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Abstract

Generating fluent natural language responses
from structured semantic representations is
a critical step in task-oriented conversational
systems. Avenues like the E2E NLG Chal-
lenge have encouraged the development of
neural approaches, particularly sequence-to-
sequence (Seq2Seq) models for this problem.
The semantic representations used, however,
are often underspecified, which places a higher
burden on the generation model for sentence
planning, and also limits the extent to which
generated responses can be controlled in a
live system. In this paper, we (1) propose
using tree-structured semantic representations,
like those used in traditional rule-based NLG
systems, for better discourse-level structuring
and sentence-level planning; (2) introduce a
challenging dataset using this representation
for the weather domain; (3) introduce a con-
strained decoding approach for Seq2Seq mod-
els that leverages this representation to im-
prove semantic correctness; and (4) demon-
strate promising results on our dataset and the
E2E dataset.

1 Introduction

Generating fluent natural language responses from
structured semantic representations is a critical
step in task-oriented conversational systems. With
their end-to-end trainability, neural approaches
to natural language generation (NNLG), partic-
ularly sequence-to-sequence (Seq2Seq) models,
have been promoted with great fanfare in recent
years (Wen et al., 2015, 2016; Mei et al., 2016;
Kiddon et al., 2016; Dušek and Jurcicek, 2016),
and avenues like the recent E2E NLG challenge
(Dušek et al., 2018, 2019) have made available
large datasets to promote the development of these
models. Nevertheless, current NNLG models
arguably remain inadequate for most real-world
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task-oriented dialogue systems, given their inabil-
ity to (i) reliably perform common sentence plan-
ning and discourse structuring operations (Reed
et al., 2018), (ii) generalize to complex inputs
(Wiseman et al., 2017), and (3) avoid generating
texts with semantic errors including hallucinated
content (Dušek et al., 2018, 2019).1

In this paper, we explore the extent to which
these issues can be addressed by incorporating
lessons from pre-neural NLG systems into a neu-
ral framework. We begin by arguing in favor
of enriching the input to neural generators to in-
clude discourse relations — long taken to be cen-
tral in traditional NLG — and underscore the im-
portance of exerting control over these relations
when generating text, particularly when using user
models to structure responses. In a closely re-
lated work, Reed et al. (2018), the authors add
control tokens (to indicate contrast and sentence
structure) to a flat input MR, and show that these
can be effectively used to control structure. How-
ever, their methods are only able to control the
presence or absence of these relations, without
more fine-grained control over their structure. We
thus go beyond their approach and propose using
full tree structures as inputs, and generating tree-
structured outputs as well. This allows us to define
a novel method of constrained decoding for stan-
dard sequence-to-sequence models for generation,
which helps ensure that the generated text contains
all and only the specified content, as in classic ap-
proaches to surface realization.

On the E2E dataset, our experiments demon-
strate much better control over CONTRAST rela-
tions than using Reed et al.’s method, and also
show improved diversity and expressiveness over
standard baselines. We also release a new dataset
of responses in the weather domain, which in-
cludes the JUSTIFY, JOIN and CONTRAST rela-

1Also see https://ehudreiter.com/2018/11/
12/hallucination-in-neural-nlg/.
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Reference 1 JJ’s Pub is not family friendly, but has a
high customer rating of 5 out of 5. It is a
restaurant near the Crowne Plaza Hotel.

Reference 2 JJ’s Pub is not a family friendly restau-
rant. It has a high customer rating of
5 out of 5. You can find it near the
Crowne Plaza Hotel.

E2E MR name[JJ’s Pub] rating[5 out of 5]
familyFriendly[no] eatType[restaurant]
near[Crowne Plaza Hotel]

Our MR for
Reference 1

CONTRAST [
INFORM [ name[JJ’s Pub]

familyFriendly[no] ]
INFORM [ rating[5 out of 5] ] ]

INFORM [
eatType[restaurant]
near[Crowne Plaza Hotel] ]

Table 1: Sample reference responses, their correspond-
ing meaning representation in the E2E dataset, and its
MR according to our proposed ontology.

tions, and where discourse-level structures come
into play. On both E2E and weather datasets, we
show that constrained decoding over our enriched
inputs results in higher semantic correctness as
well as better generalizability and data efficiency.

The rest of this paper is organized as follows:
Section 2 describes the motivation for using com-
positional inputs organized around discourse re-
lations. Section 3 explains our data collection
approach and dataset.2 Section 4 shows how
to incorporate compositional inputs into NNLG
and describes our constrained decoding algorithm.
Section 5 presents our experimental setup and re-
sults.

2 Towards More Expressive Meaning
Representations

2.1 Limitations of Flat MRs

In the E2E dataset, meaning representations
(MRs) are a flat list of key-value pairs, where each
key is a slot name that needs to be mentioned,
and the value is the value of that slot (see Ta-
ble 1). In Wen et al. (2015), MRs have a simi-
lar structure, and additionally contain information
about the dialog act that needs to be conveyed
(REQUEST, INFORM, etc.). These MRs are suf-
ficient to capture basic semantic information, but
fail to capture rhetorical (or discourse) relations,
like CONTRAST, that have long been taken to be
central to generating coherent discourse in tradi-

2The datasets and implementations can be found
at https://github.com/facebookresearch/
TreeNLG.

tional NLG (Mann and Thompson, 1988; Moore
and Paris, 1993; Reiter and Dale, 2000; Stent et al.,
2002). The two references in Table 1 illustrate
this problem with the expressiveness of such flat
MRs. Critical discourse information, like whether
two attributes should be contrasted (or whether to
justify a recommendation, etc.), is not captured
by the MR. This poses a dual challenge: First,
since the MR does not specify these discourse re-
lations, crowdworkers creating the dataset in turn
have no instructions on when to use them, and
must thus use their own judgment in creating a
natural-sounding response. While the E2E orga-
nizers tout the resulting response variations as a
plus, Reed et al. (2018) find that current neural
systems are unable to learn to express discourse
relations effectively with this dataset, and explore
ways of enriching input MRs to do so. Indeed,
now that the E2E system outputs have been re-
leased, a search through outputs from all partici-
pating systems reveals only 43 outputs (0.4% out
of 10080) containing contrastive tokens, on a test
set containing about 300 contrastive samples.3

