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ABSTRACT

We consider Contextual Bandits with Concave Rewards (CBCR), a multi-objective
bandit problem where the desired trade-off between the rewards is defined by a
known concave objective function, and the reward vector depends on an observed
stochastic context. We present the first algorithm with provably vanishing regret for
CBCR without restrictions on the policy space, whereas prior works were restricted
to finite policy spaces or tabular representations. Our solution is based on a geomet-
ric interpretation of CBCR algorithms as optimization algorithms over the convex
set of expected rewards spanned by all stochastic policies. Building on Frank-Wolfe
analyses in constrained convex optimization, we derive a novel reduction from the
CBCR regret to the regret of a scalar-reward bandit problem. We illustrate how to
apply the reduction off-the-shelf to obtain algorithms for CBCR with both linear
and general reward functions, in the case of non-combinatorial actions. Motivated
by fairness in recommendation, we describe a special case of CBCR with rankings
and fairness-aware objectives, leading to the first algorithm with regret guarantees
for contextual combinatorial bandits with fairness of exposure.

1 INTRODUCTION

Contextual bandits are a popular paradigm for online recommender systems that learn to generate
personalized recommendations from user feedback. These algorithms have been mostly developed to
maximize a single scalar reward which measures recommendation performance for users. Recent
fairness concerns have shifted the focus towards item producers whom are also impacted by the
exposure they receive (Biega et al., 2018; Geyik et al., 2019), leading to optimize trade-offs between
recommendation performance for users and fairness of exposure for items (Singh & Joachims, 2019;
Zehlike & Castillo, 2020). More generally, there is an increasing pressure to insist on the multi-
objective nature of recommender systems (Vamplew et al., 2018; Stray et al., 2021), which need to
optimize for several engagement metrics and account for multiple stakeholders’ interests (Mehrotra
et al., 2020; Abdollahpouri et al., 2019). In this paper, we focus on the problem of contextual bandits
with multiple rewards, where the desired trade-off between the rewards is defined by a known concave
objective function, which we refer to as Contextual Bandits with Concave Rewards (CBCR). Concave
rewards are particularly relevant to fair recommendation, where several objectives can be expressed
as (known) concave functions of the (unknown) utilities of users and items (Do et al., 2021).

Our CBCR problem is an extension of Bandits with Concave Rewards (BCR) (Agrawal & Devanur,
2014) where the vector of multiple rewards depends on an observed stochastic context. We address
this extension because contexts are necessary to model the user/item features required for personalized
recommendation. Compared to BCR, the main challenge of CBCR is that optimal policies depend on
the entire distribution of contexts and rewards. In BCR, optimal policies are distributions over actions,
and are found by direct optimization in policy space (Agrawal & Devanur, 2014; Berthet & Perchet,
2017). In CBCR, stationary policies are mappings from a continuous context space to distributions
over actions. This makes existing BCR approaches inapplicable to CBCR because the policy space is
not amenable to tractable optimization without further assumptions or restrictions. As a matter of
fact, the only prior theoretical work on CBCR is restricted to a finite policy set (Agrawal et al., 2016).

We present the first algorithms with provably vanishing regret for CBCR without restriction on the
policy space. Our main theoretical result is a reduction where the CBCR regret of an algorithm is
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bounded by its regret on a proxy bandit task with single (scalar) reward. This reduction shows that it
is straightforward to turn any contextual (scalar reward) bandits into algorithms for CBCR. We prove
this reduction by first re-parameterizing CBCR as an optimization problem in the space of feasible
rewards, and then revealing connections between Frank-Wolfe (FW) optimization in reward space
and a decision problem in action space. This bypasses the challenges of optimization in policy space.

To illustrate how to apply the reduction, we provide two example algorithms for CBCR with non-
combinatorial actions, one for linear rewards based on LinUCB (Abbasi-Yadkori et al., 2011), and
one for general reward functions based on the SquareCB algorithm (Foster & Rakhlin, 2020) which
uses online regression oracles. In particular, we highlight that our reduction can be used together
with any exploration/exploitation principle, while previous FW approaches to BCR relied exclusively
on upper confidence bounds (Agrawal & Devanur, 2014; Berthet & Perchet, 2017; Cheung, 2019).

Since fairness of exposure is our main motivation for CBCR, we show how our reduction also applies
to the combinatorial task of fair ranking with contextual bandits, leading to the first algorithm with
regret guarantees for this problem, and we show it is computationally efficient. We compare the
empirical performance of our algorithm to relevant baselines on a music recommendation task.

Related work. Agrawal et al. (2016) address a restriction of CBCR to a finite set of policies, where
explicit search is possible. Cheung (2019) use FW for reinforcement learning with concave rewards, a
similar problem to CBCR. However, they rely on a tabular setting where there are few enough policies
to compute them explicitly. Our approach is the only one to apply to CBCR without restriction on the
policy space, by removing the need for explicit representation and search of optimal policies.

Our work is also related to fairness of exposure in bandits. Most previous works on this topic either
do not consider rankings (Celis et al., 2018; Wang et al., 2021; Patil et al., 2020; Chen et al., 2020),
or apply to combinatorial bandits without contexts (Xu et al., 2021). Both these restrictions are
impractical for recommender systems. Mansoury et al. (2021); Jeunen & Goethals (2021) propose
heuristics with experimental support that apply to both ranking and contexts in this space, but they
lack theoretical guarantees. We present the first algorithm with regret guarantees for fair ranking with
contextual bandits. We provide a more detailed discussion of the related work in Appendix A.

2 MAXIMIZATION OF CONCAVE REWARDS IN CONTEXTUAL BANDITS

Notation. For any n ∈ N, we denote by JnK = {1, . . . , n}. The dot product of two vectors x and y in
Rn is either denoted x⊺y or using braket notation ⟨x | y⟩, depending on which one is more readable.

Setting. We define a stochastic contextual bandit (Langford & Zhang, 2007) problem with D
rewards. At each time step t, the environment draws a context xt ∼ P , where x ∈ X ⊆ Rq and P is a
probability measure overX . The learner chooses an action at ∈ AwhereA ⊆ RK is the action space,
and receives a noisy multi-dimensional reward rt ∈ RD, with expectation E[rt|xt, at] = µ(xt)at,
where µ : X → RD×K is the matrix-value contextual expected reward function.1 The trade-off
between the D cumulative rewards is specified by a known concave function f : RD → R ∪ {±∞}.
Let A denote the convex hull of A and π : X → A be a stationary policy,2 then the optimal value for
the problem is defined as f∗ = supπ:X→A f

(
Ex∼P

[
µ(x)π(x)

])
.

We rely on either of the following assumptions on f :

Assumption A f is closed proper concave3 on RD and A is a compact subset of RK . Moreover,
there is a compact convex set K ⊆ RD such that
• (Bounded rewards) ∀(x, a) ∈ X ×A, µ(x)a ∈ K and for all t ∈ N∗, rt ∈ K with probability 1.
• (Local Lipschitzness) f is L-Lipschitz continuous with respect to ∥.∥2 on an open set containing K.

Assumption B Assumption A holds and f has C-Lipschitz-continuous gradients w.r.t. ∥.∥2 on K.
1Notice that linear structure between µ(xt) and at is standard in combinatorial bandits (Cesa-Bianchi &

Lugosi, 2012) and it reduces to the usual multi-armed bandit setting when A is the canonical basis of RK .
2In the multi-armed setting, stationary policies return a distribution over arms given a context vector. In the

combinatorial setup, π(x) ∈ A is the average feature vector of a stochastic policy over A. For the benchmark,
we are only interested in expected rewards so there is to need to specify the full distribution over A.

3This means that f is concave and upper semi-continuous, is never equal to +∞ and is finite somewhere.
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The most general version of our algorithm, described in Appendix D, removes the need for the
smoothness assumption using smoothing techniques. We describe an example in Section 3.3. In the
rest of the paper, we denote by DK = sup

z,z′∈K
∥z − z′∥2 the diameter of K, and use C̃ = C

2 D
2
K.

We now give two examples of this problem setting, motivated by real-world applications in recom-
mender systems, and which satisfy Assumption A.

Example 1 (Optimizing multiple metrics in recommender systems.) Mehrotra et al. (2020) for-
malized the problem of optimizing D engagement metrics (e.g. clicks, streaming time) in a bandit-
based recommender system. At each t, xt represents the current user’s features. The system chooses
one arm among K, represented by a vector at in the canonical basis of RK which is the action space
A. Each entry of the observed reward vector (rt,i)Di=1 corresponds to a metric’s value. The trade-off
between the metrics is defined by the Generalized Gini Function: f(z) =

∑D
i=1 wiz

↑
i , where (z↑i )

D
i=1

denotes the values of z sorted increasingly and w ∈ RD is a vector of non-increasing weights.

Example 2 (Fairness of exposure in rankings.) The goal is to balance the traditional objective of
maximizing user satisfaction in recommender systems and the inequality of exposure between item
producers (Singh & Joachims, 2018; Zehlike & Castillo, 2020). For a recommendation task with
m items to rank, this leads to a problem with D = m + 1 objectives, which correspond to the m
items’ exposures, plus the user satisfaction metric. The context xt ∈ X ⊂ Rmd is a matrix where
each xt,i ∈ Rd represents a feature vector of item i for the current user. The action space A is
combinatorial, i.e. it is the space of rankings represented by permutation matrices:

A =
{
a ∈ {0, 1}m×m : ∀i ∈ JmK,

m∑
k=1

ai,k = 1 and ∀k ∈ JmK,
m∑
i=1

ai,k = 1
}

(1)

For a ∈ A, ai,k = 1 if item i is at rank k. Even though we use a double-index notation and call a a
permutation matrix, we flatten a as a vector of dimension K = m2 for consistency of notation.

We now give a concrete example for f , which is concave as usual for objective functions in fairness of
exposure (Do et al., 2021). It is inspired by Morik et al. (2020), who study trade-offs between average
user utility and inequality4 of item exposure:

f(z) = zm+1︸ ︷︷ ︸
user utility

−β 1

2m

m∑
i=1

m∑
j=1

|zi − zj |︸ ︷︷ ︸
inequality of item exposure

where β > 0 is a trade-off parameter. (2)

The learning problem. In the bandit setting, P and µ are unknown and the learner can only interact
online with the environment.Let hT =

(
xt, at, rt

)
t∈JT−1K be the history of contexts, actions, and

reward observed up to time T − 1 and δ′ > 0 be a confidence level, then at step t a bandit algorithm
A receives in input the history ht, the current context xt, and it returns a distribution over actions A
and selects an action at ∼ A(ht, xt, δ

′). The objective of the algorithm is to minimize the regret

RT = f∗ − f(ŝT ) where ŝT =
1

T

T∑
t=1

rt. (3)

Note that our setting subsumes classical stochastic contextual bandits: when D = 1 and f(z) = z,
maximizing f(ŝT ) amounts to maximizing a cumulative scalar reward

∑T
t=1 rt. In Lem. 9 (App. C.3),

we show that alternative definitions of regret, with different choices of comparator or performance
measure, would yield a difference of order O(1/

√
T ), and hence not substantially change our results.

3 A GENERAL REDUCTION-BASED APPROACH FOR CBCR

In this section we describe our general approach for CBCR. We first derive our key reduction from
CBCR to a specific scalar-reward bandit problem. We then instantiate our algorithm to the case
of linear and general reward functions for smooth objectives f . Finally, we extend to the case of
non-smooth objective functions using Moreau-Yosida regularization (Rockafellar & Wets, 2009).

4Gini(z1, . . . , zm) = 1
2m

∑m
i=1

∑m
j=1 |zi − zj | is an unnormalized Gini coefficient.

3



Published as a conference paper at ICLR 2023

3.1 REDUCTION FROM CBCR TO SCALAR-REWARD CONTEXTUAL BANDITS

There are two challenges in the CBCR problem: 1) the computation of the optimal policy
sup

π:X→A
f
(
Ex∼P

[
µ(x)π(x)

])
even with known µ; 2) the learning problem when µ is unknown.

1: Reparameterization of the optimization problem. The first challenge is that optimizing directly
in policy space for the benchmark problem supπ:X→A f

(
Ex∼P

[
µ(x)π(x)

])
is intractable without

any restriction, because the policy space includes all mappings from the continuous context space X
to distributions over actions. Our solution is to rewrite the optimization problem as a standard convex
constrained problem by introducing the convex set S of feasible rewards:

S =

{
Ex∼P

[
µ(x)π(x)

]∣∣∣∣π : X → A
}

so that f∗ = sup
π:X→A

f
(
Ex∼P

[
µ(x)π(x)

])
= max

s∈S
f(s).

Under Assumption A, S is a compact subset of K (see Lemma 7 in App. C) so f attains its maximum
over S. We have thus reduced the complex initial optimization problem to a concave optimization
problem over a compact convex set.

2: Reducing the learning problem to scalar-reward bandits. Unfortunately, since P and µ are
unknown, the set S is unknown. This precludes the possibility of directly using standard constrained
optimization techniques, including gradient descent with projections onto S. We consider Frank-
Wolfe, a projection-free optimization method robust to approximate gradients (Lacoste-Julien et al.,
2013; Kerdreux et al., 2018). At each iteration t of FW, the update direction is given by the linear
subproblem: argmaxs∈S⟨∇f(zt−1) | s⟩, where zt−1 is the current iterate. Our main technical tool,
Lemma 1, allows to connect the FW subproblem in the unknown reward space S to a workable
decision problem in the action space (see Lemma 13 in Appendix E for a proof):

Lemma 1 Let Et

[
.
]

be the expectation conditional on ht. Let zt ∈ K be a function of contexts,
actions and rewards up to time t. Under Assumption A, we have:

∀t ∈ N∗,Et

[
max
a∈A
⟨∇f(zt−1) |µ(xt)a⟩

]
= max

s∈S
⟨∇f(zt−1) | s⟩. (4)

For all δ ∈ (0, 1], with probability at least 1− δ, we have:
T∑

t=1

(
max
s∈S
⟨∇f(zt−1) | s⟩ −max

a∈A
⟨∇f(zt−1) |µ(xt)a⟩

)
≤ LDK

√
2T ln(δ−1). (5)

Lemma 1 shows that FW for CBCR operates closely to a sequence of decision problems of the form
(maxa∈A⟨∇f(zt−1) |µ(xt)a⟩)Tt=1. However, we have yet to address the problem that P and µ are
unknown. To solve this issue, we introduce a reduction to scalar-reward contextual bandits. We can
notice that solving for the sequence of actions maximizing

∑T
t=1⟨∇f(zt−1) |µ(xt)a⟩ corresponds

to solving a contextual bandit problem with adversarial contexts and stochastic rewards. Formally,
using zt = ŝt

5, we define the extended context x̃t = (∇f(ŝt−1), xt), the average scalar reward
µ̃(x̃t) = ∇f(ŝt−1)

⊺µ(xt) and the observed scalar reward r̃t = ⟨∇f(ŝt−1) | rt⟩. This fully defines a
contextual bandit problem with scalar reward. Then, the objective of the algorithm is to minimize
the following scalar regret:

Rscal
T =

T∑
t=1

max
a∈A

µ̃(x̃t)
⊺a−

T∑
t=1

r̃t =

T∑
t=1

max
a∈A
⟨∇f(ŝt−1) |µ(xt)a⟩ −

T∑
t=1

⟨∇f(ŝt−1) | rt⟩. (6)

In this framework, the only information observed by the learning algorithm is h̃t :=(
x̃t′ , at′ , r̃t′

)
t′∈Jt−1K. This regret minimization problem has been extensively studied (see e.g.,

Slivkins, 2019, Chap. 8 for an overview). The following key reduction result6 relates Rscal
T to

RT , the regret of the original CBCR problem:
5For simplicity, we presented our reduction with zt = ŝt but other choices of zt are possible (see Appendix

D). The important point is that the reduction works without restricting zt to S.
6In practice, this result is used in conjunction with an upper bound R

scal
(T, δ′) on Rscal

T that holds with
probability ≥ 1− δ′, which gives RT ≤ R

scal
(T, δ′)/T +O(

√
ln(1/δ)/T ) with probability at least 1− δ− δ′

using the union bound.
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Theorem 2 Under Assmpt. B, for every T ∈ N∗ and δ > 0, algorithm A satisfies, with prob. ≥ 1−δ:

RT = f∗ − f(ŝT ) ≤
Rscal

T + LDK
√

2T ln(1/δ) + C̃ ln(eT )

T
. (7)

The reduction shown in Thm. 2 hints us at how to use or adapt scalar bandit algorithms for CBCR. In
particular, any algorithm with sublinear regret will lead to a vanishing regret for CBCR. Since the
worst-case regret of contextual bandits is Ω(

√
T ) (Dani et al., 2008), we obtain near minimax optimal

algorithms for CBCR. We illustrate this with two algorithms derived from our reduction in Sec. 3.2.

