but realized that it did not per-
form well for our application. The upsampling in [33] was
based on nearest neighbors which we found ineffective in
our setting. Instead, we first generate a low resolution im-
age from normal noise using a DCGAN architecture [25]],
then conditioning on it, we build a higher resolution image
of 256 x 256 with a generator inspired from the pix2pix ar-
chitecture with 4 residual blocks [16]. The upsampling was
performed using transposed convolutions. The details of the
architecture are provided in the appendix.

StyleGAN: Conditioning on masks To grant more con-
trol on the design of new items and get closer to standard
fashion processes where shape and texture are handled by
different specialists, we also introduce a model taking bi-
nary masks representing a desired shape in input. Since that
even for images on white background a simple threshold
fails to extract accurate masks, we computed them using a
graph based random walk algorithm [[11]].

In the StyleGAN model, a generator is trained to compute
realistic images from a mask input and noise representing
style information (see Figure [2)), while a discriminator is
trained to differentiate real from fake images. We use the
same discriminator architecture as in DCGAN with classi-
fier branches that learn shape and texture classification on
the real images on top of predicting real/fake discrimina-
tion.

Previous approaches of image to image translation such
as pix2pix [L6] and CycleGAN [335]] create a deterministic
mapping between an input image to a single corresponding
one, i.e. edges to handbags for example or from one domain
to another. This is due to the difficulty of training a gener-
ator with two different inputs,namely mask and style noise,
and making sure that no input is being neglected. In order
to allow sampling different textures for the same shape as
a design need, we avoid this deterministic mapping by en-
forcing an additional ¢; loss on the generator:
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Figure 2: From the segmented mask of a fashion item and
different random vector z, our StyleGAN model generates
different styled images.

‘C'rec = Z Z |G(mi,p7 Zi = 0) - mi,p|7 (2)

i peP

where m; ;, denotes the mask of a sample image z; at pixel
p, and P denotes the set of pixels of m;.

This loss reconstructs the input mask in case of null input z
(i.e. zeros) and hence ensures the impact of the weights in
the noise upsampling branch before concatenation as shown

in Fig.[2|
4. Evaluation metrics

Training generative models on fashion datasets generates
impressive designs mixed with less impressive ones, requir-
ing some effort of visual cherry-picking. We propose auto-
mated criteria to evaluate trained models and compare dif-
ferent architectures and loss setups. We study in Section [3]
how these automatic metrics correlate with the human eval-
uation of generated images.

4.1. Automatic evaluation metrics

Evaluating the diversity and quality of a set of images has
been tackled by scores such as the inception score and
variants like the AM score [34]. We adapt both of them
for two labels specific to fashion design (shape and tex-
ture) and supplement them by a mean nearest neighbor dis-
tance.

Our final set of automatic scores contains 5 metrics :

e shape score and texture score, each based on a Resnet-
18 classifier of (shape or texture respectively);

e shape AM score and texture AM score, based on the
output of the same classifiers;

e mean distance to 10 nearest neighbors score.

4.1.1 Scores based on classification entropies

Inception-like scores The Inception score [27, 31]] was
introduced as a metric to evaluate the diversity and quality
of generations, with respect to the output of a considered
classifier [29]. For evaluating N samples {x}¥, it is com-
puted as

Licore({2}1') = exp(E[K L(C ()| [E[C(2)])])),

where C'(z) is the softmax output of the trained classifier
C, originally the Inception network.

Intuitively, the score increases with the confidence in the
classifier prediction (low entropy score) of each image and
with the diversity of all images (high overall classification
entropy). In this paper, we exploit the shape and texture
class information from our two datasets to train two classi-
fiers on top of Resnet-18 [[15] features, leading to the shape
score and texture score. Training details of these classifiers
are provided in the supplementary material.

AM scores We also use the AM score proposed in [34]. It
improves over the inception score by taking into considera-
tion the distribution of the training samples Z as seen by the
classifier C, which we denote C*r%" = E[C(z)]. The AM
score is calculated as follows:

AMjeore({2}7) = E[KL(C**™||C ()]

—KL(C"™||E[C(z)])]

The first term is maximized when each of the generated
samples is far away from the overall training distribution,
while the second term is minimized when the overall distri-
bution of the generations is close to that of the training. In
accordance with [34], we find that this score is more sensi-
ble as it accounts for the training class distribution.

