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A. Metrics and Implementation details

A.1. Metrics selection

In each task, we followed the metrics introduced in
Ego4D [10].
Query Object Detection. We consider average precision
(AP) as the main metric. It is the precision averaged over
different recalls of the multiple predictions on the image.
We also compare AP50/AP75 to study the predicted bound-
ing boxes on loose and tide criteria and the top-10 recall to
study the missing detection problem.
VQ2D and VQ3D. Most of the metrics focus on the close-
ness of the prediction to the ground truth. tAP25 and
stAP25 in VQ2D evaluate how closely in the temporal and
spatio-temporal extent the predicted response track matches
the ground truth, respectively, where the intersection over
the union threshold is 0.25 by default. L2 and angle in
VQ3D measure the difference between the predicted and
ground-truth displacement vectors in the real-world coordi-
nates. For a fair reference, we also report success (Succ)
and recovery percentage (rec%) to study how many predic-
tions overlap the ground-truth, and how many ground truths
are discovered by predictions.

A.2. Implementation details

Training details. Following the optimized VQ2D base-
line [20], we implement our algorithms on Detectron2 [18].
The visual query detection is conducted on 4 8-V100 GPU
nodes in a distributed machine learning cluster. Each exper-
iment trains the detector for 125k iterations with an initial
learning rate of 0.02, which decays at 50k and 100k itera-
tions by 0.1. Our batch size is 64.
Frame Sampling. The training frames are sampled from
video when a response track annotation is available. Our
negative unlabeled frame sampling (N-UFS) is based on a
negative video starting at the end of the response track un-
til the query frame. We sample as many frames from this
negative video as the number of positive frames. When

applying positive unlabeled frame sampling (P-UFS), we
run a COCO-pretrained Faster-RCNN [15] in on all training
videos with FPS=1, and track [1] the predicted object with
a confidence threshold of 0.5 on both forward and back-
ward directions. We remove outliers of this object based
on a pre-defined range of area and aspect ratio. In the opti-
mal setting, we totally sample 1.7 million extra query-frame
pairs to train the detector.

To achieve the visual query localization tasks, we ap-
ply our trained detector in the respective pipelines [10]. In
VQ2D, we run a Kys [1] tracker from the detection peak
to predict the response track. In VQ3D, we leverage our
improved query detector for frames where camera pose in-
formation is available. Note that we do not further modify
these stages to ensure a fair comparison.

B. Few-shot Object Detection

B.1. Experiment setup

Dataset Our few-shot object detection experiments are on
the MS-COCO dataset [12]. The novel/base splits follow
the setting of Kang et al. [11]. From the 80 object cate-
gories, we use the 20 classes that overlap with the PASCAL
VOC [6] dataset as novel classes and the remaining 60 as
base classes. Similarly, 5000 images from the validation set
are used for evaluation, while the rest images in training and
validation sets are used for training.
Training details Our few-shot object detection model fol-
lows the released Faster-RCNN design and training recipe
in [13]. Its Hierarchical Attention Module encodes spatial
information in the object proposals, then we vectorize the
enriched proposal representation and feed them to our Co-
coFormer. We do base-training for 1-shot, 3-shot, and 5-
shot without fine-tuning. Each base training is independent
and done on a single Tesla V100 machine for 12 epochs.
The learning rate starts at 0.001 and increases by 0.1 times
per 1000 steps. We used stochastic gradient descent to opti-
mize the model with a momentum of 0.9 and a weight decay
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Method novel ft.
1-shot 3-shot 5-shot

nAP AP50 AP75 nAP AP50 AP75 nAP AP50 AP75

TFA [16] True 3.4 5.8 3.8 6.6 12.1 6.5 8.3 15.3 8.0
CoRPN [23] True 4.1 7.2 4.4 - - - - - -
Meta-DETR [21] True 7.5 12.5 7.7 - - - - - -
FADI [4] True 5.7 10.4 6.0 - - - - - -
Xiao et al. [19] True 3.2 8.9 1.4 6.7 18.6 2.9 8.1 20.1 4.4
MPSR [17] † True 2.3 4.1 2.3 5.2 9.5 5.1 6.7 12.6 6.4
Fan et al. [7] † True 4.2 9.1 3.0 6.6 15.9 4.9 8.0 18.5 6.3
Zhang et al. [22] True 4.4 7.5 4.9 7.2 13.3 7.4 - - -
QA-FewDet [8] True 4.9 10.3 4.4 8.4 18.0 7.3 9.7 20.3 8.6
DeFRCN [14] True 9.3 - - 14.8 - - 16.1 - -

Fan et al. [7] † False 4.0 8.5 3.5 5.9 12.5 5.0 6.9 14.3 6.0
Meta Faster-RCNN [9] False 5.0 10.5 4.5 - - - - - -
QA-FewDet [8] False 5.1 10.5 4.5 8.6 17.7 7.5 9.5 19.3 8.5
FS-DETR [2] False 7.0 13.6 7.5 9.8 18.5 9.8 10.7 20.5 10.8
DAnA [5] False 11.9 25.6 10.4 14.0 28.9 12.3 14.4 30.4 13.0
hANMCL [13] False 12.9 25.0 12.1 14.4 28.0 13.3 14.5 27.9 13.3
ours False 13.3 25.6 12.6 14.7 28.8 13.4 14.8 28.9 13.6

Table 1. Assessing model performance in Few-Shot Detection. We show 1-shot, 3-shot, and 5-shot settings on the MS COCO dataset.
nAP means the novel categories average precision. † means reproduced result by QA-FewDet [8].

of 0.0001.