Proof sketch of Theorem 2: CBCR and Frank-Wolfe algorithms (full proof in Appendix E).
Although the set S is not known, the standard telescoping sum argument for the analysis of
Frank-Wolfe algorithms (see Lemma 14 in Appendix E, and e.g., (Berthet & Perchet, 2017,
Lemma 12) for similar derivations) gives that under Assumption B, denoting gt = ∇f(ŝt−1):

TRT ≤
T∑

t=1

max
s∈S
⟨gt | s− rt⟩+ C̃ ln(eT ).

The result is true for every sequence (rt)t∈JT K ∈ KT , and only tracks the trajectory of ŝt in reward
space. We introduce now the reference of the scalar regret:

TRT =

T∑
t=1

(
max
s∈S
⟨gt | s⟩ −max

a∈A
⟨gt |µ(xt)a⟩

)
+

T∑
t=1

max
a∈A
⟨gt |µ(xt)a− rt⟩︸ ︷︷ ︸
=Rscal

T

+C̃ ln(eT ) (8)

Lemma 1 bounds the leftmost term, from which Theorem 2 immediately follows using (8).

3.2 PRACTICAL APPLICATION: TWO ALGORITHMS FOR MULTI-ARMED CBCR

To illustrate the effectiveness of the reduction from CBCR to scalar-reward bandits, we focus on the
case where the action space A is the canonical basis of RK (as in Example 1). We first study the case
of linear rewards. Then, for general reward functions, we introduce the FW-SquareCB algorithm, the
first example of a FW-based approach combined with an exploration principle other than optimism.
This shows our approach has a much broader applicability to solve (C)BCR than previous strategies.

From LinUCB to FW-LinUCB (details in Appendix G). We consider a CBCR with linear reward
function, i.e., µ(x) = θx where θ ∈ RD×d (recall we have D rewards) and x ∈ Rd×K , where
d is the number of features. Let θ̃ := flatten(θ) and gt = ∇f(ŝt−1). Using [.; .] to denote the
vertical concatenation of matrices, the expected reward for action a in context x at time t can
be written ⟨gt |µ(x)a⟩ = g⊺t θxa = ⟨θ̃ | x̃ta⟩ where x̃t ∈ RDd×K is the extended context with
entries x̃t = [gt,0xt; . . . ; gt,Dxt] ∈ RDd×K . This is an instance of a linear bandit problem, where
at each time t, action a is associated to the vector x̃ta and its expected reward is ⟨θ̃ | x̃ta⟩. As
a result, we can immediately derive a LinUCB-based algorithm for linear CBCR by leveraging
the equivalence FW-LinUCB(ht, xt, δ

′) = LinUCB(h̃t, x̃t, δ
′) . LinUCB’s regret guarantees imply

Rscal
T = O(d

√
T ) with high probability, which, in turn give a O(1/

√
T ) for RT .

From SquareCB to FW-SquareCB (details in Appendix H). We now consider a CBCR with
general reward function µ(x). The SquareCB algorithm (Foster & Rakhlin, 2020) is a randomized
exploration strategy that delegates the learning of rewards to an arbitrary online regression algorithm.
The scalar regret of SquareCB is bounded depending on the regret of the base regression algorithm.

For FW-SquareCB, we have access to an online regression oracle µ̂t, an estimate of µ which is a
function of ht, which has regression regret bounded by Roracle(T ). The exploration strategy of FW-
SquareCB follows the same principles as SquareCB: let gt = ∇f(ŝt−1) and denote µ̂

t
= g⊺t µ̂t(xt),

so that µ̂⊺
t
a = ⟨gt | µ̂t(xt)a⟩. Let At = FW-SquareCB(ht, xt, δ

′) defined as

∀a ∈ A,At(a) =


1

K+γt

(
µ̂∗
t
−µ̂⊺

t
a
) if a ̸= at

1−
∑

a∈A
a̸=at

At(a) if a = at
where at ∈ argmax

a∈A
µ̂⊺
t
a and µ̂∗

t
= µ̂

t
at

Then FW-SquareCB has RT in O(
√

Roracle(T )/
√
T ) with high probability.
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Table 1: Regret bounds depending on assumptions and base algorithm A, for multi-armed bandits
with K arms (in dimension d for LinUCB). See Appendix G and H for the full details.

Algorithm
(FW-<bandit>)

Assumptions
(informal)

Bound on RT

(simplified, using δ′ = δ)

FW-LinUCB µ(x)a = θxa for θ ∈ RD×d, x ∈ Rd×K LDKdD ln
(
(1 + TLDK

dD
)/δ

)
√
T

FW-SquareCB
T∑

t=1

∥∥µ̂t(xt)at − µ(xt)at

∥∥2

2
≤ Roracle(T )

L
√

K
(
Roracle(T ) +D2

K ln(T/δ)
)

√
T

3.3 THE CASE OF NONSMOOTH f

When f is nonsmooth, we use a smoothing technique where the scalar regret is not measured using
∇f(ŝt−1), but rather using gradients of a sequence (ft)t∈N of smooth approximations of f , whose
smoothness decrease over time (see e.g., Lan, 2013, for applications of smoothing to FW). We provide
a comprehensive treatment of smoothing in our general approach described in Appendix D, while
specific smoothing techniques are discussed in Appendix F.

We now describe the use of Moreau-Yosida regularization (Rockafellar & Wets, 2009, Def. 1.22):
ft(z) = maxy∈RD

(
f(y) −

√
t+1
2β0
∥y − z∥22

)
. It is well-known that ft is concave and L-Lipschitz

whenever f is, and ft is
√
t+1
β0

-smooth (see Lemma 15 in Appendix F). A related smoothing method
was used by Agrawal & Devanur (2014) for (non-contextual) BCR. Our treatment of smoothing is
more systematic than theirs, since we use a smoothing factor β0/

√
t+ 1 that decreases over time

rather than a fixed smoothing factor that depends on a pre-specified horizon. Our regret bound for
CBCR is based on a scalar regret Rscal,sm

T where∇ft−1(ŝt−1) is used instead of∇f(ŝt−1):

Rscal,sm
T =

T∑
t=1

max
a∈A
⟨∇ft−1(ŝt−1) |µ(xt)a⟩ −

T∑
t=1

⟨∇ft−1(ŝt−1) | rt⟩. (9)

Theorem 3 Under Assumptions A, for every z0 ∈ K, every T ≥ 1 and every δ > 0, δ′ > 0,
Algorithm A satisfies, with probability at least 1− δ − δ′:

RT ≤
Rscal,sm

T

T
+

LDK√
T

(DK

Lβ0
+ 3

Lβ0

DK
+

√
2 ln

1

δ

)
. (10)

The proof is given in Appendix F. Taking β0 = DK
L leads to a simpler bound where DK

Lβ0
+3Lβ0

DK
= 4.

4 CONTEXTUAL RANKING BANDITS WITH FAIRNESS OF EXPOSURE

In this section, we apply our reduction to the combinatorial bandit task of fair ranking, and obtain the
first algorithm with regret guarantees in the contextual setting. This task is described in Example 2
(Sec. 2). We remind that there is a fixed set of m items to rank at each timestep t, and that actions
are flattened permutation matrices (A is defined in Ex. 2, Eq. (1)). The context xt ∼ P is a matrix
xt = (xt,i)i∈JmK where each xt,i ∈ Rd represents a feature vector of item i for the current user.

Observation model. The user utility u(xt) is given by a position-based model with position weights
b(xt) ∈ [0, 1]m and expected value for each item v(xt) ∈ [0, 1]m. Denoting u(xt) the flattened
version of v(xt)b(xt)

⊺ ∈ Rm×m, the user utility is (Lagrée et al., 2016; Singh & Joachims, 2018):

⟨u(xt) | a⟩ =
m∑
i=1

vi(xt)

m∑
k=1

ai,kbk(xt).

In this model, bk(xt) ∈ [0, 1] is the probability that the user observes the item at rank k. The quantity∑m
k=1 ai,kbk(xt) is thus the probability that the user observes item i given ranking a. We denote
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Algorithm 1: FW-LinUCBRank: linear contextual bandits for fair ranking.

input :δ′ > 0, λ > 0, ŝ0 ∈ K V0 = λId, y0 = 0d, θ̂0 = 0d

1 for t = 1, . . . do
2 Observe context xt ∼ P

3 ∀i, v̂t,i ← θ̂⊺t−1xt,i + αt

(
δ′

3

)
∥xt,i∥V −1

t−1
// UCB on vi(xt) (def. of αt in Lem. 26, App. I)

4 at ← top-k{ ∂f
∂zm+1

(ŝt−1)v̂t,i +
∂f
∂zi

(ŝt−1)}mi=1 // FW linear optimization step
5 Observe exposed items et ∈ {0, 1}m and user feedback ct ∈ {0, 1}m
6 Update ŝt ← ŝt−1 +

1
t (rt − ŝt−1)

7 Vt ← Vt−1 +

m∑
i=1

et,ixt,ix
⊺
t,i, yt ← yt−1 +

m∑
i=1

ct,ixt,i and θ̂t ← V −1
t yt // regression

8 end

k = maxx∈X ∥b(x)∥0 ≤ m the maximum rank that can be exposed to any user. In most practical
applications, k ≪ m. As formalized in Assumption D below, the position weights bk(x) are always
non-increasing with k since the user browses the recommended items in order of their rank. We use a
linear assumption for item values, where DX and Dθ are known constants:

Assumption C sup
x∈X
∥x∥2 ≤ DX and ∃θ ∈ Rd, ∥θ∥2 ≤ Dθ s.t. ∀x ∈ X ,∀i ∈ JmK, vi(x) = θ⊺xi.

We propose an observation model where values vi(x) and position weights b(x) are unknown.
However, we assume that at each time step t, after computing the ranking at, we have two types of
feedback: first, et,i ∈ {0, 1} is 1 if item i has been exposed to the user, and 0 otherwise. Second
ct,i ∈ {0, 1} which represents a binary like/dislike feedback from the user. We have

E[et,i
∣∣xt, at

]
=

m∑
k=1

at,i,kbk(xt) E
[
ct,i|xt, et,i] =

{
vi(xt) if et,i = 1

0 if et,i = 0
(11)

This observation model captures well applications such as newsfeed ranking on mobile devices or
dating applications where only one post/profile is shown at a time. What we gain with this model is
that b(x) can depend arbitrarily on the context x, while previous work on bandits in the position-based
model assumes b known and context-independent (Lagrée et al., 2016).7

Fairness of exposure. There are D = m+ 1 rewards, i.e., µ(x) ∈ R(m+1)×m2

. Denoting µi(x) the
ith-row of µ(x), seen as a column vector, each of the m first rewards is the exposure of a specific
item, while the m+ 1-th reward is the user utility:

∀i ∈ JmK, ⟨µi(x) | a⟩ =
m∑

k=1

ai,kbk(x) and µm+1(x) = u(x) (12)

The observed reward vector rt ∈ RD is defined by ∀i ∈ JmK, rt,i = et,i and
rt,m+1 =

∑m
i=1 ct,i. Notice that E

[
rt,m+1

∣∣xt

]
= u(xt). Let K be the convex hull of

{z ∈ {0, 1}m+1 :
∑m

i=1 zi ≤ k and zm+1 ≤
∑m

i=1 zi}, we have DK ≤
√
k
√
k + 2 ≤ k + 1 and

rt ∈ K with probability 1. The objective function f : RD → R makes a trade-off between average
user utility and inequalities in item exposure (we gave an example in Eq. (2)). The remaining assump-
tions of our framework are that the objective function is non-decreasing with respect to average user
utility. This is not required but it is natural (see Example 2) and slightly simplifies the algorithm.

Assumption D The assumptions of the framework described above hold, as well as Assumption B.
Moreover, ∀z ∈ K ∂f

∂zm+1
(z) > 0, and ∀x ∈ X , 1 ≥ b1(x) ≥ . . . ≥ bk(x) = . . . = bm(x) = 0.

Algorithm and results. We present the algorithm in the setting of linear contextual bandits, using
LinUCB (Abbasi-Yadkori et al., 2011; Li et al., 2010) as scalar exploration/exploitation algorithm in

7When b is unknown, depends on the context x, and we do not observe et, several approaches have been
proposed to estimate the position weights (see e.g., Fang et al., 2019). Incorporating these approaches in
contextual bandits for ranking is likely feasible but out of the scope of this work.
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Figure 1: (left) Multi-armed CBCR: Objective values on environments from (Mehrotra et al., 2020).
(middle) Ranking CBCR: Fairness objective value over timesteps on Last.fm data. (right) Ranking
CBCR: Trade-off between user utility and item inequality after 5× 106 iterations on Last.fm data.

Algorithm 1. It builds reward estimates based on Ridge regression with regularization parameter λ.
As in the previous section, we focus on the case where f is smooth but the extension to nonsmooth f
is straightforward, as described in Section 3. Appendix I provides the analysis for the general case.

As noted by Do et al. (2021), Frank-Wolfe algorithms are particularly suited for fair ranking in the
position-based model. This is illustrated by line 4 of Alg. 1, where for ũ ∈ Rm, top-k(ũ) outputs a
permutation (matrix) of JmK that sorts the top-k elements of ũ. Alg. 1 is thus computationally fast,
with a cost dominated by the top-k sort. It also has an intuitive interpretation as giving items an
adaptive bonus depending on ∇f (e.g., boosting the scores of items which received low exposure in
previous steps). The following result is a consequence of (Do et al., 2021, Theorem 1):

Proposition 4 Let t ∈ N∗ and µ̂t such that ∀i ∈ JmK, µ̂t,i = µi(xt) and µ̂t,m+1 = v̂tb(xt)
⊺ viewed

as a column vector, with v̂ defined in line 3 of Algorithm 1. Then, under Assumption D, at defined on
line 4 of Algorithm 1 satisfies: ⟨∇f(ŝt−1) | µ̂tat⟩ = argmax

a∈A
⟨∇f(ŝt−1) | µ̂ta⟩.

The proposition says that even though computing at as in line 4 of Alg. 1 does not require the
knowledge of b(xt), we still obtain the optimal update direction according to µ̂t. Together with the
usage of the observed reward rt in FW iterates (instead of e.g., µ̂tat as would be done by Agrawal &
Devanur (2014)), this removes the need for explicit estimates of µ(xt). This is how our algorithm
works without knowing the position weights b(xt), which are then allowed to depend on the context.

The usage of v̂t to compute at follows the usual confidence-based approach to explore/exploitation
principles for linear bandits, which leads to the following result (proven in Appendix I):

Theorem 5 Under Assumptions B, C and D, for every δ′ > 0, every T ∈ N∗, every λ ≥ D2
Xk, with

probability at least 1− δ′, Algorithm 1 has scalar regret bounded by

Rscal
T = O

(
L
√
Tk

√
d ln(T/δ′)

(√
d ln(T/δ′) +Dθ

√
λ+

√
k/d

))
. (13)

Thus, considering only d, T, k and δ = δ′ Alg. 1 has regret RT ≤ O
(dk ln(T/δ)√

T

)
w.p. at least 1− δ.

5 EXPERIMENTS

We present two experimental evaluations of our approach, which are fully detailed in App. B.

5.1 MULTI-ARMED CBCR: APPLICATION TO MULTI-OBJECTIVE BANDITS

We first focus on the multi-objective recommendation task of Example 1 where f(z) =
∑D

i=1 wiz
↑
i .

Algorithms. We evaluate our two instantiations presented in Sec. 3.2 with the Moreau-Yosida
smoothing technique of Sec. 3.3: (i) FW-SquareCB with Ridge regression and (ii) FW-LinUCB,
where exploration is controlled by a scaling variable ϵ on the exploration bonus of each arm. We
compare them to MOLinCB from (Mehrotra et al., 2020).

8
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Environments. We reproduce the synthetic environments of Mehrotra et al. (2020), where the context
and reward parameters are generated randomly, and wi =

1
2i−1 . We set K = 50 and D ∈ {5, 20}

(we also vary K in App. B). Each simulation is repeated with 100 random seeds.