Second, going beyond Reed et al., we argue
that the controllability of these relations through
MRs is desirable in live conversational systems,
where external knowledge like user models may
inform decisions around contrast, grouping, or jus-
tifications. While several studies have shown that
controlling such discourse behaviors can be criti-
cal to user perceptions of quality and naturalness
(Lemon et al., 2004; Carenini and Moore, 2006;
Walker et al., 2007; White et al., 2010; Demberg
et al., 2011), flat MRs provide no means to do so.
This leaves it to the neural model to learn gen-
eral trends in the data, such as contrasting a good
attribute like a 5-star rating with a typically dis-
preferred attribute like not being family friendly
or serving English food. However, sometimes
people are interested in adult-oriented establish-
ments, and some people may even like English
food; for users with these preferences, text gen-
erated according to general trends will be incoher-
ent. For example, for a user known to be seek-
ing an adult-oriented locale, Ref. 1 in Table 1
would be incoherent, and less preferable than a

3An additional 86 outputs contained these tokens, but
were generated by the TR2 template-based system (Smiley
et al., 2018). The expected number of contrastive system out-
puts would be 4,200 if each of the 14 participating systems
produced contrastive tokens consistently with the data distri-
bution.

https://github.com/facebookresearch/TreeNLG
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non-contrastive alternative such as JJ’s Pub is a
highly-rated restaurant for adults near the Crowne
Plaza Hotel.

2.2 Tree-Structured MRs

In order to overcome these challenges, we propose
the use of structured meaning representations like
those explored widely in (hybrid) rule-based NLG
systems (Rambow et al., 2001; Reiter and Dale,
2000; Walker et al., 2007). Our representation
consists of three parts:

1. Argument can be any entity or slot men-
tioned in a response, like the name of a
restaurant or the date. Some arguments can
be complex and contain sub-arguments (e.g.
a date time argument has subfields like
week day and month).

2. Dialog act is an atomic unit that could corre-
spond linguistically to a single clause. A di-
alog act can contain one or more arguments
that need to be expressed. Examples: IN-
FORM, YES, RECOMMEND.

3. Discourse relation defines the relationships
between dialog acts. A single discourse rela-
tion may contain multiple other dialog or dis-
course relations, allowing for potentially ar-
bitrary degrees of nesting. Examples: JOIN,
JUSTIFY, CONTRAST.

A meaning representation that uses this formu-
lation can consist of an arbitrary number and com-
bination of discourse relations and dialog acts, re-
sulting in a nested tree-structured MR with much
higher expressiveness and specificity. Table 1,
seen earlier, shows an example of an MR struc-
tured in this way, as well as the corresponding
“flat” MR and its reference in the E2E dataset.

In addition to improved expressiveness, this
representation results in more atomic definitions
of dialog acts and arguments than in flat MRs.
For example, consider the example in the weather
domain from Table 2: The response contains
multiple dialog acts, a contrast and several in-
stances of ellipsis and grouping (i.e., temperatures
are grouped and mentioned separately from wind
condition). Additionally, some arguments, like
date time, occur multiple times in the response
and correspond to different dialog acts, with sev-
eral different values. A flat MR will struggle to
represent 1) the correspondence of arguments to
dialog acts; 2) what attributes to group and con-
trast and 3) semantic equivalence of arguments

like date time1 and date time2. On the
other hand, our MRs ease discourse-level learning
and encourage reuse of arguments across multiple
dialog acts.

3 Dataset

With this representation in mind, we created an
ontology of dialog acts, discourse relations, and
arguments, for the weather domain. Our motiva-
tion for choosing the weather domain, as explored
in (Liang et al., 2009), is that this domain offers
significant complexity for NLG. Weather forecast
summaries in particular can be very long, and re-
quire reasoning over several disjoint pieces of in-
formation. In this work, we focused on collecting
a dataset that showcases the complexity of weather
summaries over date/time ranges. Our weather
dataset is also unique in that it was collected in
a conversational setup (see below).

We collected our dataset in multiple stages:
1. Query collection. We asked crowdworkers

to come up with sample queries in the weather do-
main, like What’s the weather like tomorrow? and
Do I need an umbrella tonight?

2. Query annotation. We then wrote rules to
automatically parse these queries, and extract key
pieces of information, like the location, date, and
any attributes that the user specifically requested
in the question.

3. MR generation. Our goal was to create
MRs that are sufficiently expressive and straight-
forward to create automatically in a practical sys-
tem. In the weather domain, it’s conceivable that
the NLG system has access to a weather API that
provides it with detailed weather forecasts for the
range requested by the user. To mimic this set-
ting, we generated artificial weather forecasts for
every user query based on the arguments (full ar-
gument set in Table 3) in the user query. We
then created the tree-structured MR by applying a
few different types of automatic rules, like adding
CONTRAST to weather conditions that are in op-
position. We add more details of our response gen-
eration method and the specific rules for MR cre-
ation in Appendix A and B.

4. Response generation and annotation. We
presented these tree-structured MRs to trained an-
notators, and asked them to write responses that
expressed the MRs. They were also given the user
query and asked to make their responses natural
given the query. They were allowed to elide in-



Reference It’ll be sunny throughout this weekend. The high will be in the 60s, but expect temperatures to drop as low as 43
degrees by Sunday evening. There’s also a chance of strong winds on Saturday morning.