B.2. Full comparison with SOTA

Tab. 1 assesses model performance in Few-Shot Detec-
tion. 1-shot, 3-shot, and 5-shot settings are respectively ap-
plied on the MS COCO [3] dataset. We divide the methods
into two groups. Methods in the first block require fine-
tuning on the novel classes. Their models got further op-
timized on the support set, so the performance especially
on higher shots is relatively higher. Our method belongs
to the second group, where the model is directly evaluated
after the base train. Comparing novel categories’ average
precision (nAP), our method can consistently improve the
baseline [13], outperform state-of-the-art, and is competi-
tive with the fine-tuning methods in the first block. Notably,
our method achieves 13.3 nAP in 1-shot object detection,
which shares a more similar problem setting as visual query
object detection.

B.3. Visual query vs. few-shot detection

We would like to emphasize that although visual query
and few-shot detection share similar configurations, but
they are identical to each other.

First, visual query detection is based on an instance-level
dataset, while few-shot detection is on the class level. This
new task requires the system to localize exactly the same
object registered by its visual crop. Therefore, more than
one instance from the same classes can con-exist in the
query video, but the metrics will penalize a wrong instance.
For example, there are four bins in the blue-bins video in

the qualitative result, but we have to find the blue bin along
the corner of the wall.

Second, the episodic training strategy, which is widely
used in few-shot detection, is not the optimal solution in
visual query detection. This is because we have only one
visual crop of the query object and thousands of novel in-
stances. Applying an episodic training strategy may slightly
improve the model performance, but it will greatly increase
the training time.

C. Supplementary experiment

Siam-RCNN vs. CocoFormer Our CocoFormer and P-
UFS improve the framework in different aspects. Coco-
Former is a novel transformer-based module that allows for
object-proposal set context to be considered while incor-
porating query information, while the main motivation of
positive unlabeled frame sampling (P-UFS) is to reduce the
training domain gap between the overall possible object in-
stance and the existing annotations.

In Tab. 2, we further validate this simple augmentation
method on the baseline detector and our proposed Coco-
Former. The comparisons in each block show our augmen-
tation strategy P-UFS effectively extends the training set,
bringing consistent performance gain in both settings. If we
compare CocoFormer with Siam-RCNN with or without P-
USF, we can find the AP score is improved, yet AR@10 be-
comes lower. This means CocoFormer is more strict about
predicting positives, and the precision is greatly increased.
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backbone P-UFS AP AP50 AP75 AR@10

Siam-RCNN ✗ 27.55 50.43 26.16 47.3
Siam-RCNN ✓ 28.74 52.25 27.35 50.1

CocoFormer ✗ 30.35 57.87 26.76 45.9
CocoFormer ✓ 31.26 57.96 28.88 47.1

Table 2. Our augmentation strategy effectively extends the
training set. We validate the augmentation on Siam-RCNN and
CocoFormer, and it shows consistent performance gain in both set-
tings.

D. Further discussion

Due to space limitations, we left some further discussion
and insight in this section.

Performance mismatch between VQD and VQL. Most of
the experiment tables show the model performances are not
consistent when evaluated on VQ detection and VQ local-
ization, which means a top-performing detection model can
be sub-optimal for temporal localization. This is mainly
because VQD is only evaluated on individually annotated
frames of the dataset, while VQL is evaluated on the entire
video. Positive frames are on average only 2% of all the
frames in the video. Also, VQD is heavily biased because
annotated frames always contain the query object, while a
randomly sampled video frame doesn’t have this property.
Thus, VQL is much more challenging than VQD. In this
paper, we presented both VQD and VQL metrics to prove
that a better detector doesn’t always lead to a better local-
izer. This is precisely the main motivation for our work: to
reduce training bias between VQD and VQL by introducing
various sampling methods.

Concatenation and Conditional Projection in our pro-
posed CocoFormer are both possible settings. Although
Concatenation works better on VQD, Conditional Projec-
tion is generally better in VQL, showing that the tracking
process in the localization model is more sensitive to AP75.
It means a precise bounding box is necessary to produce a
correct response track.

N-UFS and BPS for VQL follow our main idea to sam-
ple data close to the VQL real distribution. From the de-
tection perspective, these simple methods are nontrivial or
even counterintuitive, as clean images with the query ob-
ject are preferred. However, the real-world data in VQL is
noisy and long-tailed, so we have to use N-UFS and BPS to
create necessary samples in this domain, and we find they
are quite effective. Both methods are harmful when evalu-
ated on VQD but helpful and essential in VQL to suppress
false positives, as shown by similarity scores on background
frames in Fig. 5.
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