Results. Following (Mehrotra et al., 2020), we evaluate the algorithms’ performance by measuring
the value of f( 1

T

∑T
t=1 µ(xt)at) over time. Our results are shown in Figure 1 (left). We observe that

our algorithm FW-SquareCB obtains comparable performance with the baseline MOLinCB. These
algorithms converge after ≈ 100 rounds. In this environment from (Mehrotra et al., 2020), only little
exploration is needed, hence FW-LinUCB obtains better performance when ϵ is smaller (ϵ = 0.01).
The advantage of using an FW instantiation for the multi-objective bandit optimization task is that
unlike MOLinCB, its convergence is also supported by our theoretical regret guarantees.

5.2 RANKING CBCR: APPLICATION TO FAIRNESS OF EXPOSURE IN RANKINGS

We now tackle the ranking problem of Section 4. We show how FW-LinUCBRank allows to fairly
distribute exposure among items on a music recommendation task with bandit user feedback.

Environment. Following (Patro et al., 2020), we use the Last.fm music dataset from (Cantador et al.,
2011), from which we extract the top 50 users and items with the most listening counts. We use
a protocol similar to Li et al. (2016) to generate context and rewards from those. We use k̄ = 10

ranking slots, and exposure weights bk(x) =
log(2)

1+log(k) . Simulations are repeated with 10 seeds.

Algorithms. Our algorithm is FW-LinUCBRank with the nonsmooth objective f of Eq. (2), which
trades off between user utility and item inequality. We study other fairness objectives in App. B. Our
first baseline is LinUCBRank (Ermis et al., 2020), designed for ranking without fairness. Then, we
study two baselines with amortized fairness of exposure criteria. Mansoury et al. (2021) proposed a
fairness module for UCB-based ranking algorithms, which we plug into LinUCBRank. We refer to
this baseline as Unbiased-LinUCBRank. Finally, the FairLearn(c, α) algorithm (Patil et al., 2020)
enforces as fairness constraint that the pulling frequency of each arm be ≥ c, up to a tolerance α. We
implement as third baseline a simple adaptation of FairLearn to contextual bandits and ranking.

Dynamics. Figure 1 (middle) represents the values of f over time achieved by the competing
algorithms, for fixed β = 1. As expected, compared to the fairness-aware and -unaware baselines,
our algorithm FW-LinUCBRank reaches the best values of f . Interestingly, Unbiased-LinUCBRank
also obtains high values of f on the first 104 rounds, but its performance starts decreasing after
more iterations. This is because Unbiased-LinUCBRank is not guaranteed to converge to an optimal
trade-off between user fairness and item inequality.

At convergence. We analyse the trade-offs achieved after 5 · 106 rounds between user utility and item
inequality measured by the Gini index. We vary β in the objective f of Eq. (2) for FW-LinUCBRank
and the strength c in FairLearn(c, α), with tolerance α = 1. In Fig. 1 (right), we observe that
compared to FairLearn, FW-LinUCBRank converges to much higher user utility at all levels of
inequality among items. In particular, it achieves zero-unfairness at little cost for user utility.

6 CONCLUSION

We presented the first general approach to contextual bandits with concave rewards. To illustrate the
usefulness of the approach, we show that our results extend randomized exploration with generic
online regression oracles to the concave rewards setting, and extend existing ranking bandit algorithms
to fairness-aware objective functions. The strength of our reduction is that it can produce algorithms
for CBCR from any contextual bandit algorithm, including recent extensions of SquareCB to infinite
compact action spaces (Zhu & Mineiro, 2022; Zhu et al., 2022) and future ones.

In our main application to fair ranking, the designer sets a fairness trade-off f to optimize. In practice,
they may choose f among a small class by varying hyperparameters (e.g. β in Eq. (2)). An interesting
open problem is the integration of recent elicitation methods for f (e.g., Lin et al., 2022) in the
bandit setting. Another interesting issue is the generalization of our framework to include constraints
(Agrawal & Devanur, 2016). Finally, we note that the deployment of our algorithms requires to
carefully design the whole machine learning setup, including the specification of reward functions
(Stray et al., 2021), the design of online experiments (Bird et al., 2016), while taking feedback loops
into account (Bottou et al., 2013; Jiang et al., 2019; Dean & Morgenstern, 2022).
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A RELATED WORK

The non-contextual setting of bandits with concave rewards (BCR) has been previously studied by
Agrawal & Devanur (2014), and by Busa-Fekete et al. (2017) for the special case of Generalized
Gini indices. In BCR, policies are distributions over actions. These approaches perform a direct
optimization in policy space, which is not possible in the contextual setup without restrictions or
assumptions on optimal policies. Agrawal et al. (2016) study a setting of CBCR where the goal is
to find the best policy in a finite set of policies. Because they rely on explicit search in the policy
space, they do not resolve the main challenge of the general CBCR setting we address here. Cheung
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(2019); Siddique et al. (2020); Mandal & Gan (2022); Geist et al. (2021) address multi-objective
reinforcement learning with concave aggregation functions, a problem more general than stochastic
contextual bandits. In particular, Cheung (2019) use a FW approach for this problem. However,
these works rely on a tabular setting (i.e., finite state and action sets) and explicitly compute policies,
which is not possible in our setting where policies are mappings from a continuous context set to
distributions over actions. Our work is the only one amenable to contextual bandits with concave
rewards by removing the need for an explicit policy representation. Finally, compared to previous
FW approaches to bandits with concave rewards, e.g. (Agrawal & Devanur, 2014; Berthet & Perchet,
2017), our analysis is not limited to confidence-based exploration/exploitation algorithms.

CBCR is also related to the broad literature on bandit convex optimization (BCO) (Flaxman et al.,
2004; Agarwal et al., 2011; Hazan et al., 2016; Shalev-Shwartz et al., 2012). In BCO, the goal is to
minimize a cumulative loss of the form

∑T
t=1 ℓt(πt), where the convex loss function ℓt is unknown

and the learner only observes the value ℓt(πt) of the chosen parameter πt at each timestep. Existing
approaches to BCO perform gradient-free optimization in the parameter space. While BCR considers
global objectives rather than cumulative ones, similar approaches have been used in non-contextual
BCR (Berthet & Perchet, 2017) where the parameter space is the convex set of distributions over
actions. As we previously highlighted, such parameterization does not apply to CBCR because direct
optimization in policy space is infeasible.

CBCR is also related to multi-objective optimization (Miettinen, 2012; Drugan & Nowe, 2013), where
the goal is to find all Pareto efficient solutions. (C)BCR, focuses on one point of the Pareto front
determined by the concave aggregation function f , which is more practical in our application settings
where the decision-maker is interested in a specific (e.g., fairness) trade-off.

In recent years, the question of fairness of exposure attracted a lot of attention, and has been mostly
studied in a static ranking setting (Geyik et al., 2019; Beutel et al., 2019; Yang & Stoyanovich, 2017;
Singh & Joachims, 2018; Patro et al., 2022; Zehlike et al., 2021; Kletti et al., 2022; Diaz et al., 2020;
Do & Usunier, 2022; Wu et al., 2022). Existing work on fairness of exposure in bandits focused on
local exposure constraints on the probability of pulling an arm at each timestep, either in the form
of lower/upper bounds (Celis et al., 2018) or merit-based exposure targets (Wang et al., 2021). In
contrast, we consider amortized exposure over time, in line with prior work on fair ranking (Biega
et al., 2018; Morik et al., 2020; Usunier et al., 2022), along with fairness trade-offs defined by concave
objective functions which are more flexible than fairness constraints (Zehlike & Castillo, 2020; Do
et al., 2021; Usunier et al., 2022). Moreover, these works (Celis et al., 2018; Wang et al., 2021) do
not address combinatorial actions, while ours applies to ranking in the position-based model, which
is more practical for recommender systems (Lagrée et al., 2016; Singh & Joachims, 2018). The
methods of (Patil et al., 2020; Chen et al., 2020) aim at guaranteeing a minimal cumulative exposure
over time for each arm, but they also do not apply to ranking. In contrast, (Xu et al., 2021; Li et al.,
2019) consider combinatorial bandits with fairness, but they do not address the contextual case,
which limits their practical application to recommender systems. (Mansoury et al., 2021; Jeunen &
Goethals, 2021) propose heuristic algorithms for fairness in ranking in the contextual bandit setting,
highlighting the problem’s importance for real-world recommender systems, but they lack theoretical
guarantees. Using our FW reduction with techniques from contextual combinatorial bandits (Lagrée
et al., 2016; Li et al., 2016; Qin et al., 2014), we obtain the first principled bandit algorithms for this
problem with provably vanishing regret.

B MORE ON EXPERIMENTS

Our experiments are fully implemented in Python 3.9.

B.1 RANKING CBCR: APPLICATION TO FAIRNESS OF EXPOSURE IN RANKINGS WITH BANDIT
FEEDBACK

B.1.1 DETAILS OF THE ENVIRONMENT AND ALGORITHMS

Environment Following (Patro et al., 2020) who also address fairness in recommender systems,
we use the Last.fm music dataset8 from (Cantador et al., 2011), which includes the listening counts of

8https://www.last.fm, the dataset is publicly available for non-commercial use.
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Figure 2: Lastfm-50: Objective values over time for (top) Gini, (middle) eq. exposure, (bottom) welf.

1, 892 users for the tracks of 17, 632 artists, which we identify as the items. For the first environment,
which we presented in Section 5 and which we call Lastfm-50 here, we extract the top n = 50
users and m = 50 items having the most interactions. In order to examine algorithms at larger
scale, we also design another environment, Lastfm-2k, where we keep all n = 1.9k users and
the top m = 2.5k items having the most interactions. In both cases, to generate contexts and
rewards, we follow a protocol similar to other works on linear contextual bandits (Garcelon et al.,
2020; Li et al., 2016). Using low-rank matrix factorization with d′ latent factors9, we obtain user
factors uj ∈ Rd′

and item factors vi ∈ Rd′
for all j, i ∈ JnK × JmK. We design the context set as

X = {flatten(ujv
⊺
i ) : j, i ∈ JnK× JmK} ⊂ Rd, where d = d′2. At each time step t, the environment

draws a user jt uniformly at random from JnK and sends context xt = flatten(ujtv
⊺
i ). Given a

context xt and item i, clicks are drawn from a Bernoulli distribution: ct,i ∼ B(u⊺
jt
vi).

We set k̄ = 10, and for the position weights, we use the standard weights of the discounted cumulative
gain (DCG): ∀k ∈ Jk̄K, bk = 1

log2(1+k) and bk̄+1, . . . , bm = 0.

Details of the algorithms For all algorithms, the regularization parameter of the Ridge regression
is set to λ = 0.1.

The first baseline we consider is the algorithm LinUCBRank10 of (Ermis et al., 2020), which is a top-k
ranking bandit algorithm without fairness. It is equivalent to using FW-LinUCBRank with f(s) =
sm+1, which corresponds to the usual top-k ranking objective without item fairness. More precisely,

at each timestep, the algorithm produces a top-k ranking of
(
θ̂⊺t−1xt,i + αt(

δ′

3 )∥xt,i∥V −1
t−1

)m

i=1
.

9Using the Python library Implicit, MIT License: https://implicit.readthedocs.io/
10LinUCBRank appears under various names in the literature, including PBMLinUCBRank (Ermis et al.,

2020) and CascadeLinUCB (Kveton et al., 2015).
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Figure 3: Lastfm-2k: Objective values over time for (top) Gini, (bottom) welf.

Figure 4: Trade-offs between user utility and inequality on Lastfm-2k, after T = 106 rounds.

We also consider as baselines two bandit algorithms with amortized fairness of exposure criteria.
First, Mansoury et al. (2021) proposed a fairness module for cascade ranking bandits, which can
be easily adapted to the position-based model (PBM). Their goals include reducing inequality in
exposure between items, measured by the Gini index of exposures in their experiments. While they
measure the exposure of an item as their recommendation frequency over time, we adapt their module
to the PBM by using the observation frequency, i.e.

∑t
t′=1 et′,i for item i at time t. Transposed to our

setting, their module consists in a simple modification of LinUCBRank by multiplying the exploration
bonus of each item i by a factor:

ηt,i = 1−
∑t−1

t′=1 et′,i∑t−1
t′=1

1
k

∑m
i′=1 et′,i′

. (14)

More precisely, at each timestep, the algorithm produces a top-k ranking of(
θ̂⊺t−1xt,i + ηt,i × αt(

δ′

3 )∥xt,i∥V −1
t−1

)m

i=1
. Following (Mansoury et al., 2021), we call this

baseline Unbiased-LinUCBRank.

Our second baseline with fairness is the FairLearn(c, α) algorithm of Patil et al. (2020) for stochastic
bandits with a fairness constraint on the pulling frequency Nt,i of each arm i at each timestep t. The
constraint is parameterized by a variable c and a tolerance parameter α: ⌊ct⌋ −Nt,i ≤ α. We adapt
FairLearn(c, α) to ranking by applying the algorithm sequentially for each recommendation slot,
while constraining the algorithm not to choose the same item twice for a given ranked list. We also
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adapt FairLearn to contextual bandits by using LinUCB as underlying learning algorithm. More
precisely, for the current timestep and slot, if the constraint is not violated, then the algorithm plays
the item with the highest LinUCB upper confidence bound.

Objectives To illustrate the flexibility of our approach, we use algorithm FW-LinUCBRank to
optimize three existing objectives which trade off between user utility and item fairness, in the form:
f(s) = sm+1 + βf item(s1:m). Gini measures item inequality by the Gini index, as in (Biega et al.,
2018; Morik et al., 2020; Do & Usunier, 2022), and eq. exposure uses the standard deviation (Do
et al., 2021):

(Gini) f item(s) =

m∑
j=1

m− j + 1

m
s↑j (eq. expo) f item(s) = − 1

m

√√√√√ m∑
j=1

sj −
1

m

m∑
j′=1

sj′

2

(15)

Since Gini is nonsmooth, we apply the FW-LinUCBRank algorithm for nonsmooth f with Moreau-
Yosida regularization, presented in Section 3.3 and detailed in Appendix F.1 (we use β0 = 1 in our
experiments). To compute the gradient of the Moreau envelope ft, we use the algorithm of Do &
Usunier (2022) which specifically applies to generalized Gini functions and top-k ranking.

We also study additive concave welfare functions (Do et al., 2021; Moulin, 2003) where α is a
parameter controlling the degree of redistribution of exposure to the worse-off items:

(Welf) f item(s) =

m∑
j=1

sαj , α > 0 (16)

B.1.2 ADDITIONAL RESULTS

We now present additional results, which are obtained by repeating each simulation with 10 different
random seeds.

Dynamics For the three objectives described, Figure 2 represents the values of the user and item
objectives (left and middle), and the value of the objective f (right) over time, achieved by the
competing algorithms on Lastfm-50. We set β = 0.5 for all objectives and for welf, we set α = 0.5.
We observe that with this value of β, the item objective f item is given more importance in f than the
user utility.

We observe that for Gini and welf, FW-LinUCBRank achieves the highest value of f across timesteps.
This is because unlike LinUCBRank, it accounts for the item objective f item. In both cases, Unbiased-
LinUCBRank achieves a high value of f over time but starts decreasing, after 104 iterations for
Gini and 5.105 iterations for welf. This is because Unbiased-LinUCBRank is not designed to
converge towards an optimum of f . For eq. exposure, when β = 0.5, Unbiased-LinUCBRank
obtains surprisingly better values of f than FW-LinUCBRank. Therefore, depending on the objective
to optimize and the timeframe, Unbiased-LinUCBRank can be chosen as an alternative to FW-
LinUCBRank. However, due to its lack of theoretical guarantees, it is more difficult to understand in
which cases it may work, and for how many iterations. Furthermore, unlike Unbiased-LinUCBRank,
FW-LinUCBRank can be chosen to optimise a wide variety of functions by varying the tradeoff
parameter β in all objectives, and α in welf to control the degree of redistribution. Unbiased-
LinUCBRank does not have such controllability and flexibility.

Figure 3 shows the objective values for Gini and welf on Lastfm-2k. We observe similar results where
FW-LinUCBRank converges more quickly than its competitors (≈ 5, 000 iterations for Gini and
≈ 500 iterations for welf) and obtains the highest values of f. For the first 105 iterations of optimizing
Gini, Unbiased-LinUCBRank obtains significantly lower values than FW-LinUCBRank on welf.