Flat MR condition1[sunny] date time1[this weekend] avg high1[60s] low2[43]
date time2[Sunday evening] chance3[likely] wind summary3[strong]
date time3[Saturday morning]

Our MR

INFORM [ condition[sunny], date time range[ colloquial[this weekend ] ] ]
CONTRAST [

INFORM [ avg high[60s] date time[ [colloquial this weekend ] ] ]
INFORM [ low[43] date time[ week day[Sunday] colloquial[evening] ] ]

]
INFORM [ chance[likely], wind summary[heavy], date time[ week day[Saturday]
colloquial[morning] ] ]

Table 2: Sample flat MR with reference compared against our proposed tree-structured MR. Nodes in blue are all
children of the root node of the tree.

Dialog Acts INFORM, RECOMMEND, YES, NO, ERROR
Discourse Relations JOIN, CONTRAST, JUSTIFY

Arguments

date time*, date time range*, location*
attire[n], activity[n], condition[n], humidity[n]

precip amount, precip amount unit, precip chance
precip chance summary, precip type, sunrise time,
temp, temp high[s], temp low[s], temp unit
wind speed[n], wind speed unit, sunset time, task
bad arg, bad value, error reason

Table 3: Ontology for the weather domain dataset that
we collected. Arguments marked with * are nested
arguments (see Table 4). [n] indicates arguments that
have a corresponding not argument; [s] indicates ar-
guments that have a corresponding summary.

formation when arguments were repeated across
dialog acts, and could choose the most appropri-
ate surface forms for any arguments based on con-
textual clues (e.g. referring to a date as tomor-
row, rather than April 24th, depending on the user’s
date). Finally, we asked them to label response
spans corresponding to each argument, dialog act,
and discourse relation in the MR.

5. Quality evaluation. Finally, we presented
a different group of annotators with the annotated
responses, and asked them to provide evaluations
of fluency, correctness, naturalness, and annota-
tion correctness.

3.1 Dataset statistics

Our final dataset has 33,493 examples. Each ex-
ample comprises a user query, the synthetic user
context (datetime and location), the tree-structured
MR, the response, and a complete tree-structured
annotation of the response. Table 6 contains an
example from our dataset; as shown, the response
annotation structure closely mirrors that of the MR
itself. The MRs and responses in the dataset range
from very simple (a single dialog act) to very com-
plex (an MR with a depth and width of 4). A dis-
tribution of this complexity is shown in Table 5.
The vocabulary size is 1485, and the max/aver-
age/min lengths of responses are 151/40.6/8. The
dataset also poses several challenges in addition to

Argument Subfields
date time year, month, day, weekday, colloquial

date time range start year, start month, start day, start weekday
end year, end month, end day, end weekday, colloquial

location city, region, country, colloquial

Table 4: Defined subfields for nested arguments.
Frequency 0 1 2 3 4 5
# Dialog Acts 0 6469 12077 9801 4095 685
# Discourse Rels 18137 12494 2393 103 1 0

Table 5: Frequency distribution of number of dialog
acts and discourse relations in the weather dataset.

syntactic and semantic complexity. As mentioned
before, it has a rich set of referring expressions
for dates and date ranges. It also contains user
queries on which the written response was based,
thus creating the opportunity for studies on im-
proving naturalness or relevance with respect to
the user query. These could be useful in partic-
ular for learning to express recommendations and
justifications, as well as YES and NO dialog acts.

Our final training set contains 25,390 examples,
with 11,879 unique MRs. (We consider two MRs
to be identical if they have the same delexicalized
tree structure — see Section 4.1.) The test set con-
tains 3,121 examples, of which 1.1K (35%) have
unique MRs that have never been seen in the train-
ing set.

3.2 Enriched E2E Dataset
We also used heuristic techniques to convert the
E2E dataset to use tree-structured MRs. We used
the output of Juraska et al.’s (2018) tagger to find
a character within each slot in the flat MR, and au-
tomatically adjusted these to correspond to a token
boundary if they didn’t already. We then used the
Viterbi segmentations from the model released by
Wiseman et al. (2018) to get spans corresponding
to each argument. Finally, we used the Berkeley
neural parser (Kitaev and Klein, 2018) to identify
spans coordinated by but, and added CONTRAST

relations as parents of the coordinated arguments.
We added JOIN based on sentence boundaries. An
interesting direction for future research would be



Query Context MR Response
When will
it snow
next?

Reference
date: 29th
September
2018

[CONTRAST

Parker is not expecting any
snow, but today there’s a very
likely chance of heavy rain
showers, and it’ll be partly
cloudy

[INFORM 1
[LOCATION [CITY Parker] ] [CONDITION NOT snow ]
[DATE TIME [DAY 29] [MONTH September] [YEAR 2018] ]

]
[INFORM 2

[DATE TIME [DAY 29] [MONTH September] [YEAR 2018] ]
[LOCATION [CITY Parker] ]
[CONDITION heavy rain showers] [CLOUD COVERAGE partly cloudy]

]
]

Annotated Response
[CONTRAST [INFORM 1 [LOCATION [CITY Parker ] ] is not expecting any [CONDITION NOT snow] ], but [IN-
FORM 2 [DATE TIME [COLLOQUIAL today] ] there’s a [PRECIP CHANCE SUMMARY very likely chance] of
[CONDITION heavy rain showers] and it’ll be [CLOUD COVERAGE partly cloudy ] ] ]

Table 6: Example response, MR, and other metadata from our dataset

to extend Wiseman et al.’s methods to induce tree
structures directly. In the final dataset we obtained
(~51K examples), ~24K examples (47%) contain
JOIN, while 2237 (4.3%) contain CONTRAST.