4.1.2 Mean nearest neighbors distance score

To be able to assess the creativity of the different models
while making sure that they are not reproducing training
samples, we compute the mean distance for each sample to
its retrieved k-Nearest Neighbors (NN), with k£ = 10, as the
Euclidean distance between the features extracted from a
Resnet18 pre-trained on ImageNet[[L5] by removing its last
fully connected layer. These features are of size 512. This
score gives an indicator of the similarity to the training data.



Figure 3: Some generations from a DCGAN with holistic
creativity loss applied on texture (Model CAN (H) tex).

A high NN distance may either mean that the generated im-
ages has some artifacts, in this case, it could be seen as an
indicator of failure, or it could mean that the generation is
novel and highly creative.

4.2. Human evaluation setup

We perform a human study where we evaluate different sets
of generations of interest on a designed set of questions
in order to explore the correlations with each of the pro-
posed automatic metrics in choosing best models and rank-
ing sound generations.

As our RTW garment dataset could not be made publicly
available, we conducted two independent studies:

1. Our main human evaluation study was performed on
Amazon Mechanical Turk (AMT). 800 images se-
lected randomly or using the automatic metric as de-
scribed in the paper per model were evaluated, each
image evaluated by 5 different persons. There were
in average 90 participants per model assessment, re-
sulting in average to 45 images assessed per partici-
pant. Since the assessment was conducted given the
same conditions for all models, we are confident that
the comparative study is fair.

2. We conducted another study in our lab were we mixed
both generations (500 total images picked randomly
from 5 best models) and 300 real down-sampled im-
ages from the RTW dataset. We asked if the images
were real or generated to about 45 participants who
rated 20 images each in average. We obtain 20% of
the generations thought to be real, and 21.5% of the
original dataset images were considered to be gener-
ated.

Figure 4: First column: random generations by the CAN
(H) shape model. Four left columns: Retrieved Nearest
Neighbors for each sample.

Creating evaluation sets Given a model’s generations,
we can extract different clusters of images with particular
visual properties that we want to associate with realism,
overall appreciation and creativity. Based on the shape en-
tropy, texture entropy and mean nearest neighbors distance
of each image we can rank the generations and select the
ones with (i) high/low shape entropy, (ii) high/low texture
entropy, (iii) high/low NN distance to real images.

We also explore random and mixed sets such as low shape
entropy and high nearest neighbors distance. We expect
such a set to contain plausible generations since low shape
entropy usually correlates with well defined shapes, while
high nearest neighbor distance contains unusual designs.
Overall, we have 8§ different sets that may overlap. We
choose to evaluate 100 images for each set.

We present two strategies to select the best image genera-
tions. In the first one, we manually select for each setup four
saved models after a sufficient number of iterations. Our
models produce plausible results after training for 15000
iterations with a batch size of 64 images. The second strat-
egy employs automatic criteria based on the shape score
of generations at a given epoch to discard failed iterations
of diverged models. The automatic metrics computed from
both epoch selection strategies were found to be very sim-
ilar. Given the selected models, 10000 images are gener-
ated from random numbers — or randomly selected masks
for the styleGAN model — to produce 8 sets of 100 images
each.



Method/Score shape tex. AMsh AMtx NN
Dataset 6.25 3.76 20.4 12.6 5.65
GAN 470 274 133 892 144
GAN classif 531 2386 14.8 9.68 13.1
CAN shape 527 277 14.7 8.92 13.1
CAN tex 524 301 14.4 948 135
CAN shTex 520 3.24 14.7 10.0 13.1
CAN (H) shape 507 280 13.6 8.90 13.0
CAN (H) tex 514  3.33 14.4 9.30 13.6
CAN (H) shTex 498 3.04 133 9.52 13.2
StackGAN classif 520 251 15.2 892 127
Stack CAN (H) shape  5.13 32 13.6 9.02 135
Stack CAN (H) tex 5.09 3.01 14.4 8.25 13.3
Stack CAN (H) shTex 4.82 299 133 8.85 13.4
Stack CAN shape 521 265 14.4 7.94 13.0
Stack CAN tex 522 287 14.6 8.63 12.7
Stack CAN shTex 5.15 330 13.9 9.08 134
Style GAN classif 495 289 13.6 8.43 13.5
Style CAN (H) tex 529 278 13.6 8.19 12.9
Style CAN tex 515  2.60 135 9.31 13.4
(a) Ready To Wear dataset
Method/Score shape tex. AMsh AMtx NN
Dataset 447 401 9.13 8.54 12.9
GAN 3.01 249 6.38 5.31 18.1
CAN (H) shape  3.15 290  6.90 629 173
CAN (H) tex 320 283 721 6.03 17.6
CAN (H) shTex 3.28 2.83 7.21 6.03 17.6
CAN shape 311 2.67 7.13 5.88 17.7
CAN tex 309 264 6.76 6.63 17.9
CAN shTex 316 285 7.45 6.77 18.0

(b) Attribute bags dataset

Table 2: Quantitative evaluation on the RTW dataset and
bag datasets. High scores appear in bold, low NN distance
scores in italic.