Fairness trade-off for fixed T On the larger Lastfm-2k dataset, we study the tradeoffs between user
utility and item inequality obtained by FW-LinUCBRank and FairLearn on Figure 4 after T = 106

rounds. The Pareto frontiers are obtained as follows: FW-LinUCBRank optimises for Gini, in which
we vary β, and for FairLearn we vary the constraint value c at fixed α = 1. Figure 1 in Section 5
of the main paper illustrated the same Pareto frontier but for 5× more iterations and on the smaller
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Figure 5: Multi-objective bandits: GGF value achieved on various synthetic environments.

Lastfm-50 dataset. Although the algorithms might not have converged for this larger dataset, we
observe that FW-LinUCBRank obtains better trade-offs than FairLearn, achieving higher user utility
at all levels of inequality. We conclude that even in a setting with more items and shorter learning
time, FW-LinUCBRank effectively reduces item inequality, at lower cost for user utility than the
baseline.

B.2 MULTI-ARMED CBCR: APPLICATION TO MULTI-OBJECTIVE BANDITS WITH GENERALIZED
GINI FUNCTION

We provide the details and additional simulations on the task of optimizing the Generalized Gini
aggregation Function (GGF) in multi-objective bandits (Busa-Fekete et al., 2017; Mehrotra et al.,
2020). We remind that the goal is to maximize a GGF of the D-dimensional rewards, which is a
nonsmooth concave aggregation function parameterized by nonincreasing weights w1 = 1 ≥ . . . ≥
wD ≥ 0: f(s) =

∑D
i=1 wis

↑
i , where (s↑i )

D
i=1 denotes the values of s sorted in increasing order.

Mehrotra et al. (2020) study the contextual bandit setting, motivated by music recommendation on
Spotify with multiple metrics. They consider atomic actions at ∈ A (i.e., A is the canonical basis
of RK) and a linear reward model: ∀i ∈ JDK, ∃θi ∈ Rd, Et[rt,i] = θ⊺i x

⊺
t at. These are the same

assumptions as described in Table 1 of Section 3.2 and in Appendix G.

GGFs are concave functions, but they are nondifferentiable. Therefore, we use the variant of our
FW approach for nonsmooth f (see Section 3.3), where we smooth the objective via Moreau-Yosida
regularization with parameter β0 = 0.01, using the algorithm of (Do & Usunier, 2022) to compute
the gradients of the smooth approximations ft.

Algorithms In the main body, we evaluated two instantiations of our FW meta-algorithm, namely
FW-LinUCB and FW-SquareCB. The level of exploration in FW-LinUCB is controlled by a variable
ϵ. More precisely, the exploration bonus is multiplied by

√
ϵ, i.e. the UCBs are calculated as:

θ̂⊺t−1,ixt,k +
√
ϵ αt(δ)∥xt,k∥V −1

t−1
. In FW-Square-CB, as detailed in Appendix H, the exploration is

controlled by a sequence (γt)t≥1, growing as
√
t (higher γt means less exploration). We set it to

γt = γ0
√
t with γ0 ∈ {103, 104}.

In addition to the two algorithms presented in Section 5, to show the flexibility of our FW approach,
we also implement FW-ϵ-greedy, another instantiation of our FW algorithm which uses ϵ−greedy as
scalar bandit algorithm.

We compare our algorithms with MOLinCB of Mehrotra et al. (2020), an online gradient descent-style
algorithm which was designed for this task, but was introduced without theoretical guarantees, as an
extension of the MO-OGDE algorithm of Busa-Fekete et al. (2017) who study the non-contextual
problem. We use the default parameters of MOLinCB recommended by Mehrotra et al. (2020).

Environments Since the Spotify dataset of Mehrotra et al. (2020) is not publicly available, we only
focus on their simulated, controlled environments. We reproduced these environments exactly as
described in Appendix A of their paper. For completeness, we restate the protocol here: we draw a
hidden parameter θ ∈ RD×d uniformly at random in [0, 1], and each element of a context-arm vector
xt,k is drawn from N ( 1d ,

1
d2 ). Given a context xt and arm kt, the D-dimensional reward is generated
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as a draw from N (θxt,kt
, 0.01(θxt,kt

)2). We choose d = 10 in the data generation and λ = 0.1 in
the Ridge regression, as recommended by Mehrotra et al. (2018).

In Section 5 of the main body, we varied the number of objectives D ∈ {5, 20} and set K = 50.
Here we also experiment with K = 200 to see the effect of varying the number of arms. The GGF
weights are set to wj =

1
2j−1 . Each simulation is repeated with 100 different random seeds.

Results The extended results, with more arms and algorithms, are depicted in Figure 5. We observe
that FW-ϵ-greedy achieves similar performance to the baseline MOLinCB, with small exploration
ϵ = 0.01. FW-SquareCB also achieves comparable performance to MOLinCB when there is little
exploration, i.e. with γ0 = 104 rather than 103. This is coherent with our observation in Section 5
that FW-LinUCB obtains better performance when there is very little exploration on this environment
from Mehrotra et al. (2018). Note that there is no forced exploration in their algorithm MOLinCB.
Overall, we obtain qualitatively similar results when K = 200 compared to K = 50.

C PROOFS OF SECTION 2

In this section we give the missing details of Section 2. For completeness, we remind the definitions
of Lipschitz-continuity and super-gradients in the next subsection. Then, we start in Section C.2 the
analysis of the structure of the set S defined in Section 3 of the main paper, and more precisely its
support function g 7→ maxs∈S g⊺s. This contains new lemmas that are fundamental for the analysis
throughout the paper, in particular in the proof of Lemma 9, which is given in Section C.3.

C.1 BRIEF REMINDER ON LIPSCHITZ FUNCTIONS AND SUPER-GRADIENTS

We remind the following definitions. Let D and D′ be two integers, and f a function f : RD → RD′
.

We have:
• (Lipschitz continuity) f is L-Lipschitz continuous with respect to ∥.∥2 on a set Z ⊆ RD if

∀z, z′ ∈ Z, ∥f(z)− f(z′)∥2 ≤ L∥z − z′∥2. (17)
• (super-gradients) If f : RD → R ∪ {±∞}, a super-gradient of f at a point z ∈ RD where
f(z) ∈ R is a vector g such that for all z′ ∈ RD, f(z′) ≤ f(z) + ⟨g | z′ − z⟩.

We remind the following results when f : RD → R ∪ {±∞} is a proper closed concave function:
• f has non-empty set of super-gradients at every point z where f(z) ∈ R,
• if f is L-Lipschitz on Z ⊆ RD and Z is open, then for every z ∈ Z and every super-gradient g of
f at z, we have ∥g∥2 ≤ L.

The assumption of Lipschitz-continuity of f on a set Z implicitly implies the assumption that Z is in
the domain of f .

Remark 1 (About our Lipschitzness assumptions) We use Lipschitzness over an open set contain-
ing K in Assumption A because we use boundedness of the super-gradients of f . In fact, a more
precise alternative would be to require that super-gradients are bounded uniformly on K by L. We
choose the Lipschitz formulation because we believe it is more natural.

As a side note, in assumption B, we use Lipschitzness of the gradients on K, not on an open set
containing K. This is because smoothness in used in the ascent lemma (see Eq. 50), which uses
Inequality 4.3 of Bottou et al. (2018), the proof of which directly uses Lipschitz-continuity of the
gradients on K (Bottou et al., 2018, Appendix B), without relying on an argument of boundedness of
gradients.

C.2 PRELIMINARIES: THE STRUCTURE OF THE SET S

We denote by x1:T = (x1, . . . , xT ) a sequence of contexts of length T . Let

S =

{
Ex∼P

[
µ(x)π(x)

]∣∣∣∣π : X → A
}

(18)

∀x1:T ∈ X T ,S(x1:T ) =

{
1

T

T∑
t=1

µ(xt)π(xt)

∣∣∣∣π : X → A
}

(19)
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It is straightforward to show that S(x1:T ) =

{
1
T

∑T
t=1 µ(xt)πt

∣∣∣∣(π1, . . . , πT ) ∈ A
T
}

. These sets

are particularly relevant because of the following equality, for every f : RD → R ∪ {±∞}:

f∗ = sup
π:X→A

f
(
Ex∼P

[
µ(x)π(x)

])
= sup

s∈S
f(s) (20)

and f+
T = sup

(πt)t∈JTK∈AT

f
( 1

T

T∑
t=1

µ(xt)πt

)
= sup

s∈S(x1:T )

f(s). (21)

We study in this section the structure of these sets. We provide here the part of Assumption A that is
relevant to this section:

Assumption Ã A is a compact subset of RK and there is a compact convex set K ⊆ RD such that
∀(x, a) ∈ X ×A, µ(x)a ∈ K.

We remind the following basic results from convex sets in Euclidian spaces that we use throughout
the paper without reference:

Lemma 6 Let A be a compact subset of RK . We have:
• (Rockafellar & Wets, 2009, Corollary 2.30) The convex hull A of a, denoted by A, is compact.
• For every w ∈ RK ,max

a∈A
w⊺a = max

a∈A
w⊺a.

The following lemma allows us to use maxima instead of suprema over S and S(x1:T ). The proof of
this lemma is deferred to Appendix J.1.

Lemma 7 Under Assumption Ã, S is compact and ∀T ∈ N∗, ∀x1:T ∈ X T ,S(x1:T ) is compact.

The next result regarding the support functions of S and S(x1:T ) is the key to our approach:

Lemma 8 Let w ∈ RD and T ∈ N∗. Under Assumption Ã, we have

Ex1:T∼PT

[
max

s∈S(x1:T )
w⊺s

]
= max

s∈S
w⊺s. (22)

Moreover, for every δ ∈ (0, 1], we have with probability at least 1− δ:

max
s∈S(x1:T )

w⊺s ≤ max
s∈S

w⊺s+ ∥w∥2DK

√
2 ln δ−1

T
. (23)

The inequality max
s∈S

w⊺s ≤ max
s∈S(x1:T )

w⊺s+ ∥w∥2DK

√
2 ln δ−1

T
also holds with probability 1− δ.

Proof. The first result is a direct consequence of the maximization of linear functions over the
simplex. Using (20) with f(s) = w⊺s and the linearity of expectations, we have

max
s∈S

w⊺s = max
π:X→A

Ex∼P

[
w⊺µ(x)π(x)

]
. (24)

The optimal policy given w, denoted by πw is thus obtained by optimizing for every x the dot product
between w⊺µ(x) ∈ RK and π(x) ∈ A ⊆ RK . Since, for each x, it is a linear optimization, we can
find an optimizer in A (see Lemma 6), which gives:

max
s∈S

w⊺s = Ex∼P

[
w⊺µ(x)πw(x)︸ ︷︷ ︸

ηw(x)

]
where πw(x) ∈ argmax

a∈A
w⊺µ(x)a, (25)

where in the equation above we mean that πw is a measurable selection of x 7→ argmaxa∈A w⊺µ(x)a.

For the same reason, we have max
s∈S(x1:T )

w⊺s =
1

T

T∑
t=1

ηw(xt). We obtain

Ex1:T∼PT

[
max

s∈S(x1:T )
w⊺s

]
= Ex1:T∼PT

[ 1
T

T∑
t=1

ηw(xt)
]
= Ex∼P

[
ηw(x)

]
= max

s∈S
w⊺s. (26)
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which is the first equality.

For the high-probability inequality, let Xt = ηw(xt) − Ex∼P

[
ηw(x)

]
. Since the (xt)t∈JT K are

independent and identically distributed (i.i.d.), the variables (Xt)t∈JT K are also i.i.d., and we have

|Xt| ≤ w⊺
(
µ(xt)π

w(xt)︸ ︷︷ ︸
∈K

−Ex∼P

[
µ(x)πw(x)

]︸ ︷︷ ︸
∈K

)
≤ ∥w∥2DK and E

[
Xt

]
= 0. (27)

Given δ ∈ (0, 1], Hoeffding’s inequality applied to 1
T

∑T
t=1 Xt gives, with probability at least 1− δ:

max
s∈S(x1:T )

w⊺s−max
s∈S

w⊺s =
1

T

T∑
t=1

Xt ≤ ∥w∥2DK

√
2 ln δ−1

T
. (28)

The reverse equation is obtained by applying Hoeffding’s inequality to − 1
T

∑T
t=1 Xt.

C.3 PROOF OF LEMMA 9

Lemma 9 Under Assumption A, ∀T ∈ N∗,∀δ ∈ (0, 1], we have, with probability at least 1− δ:

∣∣∣f+
T − f∗

∣∣∣ ≤ LDK

√
2 ln 4e2

δ

T
where f+

T = max
(π1,...,πT )∈AT

f
( 1

T

T∑
t=1

µ(xt)πt

)
We also have, with probability 1− δ over contexts, actions, and rewards:

∣∣f(sT )− f(ŝT )
∣∣ ≤ LDK

√
2 ln(2e2δ−1)

T
where sT =

1

T

T∑
t=1

µ(xt)at.

The first statement shows that the performance of the optimal non-stationary policy over T steps
converges to f∗ at a rate O(1/

√
T ). Furthermore, measuring the algorithm’s performance by expected

rewards instead of observed rewards would also amount to a difference of order O(1/
√
T ). This

choice would lead to what is commonly referred to as a pseudo-regret. Since the worst-case regret of
BCR is Ω(1/

√
T ) (Bubeck & Cesa-Bianchi, 2012), the previous lemma shows that the alternative

definitions of regret would not substantially change our results.

Proof. We start with the first inequality.

We first prove that w.p. greater than 1− δ/2, we have f+
T ≤ f∗ + LDK

√
2 ln 2

δ

T .

Since f is continuous onK and since S ⊆ K and S is compact by Lemma 7, there is s∗ ∈ S such that
f∗ = f(s∗). Similarly, since S(x1:T ) is compact, there is s∗T such that f(s∗T ) = maxs∈S(x1:T ) f(s).
Using (20), we need to prove that with probability at least 1 − δ/2, we have f(s∗T ) ≤ f(s∗) +

LDK

√
2 ln 2

δ

T .

Using the concavity of f , let g∗ be a supergradient of f at s∗. We have

f(s∗T ) ≤ f(s∗) + ⟨g∗ | s∗T − s∗⟩ (29)
≤ f(s∗) + max

s∈S(x1:T )
⟨g∗ | s− s∗⟩ (30)

=⇒ w.p. ≥ 1− δ/2 : f(s∗T ) ≤ f(s∗) + max
s∈S
⟨g∗ | s− s∗⟩︸ ︷︷ ︸

≤0 by def. of s∗

+∥g∗∥2DK

√
2 ln 2

δ

T

(by Lemma 8)

≤ f(s∗) + LDK

√
2 ln 2

δ

T
. (by the Lipschitz assumption)
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We now prove f∗ ≤ f+
T + LDK

√
2 ln 4e2

δ

T with probability at least 1− δ/2.

Let π∗ ∈ argmaxπ:X→A f
(
Ex∼P

[
µ(x)π(x)

])
(an optimal policy exists by Lemma 7). Denote by

(Xt = µ(xt)π
∗(xt))t∈JT K a sequence of independent and identically distributed random variables

obtained by sampling xt ∼ P .

We have |Xt − EXt| ≤ DK and EXt = s∗. By the Lipschitz property of f , we obtain

f(s∗) ≤ f(
1

T

T∑
t=1

Xt) + L
∥∥∥ 1

T

T∑
t=1

Xt − s∗
∥∥∥
2
. (31)

Using the version of Azuma’s inequality for vector-valued martingale with bounded increments of
Hayes (2005, Theorem 1.8) to obtain, for every ϵ > 0:

P
( 1

DK

∥∥∥ 1

T

T∑
t=1

Xt − s∗
∥∥∥
2
≥ ϵ

)
≤ 2e2e−Tϵ2/2. (32)

Setting δ
2 = 2e2e−Tϵ2/2 and solving for ϵ gives, with probability at least 1− δ/2:

f∗ ≤ f(
1

T

T∑
t=1

Xt) + LDK

√
2 ln 4e2

δ

T
≤ f+

T + LDK

√
2 ln 4e2

δ

T
. (33)

For the second inequality: using L-Lipschitzness of f , the inequality is a direct consequence of the
lemma below, which is itself a direct consequence of (Hayes, 2005, Theorem 1.8).

In the following lemma and its proof, we use the two following filtrations:
• F = (Ft)t∈N∗ where Ft is the σ-algebra generated by (x1, a1, r1, . . . , xt−1, at−1, rt−1, xt),
• F = (FT )T∈N∗ where FT is the σ-algebra generated by (x1, a1, r1, . . . , xt−1, at−1, rt−1, xt, at).

Our setup implies that the process (at)t∈N∗ is adapted to F while (rt)t∈N∗ is adapted to F.

