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Abstract

This paper proposes an efficient neural network (NN)
architecture design methodology called Chameleon that
honors given resource constraints. Instead of developing
new building blocks or using computationally-intensive re-
inforcement learning algorithms, our approach leverages
existing efficient network building blocks and focuses on
exploiting hardware traits and adapting computation re-
sources to fit target latency and/or energy constraints. We
formulate platform-aware NN architecture search in an op-
timization framework and propose a novel algorithm to
search for optimal architectures aided by efficient accu-
racy and resource (latency and/or energy) predictors. At
the core of our algorithm lies an accuracy predictor built
atop Gaussian Process with Bayesian optimization for iter-
ative sampling. With a one-time building cost for the pre-
dictors, our algorithm produces state-of-the-art model ar-
chitectures on different platforms under given constraints
in just minutes. Our results show that adapting computa-
tion resources to building blocks is critical to model per-
formance. Without the addition of any special features, our
models achieve significant accuracy improvements relative
to state-of-the-art handcrafted and automatically designed
architectures. We achieve 73.8% and 75.3% top-1 accuracy
on ImageNet at 20ms latency on a mobile CPU and DSP. At
reduced latency, our models achieve up to 8.2% (4.8%) and
6.7% (9.3%) absolute top-1 accuracy improvements com-
pared to MobileNetV2 and MnasNet, respectively, on a mo-
bile CPU (DSP), and 2.7% (4.6%) and 5.6% (2.6%) accu-
racy gains over ResNet-101 and ResNet-152, respectively,
on an Nvidia GPU (Intel CPU).

1. Introduction

Neural networks (NNs) have led to state-of-the-art per-
formance in myriad areas, such as computer vision, speech
recognition, and machine translation. Due to the pres-
ence of millions of parameters and floating-point operations

(FLOPs), NNs are typically too computationally intensive
to be deployed on resource-constrained platforms. Many ef-
forts have been made to design compact NN architectures.
Examples include NNs presented in [24, 21], which have
significantly cut down the computation cost and achieved a
more favorable trade-off between accuracy and efficiency.
However, a compact model design still faces challenges
upon deployment in real-world applications [33]:

• Different platforms have diverging hardware charac-
teristics. It is hard for a single NN architecture to run
optimally on all the different platforms. For example, a
Hexagon v62 DSP prefers convolution operators with
a channel size that is a multiple of 32, as shown later,
whereas this may not be the case on another platform.

• Real-world applications may face very different con-
straints. For example, real-time video frame analysis
may have a strict latency constraint, whereas Internet-
of-Things (IoT) edge device designers may care more
about run-time energy for longer battery life. It is in-
feasible to have one NN that can meet all these con-
straints simultaneously. This makes it necessary to
adapt the NN architecture to the specific use scenarios.

There are two common practices for tackling these chal-
lenges. The first practice is to manually craft the archi-
tectures based on the characteristics of a given platform.
However, such a trial-and-error methodology might be too
time-consuming for large-scale cross-platform NN deploy-
ment and may not be able to effectively explore the design
space. Moreover, it also requires substantial knowledge of
the hardware details and driver libraries. The other practice
focuses on platform-aware neural architecture search (NAS)
and sequential model-based optimization (SMBO) [37].
Both NAS and SMBO require computationally-expensive
network training and measurement of network performance
metrics (e.g., latency and energy) throughout the entire
search and optimization process. For example, the latency-
driven mobile NAS (MNAS) architecture requires hundreds
of GPU hours to develop [28], which becomes unafford-
able when targeting numerous platforms with various re-



source budgets. Moreover, it may be difficult to implement
the new cell-level structures discovered by NAS because of
their complexity [37].

In this paper, we propose an efficient, scalable, and au-
tomated NN architecture adaptation methodology. We refer
to this methodology as Chameleon. It does not rely on new
cell-level building blocks nor does it use computationally-
intensive reinforcement learning (RL) techniques. Instead,
it takes into account the traits of the hardware platform to
allocate computation resources accordingly when searching
the design space for the given NN architecture with exist-
ing building blocks. This adaptation reduces search time. It
employs predictive models (namely, accuracy, latency, and
energy predictors) to speed up the entire search process by
enabling immediate performance metric estimation. The ac-
curacy and energy predictors incorporate Gaussian process
(GP) regressors augmented with Bayesian optimization and
imbalanced quasi Monte-Carlo (QMC) sampling. It also
includes an operator latency look-up table (LUT) in the la-
tency predictor for fast, yet accurate, latency estimation. It
consistently delivers higher accuracy and less run-time la-
tency against state-of-the-art handcrafted and automatically
searched models across several hardware platforms (e.g.,
mobile CPU, DSP, Intel CPU, and Nvidia GPU) under dif-
ferent resource constraints.