Human evaluation questions For computer creativity
and fashion, human evaluation is the most reliable measure
of soundness of an item, even if it is subjective. Each sub-
ject is shown images from the 8 selected sets described in
the previous section and is asked 6 questions:

e Q1: how do you like this design overall on a scale from
1to 5?

e Q2/Q3: rate the novelty of shape (Q2) and texture (Q3)
from 1 to 5.

e Q4/Q5: rate the complexity of shape (Q4) and texture
(Q5) from 1 to 5.

e Q6: Do you think this image was created by a fashion
designer or generated by computer? (yes/no)

Each image is annotated by taking the average rating of 5
annotators.

5. Experiments

This section first presents the datasets used in this paper,
then some quantitative results followed by our human ex-
periments that allow us to identify the best models.

5.1. Datasets

Unlike similar work focusing on fashion item genera-
tion [[19, 36l], we choose datasets which contain fashion
items in uniform background allowing the trained models
to learn features useful for creative generation without gen-
erating wearers face and the background.

We augment each dataset 5 times by jittering images with
random scaling and translations.

The RTW dataset We have at our disposal a set of 4157
images of different Ready To Wear (RTW) items of size
3000 x 3760. Each piece is displayed on uniform white
background. These images are classified into seven clothes
categories: jackets, coats, shirts, tops, t-shirts, dresses and
pullovers, and 7 texture categories: uniform, tiled, striped,
animal skin, dotted, print and graphical pattern.

Attribute discovery dataset We extracted from the At-
tribute discovery dataset [2] 5783 images of bags, keep-
ing for our training only images with white background.
There are seven different handbags categories: shoulder,
tote, clutch, backpack, satchel, wristlet, hobo. These im-
ages are also classified by texture into the same 7 texture
classes as the RTW dataset.

5.2. Automatic evaluation results

We experiment using weights A, of 1 and 5 for the holistic
creativity loss. It appeared that the weight 1 worked better
for the bags dataset, and 5 for the RTW dataset. We also
tried different weights for the CAN loss but they did not
have a large influence on the results and was fixed to 1. All
models were trained using the default learning rate 0.002 as
in [25]. Our different models take about half a day to train
on 4 Nvidia P100 GPUs for 256 x 256 models and almost 2
days for the 512 x 512 ones. In our study, it was more con-
venient from a memory and computational resources stand-
point to work with 256 x 256 images but we also provide
512 x 512 results in Figure[I|to demonstrate the capabilities
of our approach.

Table 2] presents shape and texture scores, AM scores (for
shape and texture) and average NN distances computed for



each model on 4 selected iterations. We also computed vari-
ances of each score across these 4 iterations and provide the
numbers in the supplementary material.

Our first observation is that the DCGAN model alone seems
to perform worse than all other tested models with the high-
est NN distance and lower shape and texture scores. The
value of the NN distance score may have different mean-
ings. A high value could mean an enhanced creativity of
the model, but also a higher failure rate.

For the RTW dataset, the two models having high shape
score, AM shape score, AM texture score and NN distances
scores are DCGAN with creativity losses models, holistic
or not. On the handbags datasets, the models obtaining the
best metrics overall are the DCGAN with creativity losses
on shape and texture. To show that our models are not re-
producing exactly samples from the dataset, we display in
Figure [] results from the model having the lowest NN dis-
tance score, with its 4 nearest neighbors. We note that even
if uniform bags tend to be similar to training data, complex
prints show high differences.

Figure 5: From the mask of a product, StyleGAN architec-
ture generates different styled image for each style noise.

5.3. Human evaluation results

Table [3| presents the average score obtained by each
model on each human evaluation question for the RTW
dataset.

From this table, we can see that using our creativity loss
(CAN (H) shape and CAN (H) tex) performs better than the
DCGAN baseline.

While the two proposed models with holistic creativity loss
rank the best in the RTW dataset on the overall score, we
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Figure 6: Evaluation of the different models on the RTW
dataset by human annotators on two axis: likability and real
appearance. Our models are highlighted by darker colors.