Lemma 10 Under Assumption A, if the actions (a1, . . . , aT ) define a process adapted to (FT )T∈N,
then, for every T ∈ N, for every δ, with probability 1− δ, we have:

∥sT − ŝT ∥2 ≤ DK

√
2 ln 2e2

δ

T
(34)

Proof. Let XT =
∑T

t=1 rt−µ(xt)at. We have ∥XT−XT−1∥2 ≤ DK, and (XT )T∈N is a martingale
adapted to (FT )T∈N satisfying X0 = 0. We can then use the version of Azuma’s inequality for
vector-valued martingale with bounded increments of Hayes (2005, Theorem 1.8) to obtain, for every
ϵ > 0:

P
(∥∥∥XT

DK

∥∥∥
2
≥ ϵ

)
≤ 2e2e−ϵ2/(2T ). (35)

Solving for ϵ gives the desired result.

D THE GENERAL TEMPLATE FRANK-WOLFE ALGORITHM

A more general framework The analysis of the next sections is done within a more general
famework than that of the main paper, which is described in Algorithm 2. Similarly to the main paper,
the action is drawn according to at ∼ A(ht, xt, δ

′) (Line 3 of Alg. 2). However, we allow for a
generic choice of Frank-Wolfe iterate with respect to which we compute (an extension of) the scalar
regret (presented in (36) below). The update direction is denoted by ρt and is chosen according to
a function U(ht+1, δ

′), a companion function from A(ht, xt, δ
′). Note that the update direction is

chosen given ht+1 = (ht, (xt, at, rt)), the history after the actions and rewards have been taken.
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Algorithm 2: Generic Frank-Wolfe algorithm for CBCR.
input: initial point z0 ∈ K, Approx. RLOO confidence parameter δ′

1 for t = 1 . . . T do
2 Observe xt ∼ P
3 Pull at ∼ A(ht, xt, δ

′) // Explore/exploit step
4 Observe reward rt ∈ K, update temporal average of observed rewards ŝt
5 Let ρt = U(ht+1, δ

′) // Generic Frank-Wolfe update
6 Update zt = zt−1 +

1
t

(
ρt − zt−1

)
7 end

The proofs of the main paper apply to the special case of Alg. 2 where ∀t ≥ 1, ρt = rt. We then
have the FW iterate zt in Line 6 of the algorithm satisfy ∀t ≥ 1, zt = ŝt.

The reason we study this generalization is to show how our analysis applies in cases where the FW
iterate is not the observed reward. In prior work on (non-contextual) BCR, Agrawal & Devanur (2014,
Algorithm 4) use an upper-confidence approach and use the upper confidence on the expected reward
as update direction. The generalization made by introducing U(ht+1, δ

′) compared to the main paper
allows for our analysis to encompass their approach.

We need to update Assumptions A and B to account for the fact that ρt is used in place of rt.

Assumption A′ f is closed proper concave on RD and A is a compact subset of RK . Moreover,
there is a compact convex set K ⊆ RD such that
• (Bounded rewards and iterates) For all t ∈ N∗, rt ∈ K and ρt ∈ K with probability 1.
• (Local Lipschitzness) f is L-Lipschitz continuous with respect to ∥.∥2 on an open set containing K.

Assumption B′ Assumption A′ holds and f has C-Lipschitz-continuous gradients w.r.t. ∥.∥2 on K.

In Assumption A we added µ(xt)at ∈ K for clarity, but it is not necessary since µ(xt)at ∈ K with
probability 1 is implied by rt ∈ K with probability 1. The difference between Assumption A′ and
Assumption A is to make sure that the updates ρt, and thus the iterates zt belong to K and are in
the domain of definition of f . Notice that in the special case of ρt = rt, Assumption A′ reduces to
Assumption A and, similarly, Assumption B reduces to Assumption B′. We use the term smooth as a
synonym of Lipschitz-continuous gradients.

Analysis for (possibly) non-smooth objective functions We are going to present a single analysis
that encompasses both the case where f is smooth (Assumption B of the main paper), and the case
where f may not be smooth, which we briefly discussed in Section 3.3. In order for our analysis to
be agnostic to the type of smoothing used and to also encompass the case where f is smooth, we
propose the following assumption, where (ft)t∈N is a sequence of smooth approximations of f :

Assumption E Assumption A′ holds and ∃(β0, L,M1,M2) ∈ R4
+ such that (ft)t∈N satisfy:

1. ∀t ∈ N, ft : RD → R ∪ {±∞} is proper closed concave on RD,
2. ∀t ∈ N, ft is differentiable on K with supz∈K∥∇ft(z)∥2 ≤ L, and ft is

√
t+1
β0

-smooth on K,
3. ∀t ∈ N∗,∀z ∈ K, |ft(z)− ft−1(z)| ≤ M1

t
√
t

and |ft(z)− f(z)| ≤ M2√
t

.

Notice that any function f satisfying Assumption B with coefficient of smoothness C satisfies
Assumption E with β0 = 1/C, M1 = M2 = 0. Regarding non-smooth f , we discuss in more details
in Appendix F specific methods to perform this smoothing, including the Moreau envelope used in
Section 3.3.

The generalization of the scalar regret takes into account both the approximation functions (ft)t∈N
and the general update zt:

Rgen
T =

T∑
t=1

max
a∈A
⟨∇ft−1(zt−1) |µ(xt)a⟩ −

T∑
t=1

⟨∇ft−1(zt−1) | ρt⟩+ LT∥zT − ŝT ∥2. (36)
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The general regret bound then takes the following form, where we distinguish between smooth and
non-smooth f . Recall that C̃ = CD2

K/2.

Theorem 11 Under Assumptions B′, using ∀T ∈ N, fT = f .

For every T ∈ N, every z0 ∈ K, every δ > 0, Algorithm 2 satisfies, with probability at least 1− δ:

RT ≤
Rgen

T + LDK

√
2T ln 1

δ + C̃ ln(eT )

T
(37)

Theorem 12 Under Assumptions E, for every z0 ∈ K, every T ≥ 1 and every δ > 0, Algorithm 2
satisfies, with probability at least 1− δ:

RT ≤
Rgen

T

T
+

D2
K

β0
+ 4M1 + 2M2 + LDK

√
2 ln 1

δ√
T

(38)

The proofs are given in Appendix E.

The worst-case regret of contextual bandits is Ω(
√
T ) (Bubeck & Cesa-Bianchi, 2012; Dani et al.,

2008; Lattimore & Szepesvári, 2020), which gives a lower bound for the worst-case regret of CBCR in
Ω( 1√

T
). The dependencies on the problem parameters are all directly derived from the regret bounds

Rgen
T of the underlying scalar bandit algorithm (LinUCB, SquareCB, etc.). Therefore we obtain

CBCR algorithms that are near minimax optimal as soon as Rgen
T ≤ O(

√
T ). The residual terms

O( 1√
T
) terms are tied to the use of Azuma’s inequality (Lemma 13) and FW analysis (using Lipschitz

and smoothness parameters), and the dependencies to these parameters match usual convergence
guarantees in optimization (Jaggi, 2013; Clarkson, 2010; Lan, 2013). As we rely on a worst-case
analysis in deriving our reduction guarantees, it remains an open question whether problem-dependent
optimal bounds could be recovered as well.

We make three remarks in order:

Remark 2 (Why we need a specific result for smooth f ) The result for C-smooth f has a better
dependency than the general result using β0 = 1/C (ln(eT ) instead of √T ), which makes a
fundamental difference in practice if the smoothness coefficient is close to

√
T . This is why we keep

the two results separate.

Remark 3 (Comparison to the smoothing as used by Agrawal & Devanur (2014)) Agrawal &
Devanur (2014, Thm 5.4) present an analysis for non-smooth f where, at a high-level, they run the
smooth algorithm using fT instead of a sequence (ft)t∈N, and then apply the convergence bound for
smooth f . Our analysis has two advantages:
1. Anytime bounds: our approach does not require the horizon to be known in advance.
2. Better bound: they obtain a bound on

√
lnT/T by suitably choosing the smoothing parameter,

whereas we obtain a bound of 1/
√
T . In practice, it may not make a difference if Rgen

T

T is itself in√
lnT/T , but the advantage of our approach is clear as far as the analysis of FW for (C)BCR is

concerned.

Remark 4 (About the confidence parameter δ′ in A(ht, xt, δ
′) and U(ht+1, δ

′)) In practice, ex-
ploration/exploitation algorithms need a confidence parameter that defines the probability of their
regret guarantee. For instance, in confidence-based approaches, it is the probability with which
the confidence intervals are valid at every time step. In our case, it means that explicit upper
bounds on Rgen

T are of the form R
gen

(T, δ′) which hold with probability 1 − δ′, where δ′is the
confidence parameter in A(ht, xt, δ

′). Using the union bound, we obtain bounds of the form

RT ≤ R
gen

(T, δ′)/T +O
(√ ln(1/δ)

T

)
that are valid with probability 1− δ − δ′.

Note the difference in the roles of δ and δ′: δ is not a parameter of the algorithm, it is only here to
account for the randomization over contexts.
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E PROOFS FOR SECTION 3 AND APPENDIX D

This section contains the proofs for the results of Section 3. All the proofs are made for the more
general framework described in Appendix D. The framework of the paper can be recovered as the
special case ∀t ∈ N, ρt = rt and zt = ŝt.

Proof of Lemma 1. Lemma 1 is the special case of Lemma 13 when f is smooth. Note that every f
satisfying Assumption A satisfies the assumptions of Lemma 13.

Proof of Theorem 2. Thm. 2 is a special case of Theorem 11 of Appendix D, using ∀t ∈ N, ρt = rt
and zt = ŝt. The proof of Theorem 11 is given in Section E.1.

Lemma 13 Assume that ∀T, fT is differentiable on K with ∀z ∈ K, ∥∇fT (z)∥2 ≤ L. Then, for
every z ∈ K, we have:

Ex∼P

[
max
a∈A
⟨∇ft−1(z) |µ(x)a⟩

]
= max

π:X→A
Ex∼P

[
⟨∇ft−1(z) |µ(x)π(x)⟩

]
= max

s∈S
⟨∇ft−1(zt−1) | s⟩. (39)

Assume furthermore that zt is a function of contexts, actions and rewards up to time t. Let a∗t ∈
argmax

a∈A
⟨∇ft−1(zt−1) |µ(xt)a⟩. For all δ ∈ (0, 1], with probability at least 1− δ, we have:

T∑
t=1

max
s∈S
⟨∇ft−1(zt−1) | s− µ(xt)a

∗
t ⟩ ≤ LDK

√
2T ln

1

δ
(40)

Proof. Let z ∈ K. We first prove (39). The first equality in (39) comes from the maximization over
functions over the simplex with a linear objective: define

π∗
t : X 7→ A such that π∗

t (x) ∈ argmax
a∈A

⟨∇ft−1(zt−1) |µ(x)a⟩, (41)

using some arbitrary tie-breaking rule when the argmax is not unique. We have, for every policy π:

Ex∼P

[
⟨∇ft−1(z) |µ(x)π(x)⟩

]
≤ Ex∼P

[
max
a∈A
⟨∇ft−1(z) |µ(x)a⟩

]
(42)

=⇒ max
π:X→A

Ex∼P

[
⟨∇ft−1(z) |µ(x)π(x)⟩

]
≤ Ex∼P

[
⟨∇ft−1(z) |µ(x)π∗

t (x)⟩
]
. (43)

On the other hand, it is clear that

Ex∼P

[
⟨∇ft−1(z) |µ(x)π∗

t (x)⟩
]
≤ max

π:X→A
Ex∼P

[
⟨∇ft−1(z) |µ(x)π(x)⟩

]
, (44)

and we get the first equality of (39).

The second equality in (39) holds by the definition of S since for every policy π, we have

Ex∼P

[
⟨∇ft−1(z) |µ(x)π(x)⟩

]
= ⟨∇ft−1(z) |Ex∼P

[
µ(x)π(x)

]
⟩. (45)

We now prove (40). Let
(
Et

[
.
])

t≥1
be the conditional expectations with respect to the filtration

F̃ = (F̃t)t≥1 where Ft is the σ-algebra generated by (x′
t, a

′
t, r

′
t)t′∈Jt−1K, i.e., contexts, actions and

rewards up to time t− 1, so that we have:

Et

[
⟨∇ft−1(zt−1) |µ(xt)π

∗
t (xt)⟩

]
= Ex∼P

[
⟨∇ft−1(zt−1) |µ(x)π∗

t (x)⟩
]
. (46)

Using (39) gives Et

[
⟨∇ft−1(zt−1) |µ(xt)π

∗
t (xt)⟩

]
= max

s∈S
⟨∇ft−1(zt−1) | s⟩, from which we obtain

max
s∈S
⟨∇ft−1(zt−1) | s− µ(xt)a

∗
t ⟩

= Et

[
⟨∇ft−1(zt−1) |µ(xt)π

∗
t (xt)⟩

]
− ⟨∇ft−1(zt−1) |µ(xt)π

∗
t (xt)⟩

XT =
∑T

t=1 maxs∈S⟨∇ft−1(zt−1) | s−µ(xt)a
∗
t ⟩ thus defines a martingale adapted to F, and, using

X0 = 0, we have, for all t:

|Xt −Xt−1| ≤ L sup
s∈S
x∈X
a∈A

∥s− µ(x)a∥2 ≤ L sup
z,z′∈K

∥z − z′∥2 ≤ LDK. (47)

The results then follows from Azuma’s inequality.
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The next lemma is the main technical tool of the paper. The proof is not technically difficult given the
previous result, using the telescoping sum approach of the proof of Lemma 12 of Berthet & Perchet
(2017) and organizing the residual terms.

Lemma 14 Under Assumption E, denote ∀t ∈ N, f∗
t = max

s∈S
ft(s), and R̃t(z) = f∗

t − ft(z).

Let C(T ), F
∗
(T ) in R ∪ {+∞} such that, ∀T ∈ N∗, we have:

T∑
t=1

D2
K
2

Ct−1

t
≤ C(T ),

T∑
t=1

t
(
R̃t(zt)− R̃t−1(zt)

)
≤ F

∗
(T ) (48)

And let B(T ) = C(T ) + F
∗
(T ). Then, for all z0 ∈ K, ∀T, ∀δ > 0,∀δ′ > 0, Algorithm 2 satisfies,

with probability at least 1− δ:

f∗
T − fT (ŝT ) ≤

B(T ) +Rgen
T + LDK

√
2T ln 1

δ

T
(49)

Proof. We start with the standard ascent lemma using bounded curvature on K (Bottou et al., 2018,
Inequality 4.3), denoting C̃

T
=

D2
K
2 CT :

ft−1(zt) ≥ ft−1(zt−1) +
1

t
⟨∇ft−1(zt−1) | ρt − zt−1⟩ −

C̃t−1

t2
(50)

f∗
t−1 − ft−1(zt) ≤ f∗

t−1 − ft−1(zt−1)−
1

t
⟨∇ft−1(zt−1) | ρt − zt−1⟩+

C̃
t−1

t2
(51)

Let us denote by gt = ∇ft−1(zt−1) and let a∗t ∈ argmaxa∈A⟨gt |µ(xt)a⟩. We first decompose the
middle term:

⟨gt | ρt − zt−1⟩ = max
s∈S
⟨gt | s− zt−1⟩ −max

s∈S
⟨gt | s− µ(xt)a

∗
t ⟩ − ⟨gt |µ(xt)a

∗
t − ρt⟩ (52)

≥ f∗
t−1 − ft−1(zt−1)−max

s∈S
⟨gt | s− µ(xt)a

∗
t ⟩︸ ︷︷ ︸

αt

−⟨gt |µ(xt)a
∗
t − ρt⟩︸ ︷︷ ︸

ρt

(by (53) below)

Where the last inequality uses the concavity of ft: for all s∗t−1 ∈ argmaxs∈S ft−1(s), we have:

f∗
t−1 − ft−1(zt−1) ≤ ⟨∇ft−1(zt−1) | s∗t−1 − zt−1⟩ ≤ max

s∈S
⟨∇ft−1(zt−1) | s− zt−1⟩ (53)

and thus we get

f∗
t−1 − ft−1(zt) ≤

(
f∗
t−1 − ft−1(zt−1)

)
(1− 1

t
) +

1

t
(αt + ρt) +

C̃
t−1

t2
(54)

=⇒ tR̃t(zt) ≤ (t− 1)R̃t−1(zt−1) + αt + ρt +
C̃t−1

t
+ t

(
R̃t(zt)− R̃t−1(zt)

)
(55)

=⇒ TR̃T (zT ) ≤
T∑

t=1

αt +

T∑
t=1

ρt +

T∑
t=1

t
(
R̃t(zt)− R̃t−1(zt)

)
+

T∑
t=1

C̃t−1

t
(56)

Using the Lipschitz property for fT , we finally obtain

TR̃T (ŝT ) ≤
T∑

t=1

αt +

T∑
t=1

ρt + TL∥zT − ŝT ∥2︸ ︷︷ ︸
≤LDK

√
2T ln(1/δ)+Rgen

T

w.p. ≥1−δ by (36) and Lemma 13.