4 Model

4.1 Seq2Seq with Linearized Trees

In this work, we use a standard Seq2Seq model
with attention (Sutskever et al., 2014; Bahdanau
et al., 2014), implemented in the fairseq-py
repository (Gehring et al., 2017). The encoder
and decoder are both Long Short-Term Mem-
ory (LSTM) -based (Hochreiter and Schmidhuber,
1997) and the decoder uses beam search for gen-
eration. The input to the model is a linearized rep-
resentation of the tree-structured MR, and the out-
put is a linearized tree-structured representation of
the annotated response (see Table 6). This means
that in addition to predicting tokens for the sur-
face realization of the response, the model must
also predict non-terminals (dialog/discourse rela-
tions and arguments) to indicate the start or end
of each span. One advantage of predicting a tree
structure is that the model has supervision on the
alignment between the MR and the response. Ad-
ditionally, this predicted tree structure can be used
to help verify the correctness of the predicted re-
sponse; we leverage this for our constrained de-
coding approach described next. We also delexi-
calized tokens in the response that correspond to
sparse entities, like names in the E2E dataset and
temperatures in the weather dataset (see Appendix
D).

4.2 Constrained Decoding

As described above, the output structure predicted
by the model forms a tree that should correspond
neatly to the input MR, barring some instances
of ellipses (as with the date time argument in

Figure 1: Examples of constraint checking. (1) and
(2) are valid outputs. (3) fails to meet tree constraints
since the CONTRAST node is not present and the IN-
FORM node has illegal children customerrating
and pricerange.

Table 6).4 Thus, the input MR can be seen as a
constraint on the semantic correctness of the pre-
diction; if the predicted structure doesn’t match
the MR, the prediction is incorrect and can be re-
jected. Figure 1 illustrates such ideas.

Our beam search algorithm works as follows.5

First, the input tree is scanned to identify groups
of two or more nodes that have the same value,
so that ellipsis can be enabled by optionally al-
lowing just one node in each group. Then, as
the tree structure is incrementally decoded, non-
terminals are checked against the input tree for
validity. When an opening bracket token (e.g.,
[name) is generated, it is not accepted if it isn’t a
child of the current parent node in the input tree, or
has already been generated in the current subtree,
thereby preventing repetition and hallucination of
arguments or acts. When a closing bracket token
] or an end-of-sentence (EOS) token is generated,
it is accepted only if all children of the current
parent are covered either directly or through ellip-
sis, thus ensuring that all children of every node
are generated. After each timestep of the beam

4A top-level JOIN is automatically added when necessary
to create a single-rooted structure.

5Pseudocode is given in the supplementary material.



search, the scores of candidates that violate tree
constraints are masked so that they do not proceed
forward. By removing candidates that violate the
constraints early in the beam search, we allow the
decoder to explore more hypotheses.

Checking these constraints and tracking cover-
age requires an alignment between the output and
input MRs. While the children of JOIN nodes are
required to appear in order, child nodes of other
discourse relations and dialogue acts can appear in
any order, and thus the corresponding input non-
terminal is not always uniquely identifiable when
an output non-terminal is opened. For this reason,
a set of possible alignments is maintained. In par-
ticular, when accepting a non-terminal, all possi-
ble nodes in the input that it may correspond to are
identified and a state is maintained for each possi-
bility. Open states whose constraints are violated
are removed from tracking, and a non-terminal is
not accepted when no more open states are left.
Though in principle the number of open states
could grow large, empirically any alignment non-
determinism is quickly resolved.

Note that although the algorithm ensures that
the output tree structure is compatible with the in-
put structure, it turns out that the model can still
occasionally hallucinate content: since the neural
model allows all possible token sequences in prin-
ciple, it sometimes generates word sequences that
express a hallucinated slot by simply skipping over
the disallowed slot annotation—thereby bypassing
the constraints—especially when given an unusual
input. These cases are discussed further below.

5 Experiments

In this section, we first describe our baselines,
metrics, and implementation details, followed by
experimental results and analyses.

5.1 Experimental Setup
Baselines We consider a few Seq2Seq-based
baselines in our experiments (we use the open
fairseq implementation (Gehring et al., 2017) for
all our experiments). All models use an LSTM-
based encoder and decoder, with attention.

S2S-FLAT The input is a flat MR (for the E2E
dataset, this is equivalent to the original form of
the data; for weather, we remove all discourse re-
lations and treat all dialog acts as a single large
MR). The output is the raw delexicalized re-
sponse.

S2S-TOKEN Following Reed et al. (2018), we
add three tokens in the beginning of flat input
MR (same as S2S-FLAT) to indicate the number
of contrasts, joins and number of sentences (dia-
log acts) to be generated.6 The output is the raw
delexicalized response.

S2S-TREE Same architecture as S2S-FLAT, but
the input and output for this model are the
linearized tree-structured MR and the tree-
structured response respectively.

S2S-CONSTR Our proposed model. It has the
same architecture as S2S-TREE, but decoding
during beam search is constrained, as described
in Section 4.2.

Data preprocessing In the input MR, all argu-
ments within each dialog act are ordered alpha-
betically, to ensure a consistent ordering across
examples. We also use alignments between the
reference and the MR to filter information (argu-
ments or dialog acts/discourse relations) that are
not expressed in the reference; however, we en-
sure that any arguments that occur multiple times
in the MR, but are elided in the reference for re-
dundancy, are still preserved in the MR. This en-
sures that the model doesn’t have to learn content
selection, while still achieving our primary goal of
discourse structure control.

The inputs to S2S-FLAT and S2S-TOKEN are
prepared by removing all dialog act and discourse
information in the linearized MR, and numbering
arguments corresponding to the dialog act they be-
long in. Global order of dialog acts is preserved
such that arguments of the first act occur before
those arguments in the following acts, but argu-
ments within a dialog act are ordered alphabeti-
cally.