Method/Human over- shape shape tex. tex. real
Method all nov. comp. nov. comp. fake
DCGAN MCEshape 3.78 3.58 3.57 3.04 3.57 60.9
DCGAN MCEtex 3.72 3.57 3.52 3.61 3.58 61.1
StyleGAN CANtex 3.65 3.37 3.31 3.44 3.21 49.7
StackGAN 3.62 3.45 3.38 3.43 3.33 51.9
StyleGAN MCEtex 3.61 3.38 3.29 3.50 3.37 53.4
StackGAN MCEtex 3.59 3.36 3.31 3.44 3.28 559
StyleGAN 3.59 3.28 3.21 3.27 3.15 47.2
StackGAN CANshape 3.51 3.56 3.56 3.58 3.40 50.7
DCGAN MCEshtex 3.49 3.40 3.24 3.40 3.31 61.3
StackGAN CANtex 3.48 3.57 3.54 3.55 3.50 48.4
DCGAN CANshtex 3.47 3.28 3.18 3.33 3.16 63.8

StackGAN MCEshape 3.45 3.27 3.16 3.28 3.12 60.4
StackGAN CANshtex 3.42 3.37 3.32 3.44 3.32 49.5
DCGAN classif 3.42 3.32 3.32 3.37 3.29 52.7
DCGAN CANtex 3.37 3.23 3.12 3.35 3.09 59.7
DCGAN CANshape 3.33 3.28 3.16 3.27 3.12 55.0
StackGAN MCEshtex 3.30 3.25 3.28 3.31 3.27 415
DCGAN 3.22 2.95 2.78 3.24 2.83 60.4

Table 3: Human evaluation on the 800 evaluation images
from all sets ranked by decreasing overall score (higher is
better) on the RTW dataset.

observe that the preferred images have low nearest neigh-
bor distance which may also be deduced from the corre-
lation Table [4] showing Pearson correlation scores between
the 5 automatic metrics and the 6 human evaluation ques-
tions. This means that generations which are not close to
their nearest neighbors are not always pleasant. It is in-
deed a challenge to obtain models able to generate novel
(high nearest neighbor distance) and at the same time pleas-
ant generations. However, we observe that the models that
score better in the high nearest neighbors distance set are
clearly the ones with our creativity loss. Figure [6] shows



how well our approaches worked on two axis: likability
and real appearance. The most popular methods are ob-
tained by the models employing creativity loss (CAN) and
in particular our proposed Holistic loss, as they are per-
ceived as the most likely to be generated by designers, and
the most liked overall. We are greatly improving the state-
of-the-art here, going from a score of 64 to more than 75
in likabity from classical GANs to our best model with
shape creativity. We display images which obtained the best
scores for each of the 6 questions in Fig.[8] Our proposed
Style GAN and StackGAN models are producing competi-
tive scores compared to the best DCGAN setups with high
overall scores.

We may also recover the famous Wundt curve mentioned
in the introduction by plotting the likability as a function of
the novelty in Figure[7] The novelty was difficult to assess
by raters solely from generated images, therefore in this di-
agram, we give the novelty as the average between shape
and texture novelty corresponding to human ratings, and
normalized average distance from training images. We note
that the least novel model is the GAN with the classification
loss, this makes perfect sense as it is trained to generate rec-
ognizable shapes and textures. The most novel images, here
in term of a large distance to the training images, are the
ones generated by the classical GAN. This kind of novelty
is however not very much appreciated by the raters. Again,
at the top of the curve, our new models based on the holistic
loss manage to find a nice compromise between novelty and
hedonic value.

Likability:

2 CAN (H) shape
.

CAN(H) tex
.

Style CAN tex
Style CAN (H)

Novelty (as judged by human and measured as a distance to similar training images)

Figure 7: Empirical approximation of the Wundt curve,
drawing a relationship between novelty and appreciation.
Models employing our proposed Holistic loss appear in red.

Correlations between human evaluation and automatic
scores From Table [d] we see that the automatic metrics
that correlate the most with the overall score are the NN
dist with —0.41 and the shape score with 0.3. We also ob-
serve from this table that the texture scores, and in particu-
lar the AM texture score are correlated with the perception

Human over- shape shape  tex. tex. real

Auto all nov. comp. nov. comp. fake
shape 0.3 0.49 046  0.36 038  0.06
tex -0.09 -0.03 -0.05 -0.06 0.08 034

AM shape  0.07 0.31 0.31 0.16 0.21 0.06
AM tex -0.08 -0.16 -0.18 -021 -0.17 043
NN dist -041 -071 -0.69 -048 -0.64 0.23

Table 4: Correlation scores between human evaluation rat-
ings and automatic scores considering all evaluation sets.
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Figure 8: Best generations of RTW items as rated by hu-
man annotators (5/5). Each question is in a row. Q1: over-
all score, Q2: shape novelty, Q3: shape complexity, Q4:
texture novelty, Q5: texture complexity, Q6: Realism.