+

T∑
t=1

t
(
R̃t(zt)− R̃t−1(zt)

)
︸ ︷︷ ︸

≤F
∗
(T )

+

T∑
t=1

C̃t−1

t︸ ︷︷ ︸
≤C(T )

(57)

Which is the desired result.
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E.1 PROOFS OF THE MAIN RESULTS

We now prove the results of Appendix D.

Proof of Theorem 11. First, notice that since f differentiable on K (since it is smooth) and since both
zT and 1

T

∑T
t=1 µ(xt)at are in K, using ∀t, ft = f , we have RT = f∗ − f(ŝT ) = f∗

T − fT (ŝT ).
Using the notation of Lemma 14, we then have C(T ) = 0 and D(T ) = 0. Also:

T∑
t=1

D2
K
2

Ct

t
=

T∑
t=1

C̃

t
≤ C̃(ln(t) + 1) (58)

The result then follows from Lemma 14.

Proof of Theorem 12. Using the notation of Lemma 14, we specify C(T ), F
∗
(T ) in turn.

T∑
t=1

D2
K
2

Ct−1

t
=

T∑
t=1

D2
K

2β0

√
t
≤ D2

K
β0

√
T . (59)

For F
∗
(T ), we decompose R̃t(zt)− R̃t−1(zt) into two terms:

R̃t(zt)− R̃t−1(zt) = f∗
t − f∗

t−1 + ft−1(zt)− ft(zt) ≤
2M1

t
√
t

(60)

Using
∑T

t=1
1√
t
≤ 2
√
T , we obtain F

∗
(T ) ≤ 2M1

∑T
t=1

t
t
√
t
≤ 4M1

√
T . Lemma 14 gives

f∗
T − fT (ŝT ) ≤ Rgen

T +

D2
K

β0
+ 4M1 + LDK

√
2 ln(δ−1/2)

√
T

(61)

To finish the proof, notice that:∣∣f∗ − f(ŝT )−
(
f∗
T − fT (ŝT )

)∣∣ ≤ 2 sup
z′∈K
|fT (z′)− f(z′)| ≤ 2M2√

T
. (62)

The result follows from (61) and (62) using:

RT = f∗ − f(ŝT ) ≤ f∗
T − fT (ŝT ) +

2M2√
T

. (63)

F SMOOTH APPROXIMATIONS OF NON-SMOOTH FUNCTIONS

We discuss here in more details two specific smoothing techniques: the Moreau envelope, also called
Moreau-Yosida regularization in Section F.1, then randomized smoothing in Section F.2. As in
Appendices D and E, we focus on the general framework described in Algorithm 2.

Proof of Theorem 3. Usinh Theorem 12 above and Lemma 16 below gives the result since

D2
K

β0
+ 4M1 + 2M2 =

D2
K

β0
+ 3L2β0 = LDK

(DK

Lβ0
+ 3

Lβ0

DK

)
. (64)
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F.1 SMOOTHING WITH THE MOREAU ENVELOPE

For functions that are non-smooth, we propose first a smoothing technique based on the Moreau
envelope, following the approach described by Lan (2013). Let f : RD → R ∪ {±∞} be a
closed proper concave function. The Moreau envelope (or Moreau-Yosida regularization) of f with
parameter βT (Rockafellar & Wets, 2009, Def. 1.22) is defined as

f̃β(z) = max
y∈RD

(
f(y)− 1

2β
∥y − z∥22

)
. (65)

For β > 0, let the proximal operator proxβ = argmaxy∈RD f̃β(y). The basic properties of the
Moreau envelope (Rockafellar & Wets, 2009, Th. 2.26) are that if f : RD → R ∪ {±∞} is an
upper semicontinuous, proper concave function then f̃β is concave, finite everywhere, continuously
differentiable with 1

β -Lipschitz gradients. We also have that the proximal operator proxβ is well-
defined (the argmax is attained in a single point) and we have

∇f̃β(z) =
1

β

(
z − proxβ(z)

)
. (66)

It is immediate to prove the following inequalities for every z ∈ Rn and every β > 0:

f(z) ≤ f̃β(z) ≤ f(proxβ(z)). (67)

The following properties of the Moreau envelope (See (Yurtsever et al., 2018, Appendix A.1) and
(Thekumparampil et al., 2020, Lemma 1)) are key to the main results:

Lemma 15 Let β > 0, f : RD → R∪ {±∞} be a proper closed concave function, and Z ⊆ RD be
a convex set such that f is locally L-Lipschitz-continuous on Z. Then:
• ∀z ∈ Z such that proxβ(z) ∈ Z, we have ∥z − proxβ(z)∥ ≤ Lβ and:

f̃β(z)−
L2β

2
≤ f(z) ≤ f̃β(z). (68)

• ∀z ∈ Z such that proxβ(z) ∈ Z, ∀β > 0 and β′ > 0, we have:

f̃β ≤ f̃β′ +
1

2

( 1

β′ −
1

β

)∥∥z − proxβ(z)
∥∥2
2
≤ L2β

2

( β

β′ − 1
)

(69)

We reformulate the lemma above in the language of Appendix D:

Lemma 16 Under Assumption A, assuming furthermore that f is L-Lipschitz on RD.

Let ft = f̃βt
with βt = β0√

t+1
. Then f and (ft)t∈N satisfy Assumption E with the corresponding

values of β0 and L, M2 = L2β0

2 and M1 = L2β0

2 .

Proof. By Lemma 15, ft is L-Lipschitz on RD for every t, and we have M2 = L2β0

2 . Moreover,

Lemma 15 also gives 0 ≤ ft−1(z)−ft(z) ≤ L2β0

2t (
√
t+ 1−

√
t) ≤ L2β0

2t
√
t
. and thus M1 = L2β0

2 .

F.2 RANDOMIZED SMOOTHING

We now describe the randomized smoothing technique (Lan, 2013; Nesterov & Spokoiny, 2017;
Duchi et al., 2012; Yousefian et al., 2012), which consists in convolving f with a probability density
function Λ. Following Lan (2013) who combines Frank-Wolfe with randomized smoothing for
nonsmooth optimization, we present our results with Λ as the random uniform distribution in the
ℓ2-ball {z ∈ RD : ∥z∥2 ≤ 1} . Let β > 0 and ξ a random variable with density Λ. Then the
randomized smoothing approximation of f is defined as:

fβ(z) := EΛ[f(x+ βξ)] =

∫
RD

f(x+ βy)Λ(y)dy. (70)
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Following (Lan, 2013; Duchi et al., 2012), we abuse notation and take the “gradient” of f inside
integrals and expectation below, because f is almost-everywhere differentiable since it is concave.
We restate the following well-known properties of randomized smoothing (see e.g., (Yousefian et al.,
2012, Lemma 8)):

Lemma 17 Let β > 0 and fβ be defined as in Eq. (70).
• ∀z ∈ K, f(z) ≤ fβ(z) ≤ f(z) + Lβ.
• fβ is L-Lipschitz continuous over K.
• fβ is continuously differentiable and its gradient is L

√
D

β -Lipschitz continuous.
• ∀z ∈ K,∇fβ(z) = E[∇f(z + βξ)].

We obtain the following results, stated in the language of Theorem 12 of Appendix D.

Lemma 18 Under Assumption A, assuming furthermore that f is L-Lipschitz on RD.

For t ≥ 1, let ft = fβt with βt =
D

1
4 DK√
t+1

, and let β0 =
√
DDK
L .

Then f and (ft)t∈N satisfy Assumption E with the corresponding values of β0 and L, M2 = LD
1
4DK

and M1 = 2LD
1
4DK.

Proof. By Lemma 17, ft is L-Lipschitz on RD for every t, so that ft has L-bounded gradient.
Moreover, with this definition of β0, ft is

√
t+1
β0

-smooth.

We have M2 = LD
1
4DK because:

|ft(z)− f(z)| = |E[f(z + βtξ)]− E[f(z)]| ≤ E[|f(z + βtξ)− f(z)|] ≤ E[∥Lβtξ∥2] ≤
LD

1
4DK√
t
(71)

We also have M1 = 2LD
1
4DK because:

|ft−1 − ft| ≤ E[|f(x+ βt−1ξ)− f(x+ βtξ)|] ≤ L |βt−1 − βt|E[∥ξ∥2] (72)

= LD
1
4DK(

1√
t
− 1√

t+ 1
) ≤ 2LD

1
4DK

t
3
2

. (73)

G FW-LINUCB: UPPER-CONFIDENCE BOUNDS FOR LINEAR BANDITS WITH K
ARMS

In this section, we have:
• a finite action space A which is the canonical basis of RK , i.e., we focus on the multi-armed bandit

setting
• X ⊆ Rd×K , where d is the dimension of the feature space. Given x ∈ X , the feature representation

of arm a ∈ A is given by the matrix-vector product xa,
• Given a matrix θ ∈ RD×d, we denote by ∥θ∥F the frobenius norm of θ, i.e., ∥θ∥F = ∥flatten(θ)∥2.
In addition, we make here the following linear assumption on the rewards:

Assumption F There is θ ∈ RD×d such that ∥θ∥F ≤ Dθ such that ∀x ∈ X , µ(x)a = θxa.
Moreover, there is DX > 0 such that sup

x∈X
a∈A

∥xa∥2 ≤ DX .

We perform the analysis under Assumption E, which is the more general we have. In particular, we
assume that we have access to a sequence (ft)t∈JT K of smooth approximations of f . We focus on the
special case of Algorithm 2 that is described in the main paper, i.e., where ρT = rt.
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Algorithm 3: FW-linUCB: linear CBCR with K arms.

input :δ′ > 0, λ > 0, ŝ0 ∈ K V0 = λIdD, y0 = 0dD, θ̂0 = 0dD

1 for t = 1, . . . do
2 Observe context xt ∼ P , xt ∈ Rd×K

3 gt ← ∇ft−1(ŝt−1), x̃t ← [gt,0xt; . . . ; gt,Dxt]

4 ∀i ∈ JKK, ût,i ← θ̂⊺t−1x̃t,i + αt

(
δ′

2

)
∥x̃t,i∥V −1

t−1
// see (75) and (76) for def. of ∥.∥V −1

t−1
and αt.

5 at ← argmaxa∈A ûta
6 Observe reward rt, let r̃t = g⊺t rt
7 Update ŝt ← ŝt−1 +

1
t (rt − ŝt−1)

8 Vt ← Vt−1 + (x̃tat)(x̃tat)
⊺, yt ← yt−1 + r̃tx̃tat and θ̂t ← V −1

t yt // regression
9 end

The algorithm. As hinted in Section 3.2, FW-LinUCB applies the LinUCB algorithm (Abbasi-
Yadkori et al., 2011), designed for scalar-reward contextual bandits with adversarial contexts and
stochastic rewards, to the following extended rewards and contexts, where we use [.; .] to denote the
vertical concatenation of matrices and gt = ∇ft−1(ŝt−1):
• x̃t ∈ RDd×K is the extended context with entries x̃t = [gt,0xt; . . . ; gt,Dxt] ∈ RDd×K , so that the

feature vector of action a at time t is x̃ta;
• r̃t = g⊺t rt is the scalar observed reward,
• θ̃ = flatten(θ) ∈ RdD is the ground-truth parameter vector and µ̃(x) = θ̃⊺x̃t is the average reward

function.
Notice that under assumption A and F, denoting

X̃ =
{
[gt,0xt; . . . ; gt,Dxt] : ∥g∥2 ≤ L, x ∈ X

}
and DX̃ = max

x̃∈X̃
a∈A

∥x̃a∥2, (74)

we have ∀t, x̃t ∈ X̃ with probability 1 and DX̃ ≤ LDX . Moreover, |r̃t − µ̃(xt)at| ≤ LDK, which
implies in particular that for every t ∈ JT K, r̃t is LDK/2-subgaussian.

Given this notation, the FW-LinUCB algorithm is LinUCB applied to the scalar-reward bandit
problem above. The algorithm is summarized in Algorithm 3 for completeness, where λ is the
regularization parameter of the ridge regression, θ̂t is the current regression parameters, the matrix Vt

and the vector yt are incremental computations of the relevant matrices to compute θ̂t. The crucial
part of the algorithm is Line 3 which defines an upper confidence bound on µ̃(xt)a, denoted by
ût ∈ RK and defined by:

∀i ∈ JKK, ût,i = θ̂⊺t−1x̃t,i + αt(δ
′/2)∥x̃t,i∥V −1

t−1
where ∥x̃t,i∥V −1

t−1
=

√
x̃⊺
t,iV

−1
t−1x̃t,i, (75)

and αt is defined according to Theorem 2 of Abbasi-Yadkori et al. (2011):

αt(δ
′) =

LDK

2

√
dD ln

(1 + TD2
X̃
/λ

δ′

)
+
√
λDθ. (76)

Under Assumption E, we have with probability≥ 1− δ′/2: ∀t ∈ N∗, ûta ≥ µ̃(xt)a (Abbasi-Yadkori
et al., 2011, Theorem 2).

The result. Let d̃ = dD. The regret bound of LinUCB (Abbasi-Yadkori et al., 2011, Theorem 3)
and Azuma inequality give:

Theorem 19 Under Assumption E, for every T ∈ N∗, for every δ′ > 0, Algorithm 3 satisfies, with
probability at least 1− δ′:

Rscal
T ≤4

√
T d̃ log(1 + TDX̃ /d̃)

(√
λDθ +

LDK

2

√
2 ln(2/δ′) + d̃ ln

(
1 + TDX̃ /(λd̃)

))
(77)

+ LDK
√
2 ln(2/δ′).
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Algorithm 4: FW-SquareCB: contextual bandits with concave rewards and regression oracles

input : initial point ŝ0 ∈ K, exploration parameters (γt)t∈N. A is the canonical basis of RK .
1 for t = 1 . . . do
2 Observe xt ∼ P
3 Compute µ̂t(xt) using RegSq // see (81)
4 Let gt = ∇ft−1(ŝt−1) and µ̂

t
= g⊺t µ̂t(xt) ∈ RK

5 Let at ∈ argmax
a∈A

µ̂⊺
t
a and µ̂∗

t
= µ̂

t
at // use arbitrary tie breaking rule

6 Let ∀a ∈ A,At(a) =


1

K+γt

(
µ̂∗
t
−µ̂⊺

t
a
) if a ̸= at

1−
∑

a∈A
a̸=at

At(a) if a = at
// Exploration/exploitation step

7 Draw at ∼ At // Action taken at time step t

8 Observe reward rt and update ŝt = ŝt−1 +
1
t (rt − ŝt−1)

9 end

Proof. Recall that as noted in (6) We decompose the scalar regret Rscal
T into a pseudo regret and a

residual term:

Rscal
T =

T∑
t=1

max
a∈A

µ̃(x̃t)
⊺a−

T∑
t=1

µ̃(x̃t)
⊺at︸ ︷︷ ︸

pseudo-regret

+

T∑
t=1

(
µ̃(x̃t)

⊺at − r̃t
)︸ ︷︷ ︸

Xt

(78)

The pseudo-regret term is bounded using Theorem 3 by Abbasi-Yadkori et al. (2011). The result
applies as-is, except that they assume rewards |θ⊺x̃t| ≤ 1, which is not the case here. The bound
is still valid without changes, as in our case we have |maxa∈A µ̃(x̃t)

⊺a− µ̃(x̃t)
⊺at| ≤ LDK. The

steps in the proof where they use the assumption |θ⊺x̃t| ≤ 1 is below Equation 7 (Abbasi-Yadkori
et al., 2011, Appendix C), which in our notation and our assumption can be written as:

max
a∈A

µ̃(x̃t)
⊺a− µ̃(x̃t)

⊺at ≤ min
(
2αt(δ

′/2)∥x̃tat∥V −1
t−1

, LDK

)
(79)

≤ 2αt(δ
′/2)min(∥x̃tat∥V −1

t−1
, 1) (80)

where the first inequality comes from Abbasi-Yadkori et al. (2011) and the second one is true in
our case because 2αt(δ

′) ≥ LDK. From here on, the proof of Abbasi-Yadkori et al. (2011)’s regret
bound follows the same as the original result.11 Theorem 3 from Abbasi-Yadkori et al. (2011) gives
us the first term of the regret bound of the theorem, which is true with probability at least 1− δ′/2 in
our case because we use αt(δ

′/2).