Metrics We consider automatic and human
evaluation metrics for our model. Automatic met-
rics are evaluated on the raw model predictions
(which have delexicalized fields, like temp low):
• Tree accuracy is a novel metric that we in-

troduce for this problem. It measures whether
the tree structure in the prediction matches that
of the input MR exactly. We implemented our
tree accuracy metric to account for grouping
and ellipsis, and will release this implementa-
tion along with our dataset.

6Reed et al. only report results on controlling CONTRAST
using an augmented training set, precluding direct compari-
son to their results.



• BLEU-4 (Papineni et al., 2002) is a word-
overlap metric commonly used for evaluating
NLG systems.
Due to the limitations of automatic metrics for

NLG (Novikova et al., 2017; Reiter, 2018), we
also performed human evaluation studies by ask-
ing annotators to evaluate the quality of responses
produced by different models. Annotators pro-
vided binary ratings on the following dimensions:
• Grammaticality: Measures fluency of the re-

sponses. Our evaluation guidelines included
considerations for proper subject-verb agree-
ment, word order, repetition, and grammatical
completeness.

• Correctness: Measures semantic correctness of
the responses. Our guidelines included consid-
erations for sentence structure, contrast, hallu-
cinations (incorrectly included attributes), and
missing attributes. We asked annotators to eval-
uate model predictions against the reference
(rather than the MR — see Appendix F).

5.2 Constrained Decoding Analysis
We trained each of the models described above on
the weather dataset and the E2E dataset, and evalu-
ated automatic metrics on the test set.7 In the E2E
test set, each flat MR has multiple references (and
therefore multiple compositional MRs). When
computing BLEU scores for the token, tree, and
constrained models, we generated one hypothesis
for each of the compositional MRs for a single
flat MR, and chose the hypothesis with the high-
est score against all references for that flat MR.
We then computed corpus BLEU using these hy-
potheses. While this isn’t an entirely fair way to
evaluate these models against the E2E systems,
it serves as a sanity check to validate that gen-
eration models provided with more semantic in-
formation about the references can achieve bet-
ter BLEU scores against them. For both E2E
and weather, we also filtered out, from all model
computations, any examples where S2S-CONSTR

failed to generate a valid response (5.3).
For human evaluation, we show an overall cor-

rectness measure Corr measured on the full test
sets, as well as Disc, measured on a more chal-
lenging subset of the test set that we selected. For
the E2E dataset, we chose examples that contained
contrasts by identifying references with a but (230

7We used the scripts provided at https://github.
com/tuetschek/e2e-metrics by the E2E organizers
for evaluating both the E2E and the weather models.

total). For the weather dataset, we chose 400 ex-
amples where the MR has at least one CONTRAST

or JUSTIFY. We also included test examples with
argument type combinations previously unseen in
the training set (313 total); we expect these to be
challenging for all models, and in particular for the
flat model, which has to infer the right discourse
relation for new combinations of arguments.

5.3 Results

Table 7 shows the results of this experiment. On
both the E2E and weather datasets, S2S-CONSTR

improves tree accuracy significantly (using Mc-
Nemar’s chi-squared test) over S2S-TREE. Hu-
man evaluation metrics also show that models that
are aware of the tree-structured MR (S2S-TREE

and S2S-CONSTR) perform significantly better on
correctness measures than S2S-TOKEN, which is
only aware of the presence or absence of discourse
relations, and significantly better than S2S-FLAT,
which has no awareness of the structure. The
gap is larger on Disc: the flat model gets only
31% of the challenging cases correct on the E2E
dataset, while the constrained model’s accuracy is
more than twice that. A similar gap is evident in
the weather dataset. Further, S2S-CONSTR, S2S-
TREE, and S2S-TOKEN all show significant im-
provements in BLEU over the flat baseline. These
systems also outperform the E2E baseline TGEN

(Dušek and Jurcıcek, 2016) and the challenge win-
ner SLUG (Juraska et al., 2018) on BLEU (0.6519
and 0.6693 respectively, from Dušek et al. (2019))
and diversity metrics (Section 5.4). We note that
for the E2E dataset, the BLEU score increases ob-
served with the tree-based models are not statis-
tically significant compared to S2S-TOKEN. We
think this may be partly because many discourse
patterns are correlated with the flat MR structure
in the E2E dataset (e.g. family-friendly and
highly rated are frequently CONTRASTed).
By contrast, BLEU score increases are statistically
significant for all models on our weather dataset.
Also, S2S-CONSTR fails to generate any valid
candidates for ~1.5% of the weather test exam-
ples. In most of these cases, the model stutters,
i.e. produces degenerate output like “will be be be
. . . ”. We suspect that in these cases, the imposed
decoding constraints cause the Seq2Seq decoder
to get stuck in a pseudoterminal state.

Grammaticality seems to drop slightly for the
tree-based models on the weather dataset, but not

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics


Model E2E Weather
Metric BLEU TreeAcc Gram Corr Disc BLEU TreeAcc Gram Corr Disc
S2S-FLAT 0.6360 - 94.03 63.85 30.87 0.7455 - 98.77 77.09 79.04
S2S-TOKEN 0.7441‡ - 92.29 69.02† 42.29† 0.7493* - 96.7 81.56† 83.93†
S2S-TREE 0.7458‡ 94.86 93.59 83.85† 54.35† 0.7612* 92.5 95.26 87.61† 85.97†
S2S-CONSTR 0.7469‡ 99.25 94.33 85.89† 66.09† 0.7660* 96.92 95.30 91.82† 93.44†

Table 7: Automatic and human evaluated metrics on E2E and Weather datasets. All metrics other than BLEU are
percentages. Corr and Disc are the % of examples for which the model prediction was judged by humans as
semantically correct; Disc is measured on a challenging subset of Corr. * indicates BLEU scores that are sta-
tistically significant (p < 0.01) compared to all baselines for that model. ‡indicates statistically significant BLEU
scores (p < 0.01 ) compared to S2S-FLAT. †indicates human-evaluated correctness scores that are statistically
significant (p < 0.05), using McNemar’s chi-squared test, compared to all baselines for that model.