Figure 9: Best generations of handbags as rated by human
annotators (5/5). Each question is in a row. Q1: overall
score, Q2: shape novelty.

of realism of the items. The shape and AM shape scores
are correlated to the rates of shape novelty and complexity.
We find an important negative correlation (-0.71) between
shape novelty and nearest neighbor distance measure which
explains how raters find novel generated items which are
close to the training dataset. This highlights the importance



of displaying nearest neighbors when rating shape novelty
and complexity.

6. Conclusion

We introduced a specific conditioning of convolutional
Generative Adversarial Networks (GANSs) on texture and
shape elements for generating fashion design images.
While GANs with such classification loss offer realistic re-
sults, they tend to reconstruct the training images. Using a
holistic creativity loss, we learn to deviate from a reproduc-
tion of the training set. We also propose a novel architecture
— our StyleGAN model — conditioned on an input mask, en-
abling shape control while leaving free the creativity space
on the inside of the item. All these contributions lead to
the best results according to our human evaluation study.
We manage to generate accurately 512 x 512 images, how-
ever we seek for better resolution, which is a fundamental
aspect of image quality, in our future work. Finally, while
our results show visually pleasing textural creativity, it will
be interesting to explore larger families of creativity loss
functions, notably in terms of shape, and ensure wearability
constraints.

7. Acknowledgements

We are grateful to Alexandre Lebrun for his precious help
for assessing the quality of our generations. We also would
like to thank Julia Framel, Pauline Luc, Iasonas Kokkinos,
Matthijs Douze, Henri Maitre, David Lopez Paz and Neil
Zeghidour for interesting discussions. We finally thank ev-
eryone involved in the dataset creation.

References

[1] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural
module networks. In CVPR, 2016.

T. L. Berg, A. C. Berg, and J. Shih. Automatic attribute dis-
covery and characterization from noisy web data. In ECCV,
2010.

J.-P. Briot, G. Hadjeres, and F. Pachet. Deep learning tech-
niques for music generation-a survey. arXiv:1709.01620,

(2]

(3]

2017.
[4] P. Date, A. Ganesan, and T. Oates. Fashioning with
networks: Neural style transfer to design clothes. In

arXiv:1707.09899, 2017.

E. L. Denton, S. Chintala, a. szlam, and R. Fergus. Deep
generative image models using a laplacian pyramid of adver-
sarial networks. In NIPS, 2015.

S. DiPaola and L. Gabora. Incorporating characteristics of

human creativity into an evolutionary art algorithm. Genetic
Programming and Evolvable Machines, 10(2):97-110, 2009.

(5]

(6]

10

(7]

(8]
(9]

(10]

(11]
(12]
[13]
(14]
[15]

[16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

[25]

[26]

(27]

(28]

V. Dumoulin, J. Shlens, M. Kudlur, A. Behboodi, F. Lemic,
A. Wolisz, M. Molinaro, C. Hirche, M. Hayashi, E. Bagan,
et al. A learned representation for artistic style.
arXiv:1610.07629, 2016.

A. Elgammal, B. Liu, M. Elhoseiny, and M. Mazzone. Cre-
ative adversarial networks. In ICCC, 2017.

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In CVPR, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, 2014.

L. Grady. Random walks for image segmentation. Trans.
Pattern Anal. Mach. Intell., 2006.

D. Ha and D. Eck. A neural representation of sketch draw-
ings. arXiv:1704.03477, 2017.

G. Hadjeres and F. Pachet. Deepbach: a steerable model for
bach chorales generation. arXiv:1612.01010, 2016.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.
arXiv:1703.06870, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv:1512.03385, 2015.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
abs/1611.07004, 2016.

J. Johnson, A. Alahi, and F. Li. Perceptual losses
for real-time style transfer and super-resolution. CoRR,
abs/1603.08155, 2016.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive
growing of GANs for improved quality, stability, and varia-
tion. arXiv 1710.10196, 2017.