For the rightmost term, let F =
(
Ft

)
t∈N∗

be the filtration where Ft is the σ-algebra generated by
(x1, a1, r1, . . . , xt−1, at−1, rt−1, xt, at). Then (Xt)t∈N∗ is a martingale difference sequence adapted

to F with |Xt| ≤ LDK. By Azuma’s inequality, we have
∑T

t=1 Xt ≤ LDK

√
2Tk ln 2

δ′ with
probability 1− δ′/2. The final result holds using a union bound.

Bound of Table 1. The bound is obtained by keeping the main dependencies in T, d̃, L and DK,
ignoring the dependencies in λ and Dθ, and using the fact that DX̃ ≤ LDK (as described below
(74)).

H FW-SQUARECB: CBCR WITH GENERAL REWARD FUCTIONS

The SquareCB algorithm was recently proposed by Foster & Rakhlin (2020) for zero-regret contextual
multi-armed bandit with general reward functions, based on the notion of online regression oracles.

11In short, they have different bounds, one involving the varance of rt and the other one involving average
rewards µ̃(x̃). We assume rewards rT are uniformly bounded in K, so we do not have to deal with two different
quantities in our bounds and have LDK everywhere.
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They propose, for single-reward contextual bandits with adversarial contexts and stochastic rewards,
a generic randomized exploration scheme that delegates learning to an online regression algorithm.
Their exploration/exploitation strategy then has (bandit) regret bounded as a function of the online
regret of the regression algorithm. In this section, we extend the SquareCB approach to the case
of CBCR. The main interest of this section is that by building on the work of Foster & Rakhlin
(2020), we obtain at nearly no cost an algorithm for general reward functions for multi-armed CBCR
problems.

This section shows how to extend this algorithm to our setting of concave rewards. To simplify the
notation, we consider the case of finite K with atomic actions, i.e., |A| = K. Our algorithm is based
on an oracle for multi-dimensional regression RegSq, which provides approximate values for µ:

∀T, ∀x ∈ X , µ̂T (x) = RegSq
(
x, (x1, a1, r1, . . . , aT−1, rT−1)

)
. (81)

The key assumption is that the problem is realizable and that RegSq has bounded regret:

Assumption G There is a function T 7→ Roracle(T ) ∈ R, non-decreasing in T ,12 and Φ, a class of
functions from X to RD×K such that, for every T ∈ N:
1. (Realizability) µ ∈ Φ,
2. (Regret bound) For every (xt, at, rt)t∈JT K,∈ (X ×A×K)T , we have:

T∑
t=1

∥∥µ̂t(xt)at − rt
∥∥2
2
− inf

ϕ∈Φ

T∑
t=1

∥∥ϕ(xt)at − rt
∥∥2
2
≤ Roracle(T ). (82)

3. For every (xt, at, rt)t∈JT K ∈ (X ×A×K)T , µ̂T (xT )aT ∈ K.

Assumption G is the counterpart for multidimensional regression of Assumptions 1 and 2a of Foster
& Rakhlin (2020), which are the basis of the original SquareCB algorithm.

Remark 5 (The “informal” assumption used in Table 1) Notice that in Table 1, we describe an
“informal” version of this assumption, which reads

∑T
t=1

∥∥µ̂t(xt)at−µ(xt)at
∥∥2
2
≤ Roracle(T ), which

is the counterpart for multi-dimensional regression of Assumption 2b by Foster & Rakhlin (2020).
Our choice in the table was to simplify the presentation, as this assumption is shorter. Our analysis is
also valid under this alternative assumption. Our proofs are made under Assumption G because it is
more widely applicable (more discussion of these assumptions can be found in (Foster & Rakhlin,
2020)).

Algorithm 4 describes how SquareCB principles apply to our framework. We use the framework of
the main paper, or, equivalently, the special case of Algorithm 2 where ∀t ∈ N, ρt = rt and zt = ŝt.
Note that the algorithm is parameterized by (γt)t∈N∗ instead of the desired confidence level δ′ to
make the analysis more general. Theorem 20 gives a formula for γt as a function of the desired
confidence δ′. As for the previous sections, we describe the algorithm for the general case of smooth
approximations of f , using ∇ft−1 rather than∇f in Line 4 of the algorithm.

At time step t, the regression oracle provides an estimate of µ(xt), then the algorithm computes
At, with a larger probability for the action which maximizes a 7→ ⟨∇f(ŝt−1) | µ̂t(xt)a⟩. The exact
formula for these probabilities At follow the original SquareCB algorithm, with the exception that
we use an iteration-dependent γt instead of a constant γ.13

The main result of this section is the following (see Section H.2 and the next section for intermediate
lemmas):

Theorem 20 Let δ′ > 0. For every t ∈ N∗, let γt = 2
L

√
tK

Roracle(t)+8D2
K ln 4t2

δ′
. Then, under

Assumptions E and G, Algorithm 4 satisfies, with probability at least 1− δ′ :

Rgen
T ≤ 4L

√
KT

(
Roracle(T ) + 8D2

K ln
4T 2

δ′
)
+ LDK

√
2T ln

2

δ′
(83)

12Monotonicity of Roracle is not required in (Foster & Rakhlin, 2020). We use it in (94) below to deal with
time-dependent γt. Meaningful Roracle(T ) are non-decreasing with T since they bound a cumulative regret.

13Throughout the paper, we chose to provide anytime bounds rather than bounds that depend on horizon-
dependent parameters. The analysis with fixed γ is easier.
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Recall that Assumption B is a special case of E when ρt = rt, as we are here. Thus, the bound
on Rgen

T is the same irrespective of whether we use the algorithm for smooth f (in which case
Rscal

T = Rgen
T ) or with smooth approximations (in which case Rscal,sm

T = Rgen
T ). This is because

only the Lipschitzness of (ft)t∈N is used in the analysis of Rgen
T for FW-SquareCB.

The following result is a direct corollary of Theorem 20, and gives the order of magnitude we obtain
for smooth f . Obtaining a similar for smooth approximations of f , using Theorem 12 instead of
Theorem 11 is straightforward.

Proof of the FW-SquareCB regret bound of Table 1. We apply the bound obtained by Theorem 20
within the bound of Theorem 11, using δ′ := 2δ/3 and δ := δ/3. We obtain:

RT ≤
4L

√
KT

(
Roracle(T ) + 8D2

K ln 12t2

δ

)
+ 2LDK

√
2T ln 3

δ + C̃ ln(eT )

T
. (84)

The bound given in the theorem uses the sub-additivity of√. to group the terms in
√
ln δ−1 for better

readability.

The proof of Theorem 20 is decomposed into two subsections: in the next subsection, we make the
necessary adaptations to the SquareCB analysis to account for multi-dimensional regression. This
proof follows essentially the same steps as the original analysis of SquareCB. There are only two
changes:
• We use multi-dimensional regression instead of scalar regression, while we need to bound a scalar

regret. There is an additional step to go from the scalar regret to the multi-dimensional regression,
but it turns out there is no added difficulty (see first line of the proof of Lemma 23).

• For coherence with the overall bounds of the paper, we use an anytime analysis using an increasing
sequence of (γt)t∈JT K, instead of a fixed exploration parameter γ that needs be tuned for a specific
horizon determined a priori. This introduces a bit more difficulty, where the main tool is Lemma
24. Our choice of anytime bound is more for coherence in the presentation of the paper than an
intended contribution.
Nonetheless, what we gain with our anytime bound is that the exploration parameter γ does not
depend on a fixed horizon. What we lose, however, is that we need a high-probability bound on
cumulative errors based on Roracle(t) that is valid for every t (see Lemma 23), while the “fixed
gamma” case only requires this bound to hold for the horizon T . This is the reason for the lnT
factor in our bound, which is not present in the original paper.

In the next sections, we use the following notation:

gt = ∇ft−1(ŝt−1), µ
t
= g⊺t µt(xt), µ∗

t
= max

a∈A
µ
t
a, (85)

µ̂
t
= g⊺t µ̂t(xt), µ̂∗

t
= max

a∈A
µ̂
t
a. (86)

H.1 ADAPTATION OF SQUARECB PROOF TO CBCR

In the SquareCB paper, Foster & Rakhlin (2020) study high probability bounds on a different type of
regret, based on average rewards associated to the actions µ(xt)at rather than observed rewards rt.
However, this difference has little influence since we can start with the following inequality, which is
similar to (Foster & Rakhlin, 2020, Lemma 2).

Lemma 21 Under Assumption E, for every T ∈ N∗, every δ′ > 0, Algorithm 4 satisfies
T∑

t=1

(
µ∗
t
− g⊺t rt

)
≤

T∑
t=1

Ea∼At

[
µ∗
t
− µ⊺

t
a
]
+ LDK

√
2T ln(1/δ′). (87)

Proof. The proof is by Azuma’s inequality. Let F = (Ft)t∈N∗ be the filtration where Ft

is the σ-algebra generated by (x1, a1, r1, . . . , xt−1, at−1, rt−1, xt), and let us denote XT =∑T
t=1 Ea∼At

[
µ⊺
t
a
]
− g⊺t rt. Then, (XT )T∈N is a martingale adapted to filtration F and satis-

fies |Xt − Xt−1| ≤ LDK. We obtain the result by noticing that XT =
∑T

t=1

(
µ∗
t
− g⊺t rt

)
−∑T

t=1 Ea∼At

[
µ∗
t
− µ⊺

t
a
]

and applying Azuma’s inequality to XT .
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Notice that the difference between (Foster & Rakhlin, 2020, Lemma 2) and our Lemma 21 is that we
consider the randomization over actions and rewards, while they only consider the randomization
over actions because they study average rewards. However, since it does not change the upper bound
on the variations of the martingale, this additional randomness does not change the bound.

The next step is the fundamental step in the proof of the original SquareCB algorithm. Even though
the notation differ slightly from the original paper, the proof is the same as in (Foster & Rakhlin,
2020, Appendix B):

Lemma 22 (Foster & Rakhlin, 2020, Lemma 3) For every t ∈ N∗, the choice of γt and A(ht, xt, δ
′)

of Algorithm 4 guarantees:

Ea∼At

[
µ∗
t
− µ⊺

t
a
]
≤ 2K

γt
+

γt
4
Ea∼At

[(
µ̂⊺
t
a− µ⊺

t
a
)2]

. (88)

The last step of these preliminary lemmas is to relate the cumulative expected error to the oracle
regret bound. We use here the same proof as (Foster & Rakhlin, 2020, Lemma 2). We then have:

Lemma 23 Under Assumption E, for every δ′ > 0, Algorithm 4 satisfies, w.p. at least 1− δ′:

∀T ∈ N∗,

T∑
t=1

Ea∼At

[(
µ̂⊺
t
a− µ⊺

t
at
)2] ≤ 2L2Roracle(T ) + 16L2D2

K ln
2T 2

δ′
(89)

Proof. We first notice that
∑T

t=1 Ea∼At

[(
µ̂⊺
t
a−µ⊺

t
at
)2] ≤ L2

∑T
t=1 Ea∼At

[∥∥µ̂(xt)a−µ(xt)a
∥∥2
2

]
.

We then apply the same steps as in the proof of (Foster & Rakhlin, 2020, Lemma 2) to∑T
t=1 Ea∼At

[∥∥µ̂(xt)a − µ(xt)a
∥∥2
2

]
(which we do not reproduce here) to obtain: for every every

T ∈ N, every δ′T > 0, with probability at least 1− δ′T :

T∑
t=1

Ea∼At

[(
µ̂⊺
t
a− µ⊺

t
at
)2] ≤ 2L2Roracle(T ) + 16L2D2

K ln
1

δ′T
(90)

Let δ′ > 0. Applying a union bound and taking δ′t =
δ′

2t2 so that
∑T

t=1 δ
′
t ≤ π2

12 δ
′ ≤ δ′, we obtain

the desired result.

Notice the log T factor in the bound, which appears because the bound is valid for all time steps. This
is because we propose anytime convergence bounds, with the exploration parameter that decreases
with time, whereas (Foster & Rakhlin, 2020) only prove their result in the case where the exploration
parameter is chosen for a specific horizon.

As the main first step for the final result, we need these two lemmas which are the main technical
steps to our anytime bound. The proof is deferred to Appendix J.2

Lemma 24 Let (λt)t∈N ∈ RT
+ be a sequence of non-negative numbers, denote ΛT =

∑T
t=1 λt and

let (ΛT )T∈N such that ∀T ∈ N,ΛT > 0 and ΛT ≥ ΛT .

T∑
t=1

λt√
Λt

≤ 2

√
ΛT . (91)

We get the following corollary

Lemma 25 Let R′
oracle(T, δ

′) = 2L2Roracle(T )+16L2D2
K ln 2T 2

δ′ . Under the conditions of Lemma

23, assume that there is γ0 > 0 such that ∀t ∈ JT K, γt = γ0
√

t
R′

oracle(t,δ
′) . Then, for every δ′ > 0,

Algorithm 4 satisfies, w.p. at least 1− δ′:

T∑
t=1

γtEa∼At

[(
µ̂⊺
t
a− µ⊺

t
a
)2] ≤ 2γ0

√
TR′

oracle(T, δ
′). (92)
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Proof. Using γt ≤ γ0
√

T
R′

oracle(t,δ
′) , the sum on the left hand side of (92) has the form of Lemma 24

multiplied by γ0
√
T , with probability 1− δ′ by Lemma 23. The result thus follows from applying

both Lemmas.

H.2 FINAL RESULT

Proof of Theorem 20. Notice that the value of γt given in the theorem is equal to

γt = 2

√
2tK

R′
oracle(t, δ

′/2)
. (93)

Using this formula, we have
T∑

t=1

2K

γt
=

√
K

2

T∑
t=1

√
R′

oracle(t, δ
′/2)

t
≤

√
R′

oracle(T, δ
′/2)K

2

T∑
t=1

1√
t

(94)

≤
√
2KTR′

oracle(T, δ
′/2). (95)

Where the first line comes from the monotonicity of Roracle(T ) of Assumption G.

Using Lemmas 22 and 25, we thus have, with probability 1− δ′/2:

T∑
t=1

Ea∼At

[
µ∗
t
− µ⊺

t
a
]
≤ 2

√
2KTR′

oracle(T, δ
′/2). (96)

Using a union bound and Lemma 21, we obtain, with probability at least 1− δ′:
T∑

t=1

(
µ∗
t
− g⊺t rt

)
≤ 2

√
2KTR′

oracle(T, δ
′/2) + LDK

√
2T ln

2

δ′
. (97)

I FW-LINUCBRANK: CBCR FOR FAIR RANKING WITH LINEAR CONTEXTUAL
BANDITS

Algorithm 5: FW-linUCBRank: linear contextual bandits for fair ranking.

input :δ′ > 0, λ > 0, ŝ0 ∈ K V0 = λId, y0 = 0d, θ̂0 = 0d

1 for t = 1, . . . do
2 Observe context xt ∼ P

3 ∀i, v̂t,i ← θ̂⊺t−1xt,i + αt

(
δ′

3

)
∥xt,i∥V −1

t−1
// UCB on vi(xt), see Lem. 26 for def. of αt

4 at ← top-k{ ∂ft−1

∂zm+1
(ŝt−1)v̂t,i +

∂ft−1

∂zi
(ŝt−1)}mi=1 // FW linear optimization step

5 Observe exposed items et ∈ {0, 1}m and user feedback ct ∈ {0, 1}m
6 Update ŝt ← ŝt−1 +

1
t (rt − ŝt−1)

7 Vt ← Vt−1 +

m∑
i=1

et,ixt,ix
⊺
t,i, yt ← yt−1 +

m∑
i=1

ct,ixt,i and θ̂t ← V −1
t yt // regression

8 end

In this section and following the previous sections, we analyze Algorithm 5 under Assumption E,
which is more general than the bound proposed in the main paper, which used Algorithm 1 under
Assumption B. The only difference in the algorithms is the use of ft−1 instead of f in Line 4 of
Algorithm 5. This allows us to provide the algorithm for both smooth and non-smooth objective
functions f .