Figure 2: Performance of models on test set for varying
number of samples in train set.

on the E2E dataset. One hypothesis from this
and the correctness numbers is that the flat mod-
els generate more generic (and therefore grammat-
ical), but also incorrect, responses, compared to
the tree-based models. We also note that there’s a
noticeable gap in the E2E dataset between tree ac-
curacy and the correctness numbers from human
evaluation. We analyzed 35 examples where our
tree accuracy metric disagreed with human evalu-
ation, and found 22 (63%) cases where the com-
positional MR was missing information in the ref-
erence, seemingly due to noise in our automatic
annotation process (Section 3.2). We also identi-
fied 6 cases (17%) of annotator confusion (for ex-
ample whether between £20-30 implies the same
meaning as moderately priced), sometimes caused
by noisy references that contained additional in-
formation. The remaining examples all contained
legitimate model errors, like content hallucination,
or a wrong slot being produced despite a correct
non-terminal. One future direction to get more
reliable metrics would be to improve the auto-
matic annotation process in Section 3.2 to elimi-
nate noise and flag noisy references. Further ex-
perimentation is described in Appendix E.

5.4 Diversity Metrics

We report the diversity metrics used for evalu-
ating E2E challenge submissions in Dušek et al.
(2019) (# unique tokens, # unique trigrams, Shan-
non token entropy (Manning and Schütze, 1999,
p.61ff.), conditional bigram entropy (Manning and
Schütze, 1999, p.63ff.)). Table 8 shows these num-
bers, as compared against a few of the E2E partic-
ipating systems, TGEN, SLUG, and ADAPT (El-
der et al., 2018). All of the models with enriched
semantic representations — S2S-TOKEN, S2S-
TREE, and S2S-CONSTR — show higher diver-
sity than neural baselines without diversity con-
siderations. Combined with our improved BLEU
scores, this seems to indicate that adding discourse
relation information to input MRs can increase di-
versity, without incurring losses on automatic met-
rics (as is the case with the diversity-promoting
ADAPT system).

5.5 Data Efficiency and Generalizability

We measured tree accuracy on the full E2E and
weather test sets by varying the number of training
samples for S2S-TREE and S2S-CONSTR (Fig-
ure 2). S2S-CONSTR achieves more than 90%
tree accuracy with just 2K samples and more than
95% with 5K samples on both datasets, suggesting
that constrained decoding can help achieve supe-
rior performance with much less data.

Meanwhile, we also investigated the extent to
which tree-structured MRs could allow models to
generalize to compositional semantics (Figure 3).
We first split the complete E2E training set into flat
and compositional examples (26896 vs. 24530),
where flat examples don’t contain any discourse
relations. Next, we trained a model on the full
weather dataset and flat E2E data, gradually added
more compositional E2E samples to the training
set, and checked the model’s accuracy on a test set



Model Unique
tokens

Unique
trigrams

Shannon
entropy

Cond.
entropy
bigrams

TGEN 83 597 5.41 1.32
SLUG 74 507 5.35 1.13
ADAPT 455 3567 6.18 2.09
S2S-TOKEN 137 1147 5.86 1.71
S2S-TREE 134 1030 5.85 1.65
S2S-CONSTR 134 1128 5.86 1.71

Table 8: E2E dataset diversity metrics. Rows in gray correspond to metrics that we cite from Dušek et al. (2019).

Figure 3: Performance of S2S-TREE models trained
on E2E flat data, and flat E2E + full weather dataset,
with a fraction of composition E2E.

with only compositional examples. Without any
compositional E2E examples, both models fail to
produce any valid sequences (not pictured). How-
ever, when just 5% of the compositional examples
are added to the training data, the E2E-WEATHER

model gets a tree accuracy of 76%, while the
model trained on E2E only gets 53.72%. The fi-
nal E2E-WEATHER model also has higher overall
accuracy than the E2E-only model. This shows
that learned discourse relations can be leveraged
for domain adaptation.

6 Related Work

Reed et al.’s (2018) approach to enriching the in-
put, discussed earlier, is the most closely related
work to ours. A more recent work by Moryossef
et al. (2019) also focuses on exercising more con-
trol over input structures through sentence plans;
however, their work doesn’t touch on discourse re-
lations or constrained decoding. Puduppully et al.
(2018) builds a modular end-to-end neural archi-
tecture that performs content planning in addition
to realization, although they focus on generating
text from structured tables, and don’t consider dis-
course structure.

Also related is Kiddon et al.’s (2016) neural
checklist model, which tracks the coverage of an
input list of ingredients when generating recipes.

Our constrained decoding approach goes beyond
covering a simple list by enforcing constraints on
ordering and grouping of tree structures, but theirs
takes coverage into account during model train-
ing. A more direct inspiration for our approach is
the way coverage has been traditionally tracked in
grammar-based surface realization (Shieber, 1988;
Kay, 1996; Carroll et al., 1999; Carroll and Oepen,
2005; Nakanishi et al., 2005; White, 2006; White
and Rajkumar, 2009). Compared to our approach,
grammar-based realizers can prevent hallucination
entirely, though at the expense of developing an
explicit grammar. Constrained decoding in MT
(Post and Vilar, 2018, i.a.) has been used to
enforce the use of specific words in the output,
rather than constraints on tree structures. Also
related are neural generators that take Abstract
Meaning Representations (AMRs) as input (Kon-
stas et al., 2017, i.a.) rather than flat inputs; these
approaches, however, do not generate trees or use
constrained decoding.