C. Lassner, G. Pons-Moll, and P. V. Gehler. A generative
model of people in clothing. /CCV, 2017.

P. Machado and A. Cardoso. Nevar—the assessment of an
evolutionary art tool. In Proc. of the AISBOO Symposium on
Creative & Cultural Aspects and Applications of Al & Cog-
nitive Science, volume 456, 2000.

P. Machado, J. Romero, and B. Manaris. An iterative ap-
proach to stylistic change in evolutionary art.

C. Martindale. The clockwork muse: The predictability of
artistic change. Basic Books, 1990.

A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Go-
ing deeper into neural networks. Google Research Blog. Re-
trieved June, 2015.

A. Odena, C. Olah, and J. Shlens. Conditional image syn-
thesis with auxiliary classifier gans. In arXiv:1610.09585,
2017.

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv:1511.06434, 2015.

S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and
H. Lee. Learning what and where to draw. In NIPS. 2016.
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
NIPS, 2016.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, 1. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the game



of go with deep neural networks and tree search. Nature,
2016.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. 2017.

[29]

[30] X. Wang and A. Gupta. Generative image modeling using
style and structure adversarial networks. ECCV, 2016.

D. Warde-Farley and Y. Bengio. Improving generative ad-
versarial networks with denoising feature matching. /CLR.
W. Xian, P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays.
Texturegan: Controlling deep image synthesis with texture
patches. arXiv:1706.02823,2017.

H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and
D. N. Metaxas. Stackgan: Text to photo-realistic image syn-
thesis with stacked generative adversarial networks. CoRR,
abs/1612.03242, 2016.

Z. Zhou, W. Zhang, and J. Wang. Inception score, la-
bel smoothing, gradient vanishing and -log(d(x)) alternative.
CoRR, abs/1708.01729, 2017.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. arXiv:1703.10593, 2017.

S. Zhu, S. Fidler, R. Urtasun, D. Lin, and C. C. Loy. Be
your own prada: Fashion synthesis with structural coherence.
ICCV, 2017.

(31]

(32]

(33]

(34]

(35]

(36]

A. Appendix: Network architectures
A.1. Unconditional StackGAN

While the low resolution generator is a classical DCGAN
architecture starting from noise only, the high resolution
one takes an image as an input. We adapt its architecture
as depicted in Figure [I0] from the generator described in
the fast style transfer model [17] so that the output size
is 256x256 given a 64x64 image. It uses convolutions
for downsampling and transposed convolutions for upsam-
pling, both with kernel size of 3, stride of 2, padding of 1,
with no bias and followed by batchNorm (BN) then ReLU
layers. The high resolution generator’s architecture is de-
scribed in Table

A.2. StyleGAN architecture

The architecture of the styleGAN model combines an in-
put mask image with an input style noise as in the style
generator described in the structure style GAN architec-
ture [30]. This consists in upsampling the noise input with
multiple transposed convolutions while downsampling the
input mask with convolutions. Concatenating the two re-
sulting tensors then performing a series of convolutional
layers as shown in the table[6|results in a 256 x 256 gener-
ation.

11

Layer #output  kernel stride padding
channels size
conv 64 7 1 reflect(3)
conv 128 3 2 1
conv 128 3 2 1
Resnet block x4 256 - - -
convT 256 3 2 1
convT 256 3 2 1
convT 128 3 2 1
convT 64 3 2 1
conv 3 7 1 reflect(3)

Table 5: Detailed architecture of the high resolution (second
stage) generator of our proposed unconditional stackGAN
architecture. Convolution layers (conv and convT) are fol-
lowed by Batch normalization (BN) and ReLU, except for
the last one, with no BN and Tanh non linearity.

layer  #input #output ker. str. pad.
Branch size
Shape conv 3 64 5 2 2
mask conv 64 128 5 2 2
branch conv 128 256 5 2 2
Style fc 100 1024 4 2 1
noise convT 64 64 4 2 1
branch  convT 64 64 4 2 1
convT 64 64 4 2 1
concat
conv 320 256 3 1 1
conv 256 512 3 2 1
conv 512 512 3 1 1
convT 512 256 4 2 1
convT 256 128 4 2 1
convT 128 128 4 2 1
convT 128 64 4 2 1
convT 64 3 5 1 2

Table 6: Detailed architecture of our StyleGAN model.
Convolution layers are followed by Batch normalization
(BN) except for the last one. Conv layers are followed by
leacky ReLLU, ConvT layers by ReLL.U except the last layer
where the non-linearity is a Tanh.
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Figure 10: StackGAN architecture adapted without text conditioning.
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