The bound is decomposed into two parts: we describe the results for online regression within our
observation model for ranking in the next subsection. Then we dive into the final result.
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I.1 RESULTS FOR ONLINE LINEAR REGRESSION (FROM (LI ET AL., 2016))

Even though our linear contextual bandit setup is different from e.g., (Lagrée et al., 2016) for ranking,
the availability of the feedback et,i, which tells us whether item i has been exposed, makes the
analysis of the online linear regression similar to the general setup of linear bandits. Our approach
builds on the confidence intervals developed by Li et al. (2016), which expands the analysis of
confidence ellipsoids for linear regression of Abbasi-Yadkori et al. (2011) to cascade user models in
rankings.

Each ct,i is 1
2 -subgaussian (because Bernoulli), and is conditionally independent of the other random

variables conditioned and on et,i and xt,i. The incremental linear regression of line 7 of Algorithm 5
is the same as (Abbasi-Yadkori et al., 2011). Our observation model satisfies the conditions of the
analysis of confidence ellipsoids of Li et al. (2016), from which we obtain:

Lemma 26 Under the probabilistic model described in Section 4, and under Assumption C. Let
δ′ > 0 and λ ≥ D2

Xk, and let

αT (δ
′) =

1

2

√
ln

(
det(VT )

V0δ′2

)
+
√
λDθ. (98)

Then, under Assumption C and with the notation of Algorithm 5, we have:
• ((Li et al., 2016, Lemma 4.2)) with probability ≥ 1 − δ′, for all T ≥ 0, θ lies in the confidence

ellipsoid:

CT = {θ̃ ∈ Rd : ∥θ̂T − θ̃∥VT
≤ αT (δ

′)} (99)

• ((Li et al., 2016, Lemma 4.4)):

αT (δ
′) ≤ 1

2

√
2 ln

(
1

δ′

)
+ d ln

(
1 +

TD2
Xk

λd

)
+
√
λDθ. (100)

These results stem from (Li et al., 2016, Lemma A.4 and A.5) that claim that, with the assumptions
of Lemma 26, the following inequality holds with probability 1:

T∑
t=1

m∑
i=1

∥xt,i∥2V −1
t−1

et,i ≤ 2 ln
detVT

det(V0)
≤ 2d ln

(
1 +

TD2
Xk

λd

)
. (101)

Notice that terms equivalent to DX and Dθ do not appear in (Li et al., 2016) because they assume
they are ≤ 1. The D2

X term comes from a modification necessary in (Li et al., 2016, Lemma A.4)
while Dθ is required by the initial confidence bound proved by Abbasi-Yadkori et al. (2011). The
term k plays the constant Cγ of (Li et al., 2016).

I.2 GUARANTEES FOR FW-LINUCB

We start by writing an alternative to Assumption D for the case where f is not smooth to carry out
our analysis with as little assumptions on f as possible:

Assumption D′ The assumptions of the framework of Sec. 4 hold, as well as Ass. E. Moreover,
∀t ∈ N,∀z ∈ K ∂ft

∂zm+1
(z) > 0, and ∀x ∈ X , 1 ≥ b1(x) ≥ . . . ≥ bk(x) = . . . = bm(x) = 0.

Lemma 27 Under Assumptions D′ and C Let T > 0, δ′ > 0 and λ ≥ D2
Xk. Then for every δ′ > 0,

Algorithm 5 satisfies, with probability at least 1− δ′:

Rgen
T ≤ 2LαT (δ

′/3)
√
Tk

√
2 ln(

3

δ′
) +

√
2d ln

(
1 +

TD2
Xk

λd

)+ LDK

√
2T ln

3

δ′
.

where αT is defined in Lemma 26.
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Proof. Let gt = ∇ft−1(ŝt−1), and a∗t ∈ argmaxa∈A⟨gt |µ(xt)a − rt⟩. Let furthermore δ′ > 0.
Assume the algorithm uses αt(δ

′/3), so that Ct = {θ̃ ∈ Rd : ∥θ̂t − θ̃∥Vt
≤ αt(δ

′/3)}.
Let us define µ̂t similarly to Proposition 4, i.e., ∀t ∈ N∗, µ̂t such that ∀i ∈ JmK, µ̂t,i = µi(xt) and
µ̂t,m+1 = v̂tb(xt)

⊺ viewed as a column vector, with v̂ defined in line 3 of Algorithm 5. We have:

T∑
t=1

max
a∈A
⟨gt |µ(xt)a− rt⟩ =

T∑
t=1

⟨gt |µ(xt)a
∗
t − µ̂tat⟩︸ ︷︷ ︸

:=At

+

T∑
t=1

⟨gt | µ̂tat − µ(xt)at⟩︸ ︷︷ ︸
:=Bt

+

T∑
t=1

⟨gt |µ(xt)at − rt⟩︸ ︷︷ ︸
:=Xt

Step 1: Upper bound on
∑T

t=1 At via optimism Let t ≥ 0. For θ̃ ∈ Rd, denote µθ̃(x) ∈ RD×K

(recall D = m+1), the average reward function where parameters θ̃ replace θ. We first show that for
every a ∈ A, we have maxθ̃∈Ct

⟨gt |µθ̃(xt)a⟩ ≤ ⟨gt | v̂ta⟩, where v̂t is given in Line 3 of Algorithm
5.

Given a ∈ A, let us denote by mat(a) the view of a as an m×m permutation matrix (instead of an
m2-dimensional column vector). Recalling that xt is a m× d matrix and gt ∈ Rm+1, let us denote
by gt,1:m the vector containing the first m dimensions of gt. We have:

⟨gt |µθ̃(xt)a⟩ = g⊺t,1:mmat(a)b(xt) + gt,m+1θ̃
⊺x⊺

tmat(a)b(xt), (102)

therefore:

max
θ̃∈Ct

⟨gt |µθ̃(xt)a⟩ = g⊺t,1:mmat(a)b(xt) + gt,m+1 max
θ̃∈CT

(
gt,m+1θ̃

⊺x⊺
tmat(a)b(xt)

)
(103)

≤ g⊺t,1:mmat(a)b(xt) + gt,m+1v̂
⊺
t mat(a)b(xt) = ⟨gt | µ̂ta⟩. (104)

The first equality is because gt,m+1 ≥ 0. The second equality is deduced by direct calculation from
the definition of Ct in Lemma 26, which gives v̂t,i = maxθ̃∈Ct

θ̃⊺xt,i.

By Proposition 4 we have that at defined at Line 4 of Algorithm 5 maximizes ⟨gt | µ̂ta⟩ over a. We
thus have maxa∈A maxθ̃∈Ct

⟨gt |µθ̃(xt)a⟩ ≤ ⟨gt | µ̂tat⟩.

By Lemma 26, we have θ ∈ Ct for all t ≥ 0 with probability 1− δ′/3. Therefore, with probability
1 − δ′/3, we have for all t ≥ 0: ⟨gt |µθ(xt)a

∗
t ⟩ ≤ ⟨gt | µ̂tat⟩. Noting that µθ(xt) = µ(xt) by

definition of θ, we obtain that ∀t, At ≤ 0 and thus
∑T

t=1 At ≤ 0 with probability 1− δ′/3.

Step 2: Upper bound on
∑T

t=1 Bt using linear bandit techniques Let at,i ∈ Rm denote the i-th
row of mat(at), which contains only 0s except a 1 at the rank of item i in a. Since µ̂t and µ(xt) only
differ in the last dimension, which is the user utility, we have, using (102):

Bt = gt,m+1

(
(v̂t − v(xt))

⊺mat(at)b(xt)
)
= gt,m+1

m∑
i=1

(
v̂t,i − vi(xt)

)
a⊺t,ib(xt) (105)

Denoting et,i = a⊺t,ib(xt) ∈ R the expected exposure of item i in ranking at given context xt, we
have:

Bt = gt,m+1︸ ︷︷ ︸
∈[0,L]

m∑
i=1

(
v̂t,i − vi(xt)

)
et,i ≤ L

m∑
i=1

(
(θ̂t−1 − θ)⊺xt,i + αt(δ

′/3)∥xt,i∥V −1
t−1

)
et,i (106)

≤ L

m∑
i=1

(
∥θ̂t−1 − θ∥Vt−1

∥xt,i∥V −1
t−1

+ αt(δ
′/3)∥xt,i∥V −1

t−1

)
et,i (by Cauchy-Schwarz)
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By Lemma 26, we have, with probability 1− δ′/3: ∥θ̂t−1 − θ∥Vt−1
≤ αt(δ

′/3), and thus:

Bt ≤ 2Lαt

(δ′
3

) m∑
i=1

∥xt,i∥V −1
t−1

et,i (107)

= 2Lαt

(δ′
3

)(( m∑
i=1

∥xt,i∥V −1
t−1

(et,i − et,i)
)

︸ ︷︷ ︸
X′

t

+
( m∑

i=1

∥xt,i∥V −1
t−1

et,i

))
(108)

We first deal with the sum over t of the right-hand side, using et,i ∈ {0, 1}:
T∑

t=1

m∑
i=1

∥xt,i∥V −1
t−1

et,i =

T∑
t=1

m∑
i=1

(∥xt,i∥V −1
t−1

et,i)× et,i (109)

≤

√√√√ T∑
t=1

m∑
i=1

e2t,i

√√√√ T∑
t=1

m∑
i=1

(∥xt,i∥2V −1
t−1

e2t,i) (by Cauchy-Schwarz)

≤
√

Tk

√
d ln

(
1 +

TD2
Xk

λd

)
. (by 101)

For the left-hand term, we have that
(∑T

t=1 X
′
t

)
T∈N∗

is a martingale adapted to the filtration
F = (FT )T∈N∗ where FT is the σ-algebra generated by (x1, a1, r1, . . . , xT−1, aT−1, rT−1, xT , aT ),
with

∣∣X ′
t

∣∣ ≤ DXk√
λ

. Thus, with probability at least 1− δ′/3, we have

T∑
t=1

m∑
i=1

m∑
i=1

∥xt,i∥V −1
t−1

(et,i − et,i) ≤
DXk√

λ

√
2T ln

3

δ′
≤

√
2Tk ln

3

δ′
. (110)

Where the last inequality comes from the assumption λ ≥ D2
Xk. We conclude this step by saying

that with probability 1− 2δ′/3, we have:

T∑
t=1

Bt ≤ 2Lαt

(δ′
3

)√
Tk

(√
2 ln

3

δ′
+

√
d ln

(
1 +

TD2
Xk

λd

))
. (111)

Step 3: Upper bound on
∑T

t=1 Xt using Azuma’s inequality Following the same arguments as
in the proof of Thm. 19, let F =

(
Ft

)
t∈N∗

be the filtration where Ft is the σ-algebra generated by
(x1, a1, r1, . . . , xt−1, at−1, rt−1, xt, at). Then (Xt)t∈N is a martingale difference sequence adapted

to F with |Xt| ≤ LDK, so that
∑T

t=1 Xt ≤ L
√

2Tk ln 3
δ′ with probability 1− δ′/3.

The final result is obtained using a union bound, considering that Step 1 and Step 2 use the same
confidence interval given by Lemma 26 which is valid w.p. ≥ 1 − δ′/3, Step 2 uses an addition
Azuma inequality valid w.p. 1− δ′/3, and step 3 uses an additional Azuma inequality which valid
with probability ≥ 1− δ′/3.

Theorem 5 Under Assumptions B, C and D, for every δ′ > 0, every T ∈ N∗, every λ ≥ D2
Xk, with

probability at least 1− δ′, Algorithm 1 has scalar regret bounded by

Rscal
T = O

(
L
√
Tk

√
d ln(T/δ′)

(√
d ln(T/δ′) +Dθ

√
λ+

√
k/d

))
. (13)

Thus, considering only d, T, k and δ = δ′ Alg. 1 has regret RT ≤ O
(dk ln(T/δ)√

T

)
w.p. at least 1− δ.

Proof. Let δ > 0 and use δ′ := 3δ/4 and δ := δ/4 in the bound on RT obtained by applying Lemma
27 and Theorem 11. Notice that Using λ ≥ D2

Xk and DK = O(k), we have:

R
scal

(T, 3δ/4) = O

(
LαT (δ)

√
Tkd ln(T/δ) + Lk

√
T ln(1/δ)

)
(112)
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and αT (δ) = O
(√

d ln(T/δ) +Dθ

√
λ
)

.

We thus get

R
scal

(T, δ) = O

(
L
√

Tk
√

d ln(T/δ)
(√

d ln(T/δ) +Dθ

√
λ
)
+ Lk

√
T ln(1/δ)

)
(113)

= O

(
L
√
Tk

√
d ln(T/δ)

(√
d ln(T/δ) +Dθ

√
λ+

√
k/d

))
(114)

For the smooth case, the total bound adds O(Lk
√

T ln(1/δ) + C̃ lnT
T ). A bound on the complete

regret is thus

RT = O

(
L
√
Tk

√
d ln(T/δ)

(√
d ln(T/δ) +Dθ

√
λ+

√
k/d+ C̃

lnT

T

)
(115)

J ADDITIONAL TECHNICAL LEMMAS

J.1 PROOF OF LEMMA 7 (S IS COMPACT)

Lemma 7 Under Assumption Ã, S is compact and ∀T ∈ N∗, ∀x1:T ∈ X T ,S(x1:T ) is compact.

Proof. We start with S(x1:T ). Let x1:T ∈ X T . We notice that S(x1:T ) is the image of AT
by the

continuous mapping ϕ : (RK)T → RD defined by ϕ(a1, ..., aT ) = 1
T

∑T
t=1 µ(xt)at. Since A is

compact,AT
is compact as well. S(x1:T ) is thus the image of a compact set by a continuous function,

and is therefore compact.

For the set S, we provide a proof here using Diestel’s theorem (see (Yannelis, 1991)). Consider the
set-valued map defined by G : X → {B | B ⊆ RD}

G(x) := µ(x)A := {µ(x)a | a ∈ A}. (116)

Then, S can be written as the Aumann integral of G over X w.r.t P , i.e.

S =

∫
X
GdP :=

{∫
X
g dP

∣∣∣ g ∈ G} , (117)

where G ⊆ L1(X , P ) is the collection of all P -integrable selections of G, i.e. the collection of all
P -integrable functions g : X → R such that g(x) ∈ G(x) for P -a.e x ∈ X .

Now, sinceA is compact, convex and nonempty, the values of the set-valued function G are nonempty,
convex, and compact. Moreover, since supx∈X ,a∈A∥µ(x)a∥2 < +∞ because ∀x, a, µ(x)a ∈ K, the
set-valued function G is P -integrably bounded in the sense of (Yannelis, 1991, Section 2.2). It then
follows from Diestel’s Theorem (Yannelis, 1991, Theorem 3.1) that the collection G of P -integrable
selections of G is weakly compact in L1(X , P ). Finally, since g 7→

∫
X g dP is a weakly continuous

mapping from L1(X , P ) to RD, and S ⊆ RD is the image of G under this mapping (refer to the
correspondence (117)), we deduce that S is weakly compact as a subset of RD, and therefore compact
since RD is finite-dimensional.

J.2 PROOF OF LEMMA 24

Lemma 24 Let (λt)t∈N ∈ RT
+ be a sequence of non-negative numbers, denote ΛT =

∑T
t=1 λt and

let (ΛT )T∈N such that ∀T ∈ N,ΛT > 0 and ΛT ≥ ΛT .

T∑
t=1

λt√
Λt

≤ 2

√
ΛT . (91)
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Proof. First, we treat the case where λ0 > 0. Then ∀t ∈ JT K,Λt > 0. We thus have

T∑
t=1

λt√
Λt

≤
T∑

t=1

λt√
Λt

(118)

We now prove that the right-hand term is ≤
√
ΛT . Let us observe that, for every α ≥ 0, β > α:

1

2

α√
β
≤

√
β −

√
β − α, (119)

which is proved using
√
β −
√
β − α =

∫ β

β−α
1

2
√
s
ds ≥ α 1

2
√
β

. Using the telescoping sum (with
Λ0 = 0):

T∑
t=1

λt√
Λt

≤ 2

T∑
t=1

(√
Λt −

√
Λt − λt︸ ︷︷ ︸
=Λt−1

)
= 2

√
ΛT ≤ 2

√
ΛT , (120)

we obtain the desired result.

More generally, if λ0 = 0, there are two cases:
1. if ∀T ∈ JT K, λt = 0 then the result is true;
2. otherwise, let T0 = min{t ∈ JT K : λt > 0}. Using the result above, we have:

T∑
t=1

λt√
Λt

=

T∑
t=T0

λt√
Λt

≤ 2

√
ΛT . (121)
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