7 Conclusions

We show that using rich tree-structured meaning
representations can improve expressiveness and
semantic correctness in generation. We also pro-
pose a constrained decoding technique that lever-
ages tree-structured MRs to exert precise control
over the discourse structure and semantic correct-
ness of the generated text. We release a challeng-
ing new dataset for the weather domain and an
enriched E2E dataset that include tree-structured
MRs. Our experiments show that constrained de-
coding, together with tree-structured MRs, can
greatly improve semantic correctness as well as
enhance data efficiency and generalizability.
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Ondřej Dušek and Filip Jurcicek. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
45–51. Association for Computational Linguistics.
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A Weather Forecast Generation

For every example, we extracted the date range
requested by the user, and generated artificial
weather forecasts for that date range. We gen-
erated forecasts of different granularities (hourly
or daily) depending on the date requested by the
user. If the date that requested was less than 24
hours after the “reference” date in the synthetic
user context, we generated hourly forecasts; oth-
erwise, we generated the required number of daily
forecasts. To generate forecasts, we selected rea-
sonable mean, standard deviation, min, and max
values for temperature and cloud coverage, and
used these to sample temperatures for every point
in the date range. We also selected random sun-
rise and sunset times for each day present in the
range. We picked values that seemed reasonable,
but didn’t try too hard to get precise values, since
our focus was more on using the forecasts to cre-
ate complex MRs. After sampling temperatures
and cloud coverage amounts for each range, we
randomly chose other attributes to include, condi-
tioned on the values of the temperatures and cloud
coverage, like precipitation chance, wind speed
summary, and other rarer conditions like fog.

B Tree-Structured Weather MR
Creation

1. Errors: We added ERROR dialog acts whenever
the user query contained a weather request for
a date too far in the future. We also chose lo-
cations to treat as “unknown” randomly, thus
adding errors for locations unknown to the sys-
tem. These ERROR acts are interesting be-
cause they capture domain-specific information
about the nature and cause of errors, and can
potentially be learned across domains. Addi-
tionally, including ERROR acts creates scope
for interesting responses like “I’m sorry, I don’t
know where that is. But right now in [user’s de-
fault location], it’s sunny ...”.

2. Aggregation: We identified dates that had simi-
lar weather attributes (precipitation, cloud cov-
erage, etc.) and created INFORM dialog acts
that expressed information regarding each date.
We then grouped these acts together using a
JOIN discourse relation.

3. Contrast: We identified attributes that were in
opposition (“cloudy” vs. “sunny”) and added

a parent CONTRAST discourse relation to any
such dialog acts. We also contrasted related
attributes wherever possible; e.g. the cloud
coverage value “sunny” can be contrasted with
both “cloudy” and the precipitation type “rain”.

4. Yes/no questions: Whenever the user query was
a boolean one (“Will it rain tomorrow”), we
added YES or NO dialog acts as appropriate.

5. Justifications/Recommendations: Whenever
the user query mentioned an attire or activity
(“Should I wear a raincoat?”), we assumed that
the MR should communicate a recommenda-
tion as well as a justification for it (“No, you
don’t need to wear one, it looks like it’ll be
sunny all day”). In these cases, we added a
RECOMMEND dialog act, and an INFORM dia-
log act that provides the justification for the rec-
ommendation. We added a parent JUSTIFY
discourse relation to these acts, treating the rec-
ommendation as the nucleus and the INFORM
as the satellite of the justification.

C Dataset Creation Quality

As mentioned in 3, we asked annotators to eval-
uate collected responses, and used these to filter
out noisy references and annotations from our fi-
nal dataset. The ratings were made on a 1-5 scale
and double annotated, and we filtered out 3,404
examples (out of a total 37,162) that had a score
less than 3 on any of the four dimensions: fluency,
correctness, naturalness, annotation correctness.

D Data Preprocessing

Infinitely-valued arguments such as names of
restaurants, dates, times, and locations such as
cities, states are delexicalized (value is replaced
by placeholder tokens) in both the input and output
of models. This was done following the approach
taken by several of the systems in the E2E chal-
lenge (Dušek and Jurcıcek, 2016; Juraska et al.,
2018; Dušek et al., 2019). The reasoning behind
this is that the values of such arguments are often
inserted verbatim in the response text, and there-
fore do not affect the final surface form realiza-
tion. Replacing these arguments in both the input
and output reduces the vocabulary size and pre-
vents sparsity issues. (A copy mechanism, such as
the one introduced in Vinyals et al. (2015), can be
used to address this, though we did not explore this



approach in this work.) The full list of arguments
for which we performed delexicalization is:

1. Numerical arguments: temperature-related
arguments, precipitation chance, day, month,
year (for dates).

2. Named entities: restaurant name (E2E), land-
mark (E2E), city, region, country, weekday
(for dates)

E Additional Experiments

We also experimented with a reranked S2S-TREE

in which the beam search candidates are reranked
for tree accuracy. This yields a tree accuracy of
97.6% and 95.4% on E2E and weather.

We trained a Recurrent Neural Network Gram-
mar (RNNG) to tag slots in the prediction of S2S-
CONSTR in order to filter out hallucinations. The
correctness on filtered test sets rose from 85.89%
to 87.44% for E2E, and from 91.82% to 93.84%
on weather.

F Human Evaluation of Models

When asking annotators to rate the models on
correctness, we asked them to rate the response
by comparing it against the reference, rather than
against the MR. This adds the risk that annotators
are confused by noisy references, but we found
that it increased annotation speed and agreement
rates significantly over evaluating against the MR
directly. This is also because our MRs are tree-
structured and can be hard to read. We performed
double-annotation with a resolution round. Auto-
matic rejection: When analyzing evaluation re-
sults, we found that it was fairly easy to miss
the absence of a contrast or a justification in our
weather dataset, especially since our dataset is so
large. As a result, annotators were marking several
incorrect cases as correct. To address this issue,
we automatically marked as incorrect any exam-
ples where the MR had a CONTRAST but the re-
sponse lacked any contrastive tokens, or where the
MR has a JUSTIFY but the response lacked any
clear markers of a justification. This eliminated
noise from 2.8% of all responses.

G Model Training Details

We used the same seq2seq model from the S2S-
FLAT baseline for our constrained decoding exper-
iments, which used 300-dimensional GloVe word

embeddings (Pennington et al., 2014), a dropout
rate of 0.2 (Srivastava et al., 2014), and hidden di-
mension of 128 in both the encoder and the de-
coder. We used the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.002 to train the
seq2seq model. The learning rate is reduced by a
factor of 5 if the validation loss stops decreasing.
Beam size is set to 10.



H Constrained Decoding Algorithm

d e f b u i l d c o n s t r a i n t s (MR) :
# nodes i n MR a r e numbered from 0 t o n i n o r d e r o f t h e i r
# d i s c o v e r y i n depth− f i r s t −s e a r c h .
# example , f o r MR: [ JOIN [INFORM [A ] [B ] ] [INFORM [B ] [D ] ] ]
# i d s : JOIN : 0 , INFORM: 1 , A: 2 , B : 3 , INFORM: 4 , B : 5 , D: 6
f o r node i n MR:

p a r e n t m a p [ node . i d ] = node . p a r e n t
c h i l d r e n m a p [ node . i d ] = node . c h i l d r e n
# map from non−t e r m i n a l t o a l l node i d s o f t h e non−t e r m i n a l
# eg : INFORM −> {1 , 4} i n c a s e o f example MR above
v a l i d n o n t e r m i n a l n o d e s [ node . n o n t e r m i n a l ] . add ( node . i d )

# map from node i d t o nodes t h a t can c o v e r i t t h r o u g h e l l i p s i s
# example , f o r above MR: {3 : {3 , 5} , 5 : {3 , 5}}
e l l i p s i s o p t i o n s = c o m p u t e e l l i p s i s o p t i o n s (MR)
i n i t s t a t e . p a r e n t = −1

# c u r r e n t p a r e n t
i n i t s t a t e . c o v e r a g e = {}

# t r a c k s node i d s e n c o u n t e r e d t i l l now
# t r a c k nodes t h a t have been c o v e r e d t h r o u g h e l l i p s i s
i n i t s t a t e s . e l i d e d n o d e s = {}
s t a t e s = [ i n i t s t a t e ]

# l i s t o f open s t a t e s

d e f c h i l d r e n c o v e r e d ( s t a t e , node ) :
# r e t u r n s t r u e i f a l l nodes have c o v e r e d e i t h e r
# d i r e c t l y o r t h r o u g h e l l i p s i s
m i s s i n g c h i l d r e n = c h i l d r e n m a p [ s t a t e . p a r e n t ] − s t a t e . c o v e r a g e
f o r m i s s i n g c h i l d i n m i s s i n g c h i l d r e n :

i f ( e l l i p s i s o p t i o n s [ m i s s i n g c h i l d ]
− s t a t e . e l i d e d n o d e s ) i s empty :

# nodes t h a t have been e l i d e d t h e m s e l v e s
# can ’ t c o v e r o t h e r nodes t h r o u g h e l l i p s i s
r e t u r n F a l s e

r e t u r n True

d e f a c c e p t t o k e n ( s t a t e s , n e x t t o k e n ) :
# move s t a t e s one t ime−s t e p f o r w a r d by a c c e p t i n g n e x t t o k e n
# r e t u r n s F a l s e i f n e x t t o k e n c a n n o t be a c c e p t e d by any s t a t e
i f n o t n e x t t o k e n . s t a r t s w i t h ( ” [ ” ) o r n e x t t o k e n != ” ] ” :

# on ly non−t e r m i n a l t o k e n s need t o be checked
r e t u r n True

u p d a t e d s t a t e s = [ ]
f o r s t a t e i n s t a t e s :

i f n e x t t o k e n . s t a r t s w i t h ( ” [ ” ) :
f o r c a n d i d a t e i n v a l i d n o n t e r m i n a l n o d e s [ n e x t t o k e n ] :

i f c a n d i d a t e i n c h i l d r e n m a p [ s t a t e . p a r e n t ]
and c a n d i d a t e n o t i n s t a t e . c o v e r a g e :

# c r e a t e a new s t a t e f o r each v a l i d c a n d i d a t e
n e w s t a t e = copy ( s t a t e )
n e w s t a t e . p a r e n t = c a n d i d a t e
n e w s t a t e . c o v e r a g e . add ( c a n d i d a t e )
u p d a t e d s t a t e s . append ( n e w s t a t e )

e l i f n e x t t o k e n == ” ] ”
and c h i l d r e n c o v e r e d ( s t a t e , s t a t e . p a r e n t ) :

# a c c e p t c l o s i n g b r a c e f o r c u r r e n t node and
# move s t a t e s up a l e v e l i n t r e e
n e w s t a t e = copy ( s t a t e )
n e w s t a t e . p a r e n t = p a r e n t m a p [ s t a t e . p a r e n t ]
m i s s i n g c h i l d r e n =

c h i l d r e n m a p [ s t a t e . p a r e n t ] − s t a t e . c o v e r a g e
# i f we ’ r e a c c e p t i n g a c l o s i n g node wi th m i s s i n g c h i l d r e n ,
# t h e n a l l o f them must be g e t t i n g e l i d e d
n e w s t a t e . e l i d e d n o d e s . add ( m i s s i n g c h i l d r e n )
u p d a t e d s t a t e s . append ( u p d a t e ( n e w s t a t e , n e x t t o k e n ) )

s t a t e s = u p d a t e d s t a t e s
r e t u r n l e n ( s t a t e s ) > 0

d e f m a s k s c o r e ( s c o r e , s t a t e s , n e x t t o k e n ) :
i f a c c e p t t o k e n ( s t a t e s , n e x t t o k e n ) :

r e t u r n s c o r e
e l s e :

r e t u r n 0