Our contributions can be summarized as follows:

1. We show that computation distribution is critical to
model performance. By leveraging existing efficient
building blocks, we adapt models with significant im-
provements over state-of-the-art handcrafted and auto-
matically searched models under a wide spectrum of
devices and resource budgets.

2. We propose a novel algorithm that searches for optimal
architectures through efficient accuracy and resource
predictors. At the core of our algorithm lies an accu-
racy predictor built based on GP with Bayesian opti-
mization that enables a more effective search over a
similar space than RL-based NAS.

3. Our proposed algorithm is efficient and scalable.
With a one-time building cost, it only takes min-
utes to search for models under different plat-
forms/constraints, thus making them suitable for large-
scale heterogeneous deployment.

2. Related work
Efficient NN design and deployment is a vibrant field.

We summarize the related work next.
Model simplication: An important direction for effi-

cient NN design is model simplification. Network prun-
ing [11, 29, 6, 34, 32, 7] has been a popular approach
for removing redundancy in NNs. For example, Ne-
tAdapt [33] utilizes a hardware-aware filter pruning algo-

rithm and achieves up to 1.2× speedup for MobileNetV2
on the ImageNet dataset [8]. AMC [13] employs RL for
automated model compression and achieves 1.53× speedup
for MobileNetV1 on a Titan XP GPU. Quantization [10, 17]
has also emerged as a powerful tool for significantly cutting
down computation cost with no or little accuracy loss. For
example, Zhu et al. [36] show that there is only a 2% top-5
accuracy loss for ResNet-18 when using a 3-bit representa-
tion for weights compared to its full-precision counterpart.

Compact architecture: Apart from simplifying existing
models, handcrafting more efficient building blocks and op-
erators for mobile-friendly architectures can also substan-
tially improve the accuracy-efficiency trade-offs [18, 30].
For example, at the same accuracy level, MobileNet [15]
and ShuffleNet [31] cut down the computation cost sub-
stantially compared to ResNet [12] by utilizing depth-
wise convolution and low-cost group convolution, respec-
tively. Their successors, MobileNetV2 [24] and Shuf-
fleNetV2 [21], further shrink the model size while main-
taining or even improving accuracy. In order to deploy these
models on different real-world platforms, Andrew et al. pro-
pose linear scaling in [15]. This is a simple but widely-used
method to accommodate various latency constraints. It re-
lies on thinning a network uniformly at each layer or reduc-
ing the input image resolution.

NAS and SMBO: Platform-aware NAS and SMBO have
emerged as a promising direction for automating the syn-
thesis flow of a model based on direct metrics, making it
more suitable for deployment [14, 22, 3, 19, 20, 4]. For ex-
ample, MnasNet [28] yields an absolute 2% top-1 accuracy
gain compared to MobileNetV2 1.0x with only a 1.3% la-
tency overhead on Google Pixel 1 using TensorFlow Lite.
As for SMBO, Stamoulis et al. use a Bayesian optimization
approach and reduce the energy consumed for VGG-19 [25]
on a mobile device by up to 6×. Unfortunately, it is difficult
to scale NAS and SMBO for large-scale platform deploy-
ment, since the entire search and optimization needs to be
conducted once per network per platform per use case.

3. Methodology
We first give a high-level overview of the Chameleon

framework, after which we zoom into predictive models.

3.1. Platform-aware Model Adaptation

We illustrate the Chameleon approach in Fig. 1. The
adaptation step takes a default NN architecture and a spe-
cific use scenario (i.e., platform and resource budget) as
inputs and generates an adapted architecture as output.
Chameleon searches for a variant of the base NN architec-
ture that fits the use scenario through efficient evolutionary
search (EES). EES is based on an adaptive genetic algo-
rithm [26], where the gene of an NN architecture is rep-
resented by a vector of hyperparameters (e.g., #Filters and



Figure 1. An illustration of the Chameleon adaptation framework

#Bottlenecks), denoted as x ∈ Rn, where n is the number
of hyperparameters of interest. In each iteration, EES evalu-
ates the fitness of each NN architecture candidate based on
inputs from the predictive models, and then selects archi-
tectures with the highest fitness to breed the next generation
using mutation and crossover operators. EES terminates af-
ter a pre-defined number of iterations. Finally, Chameleon
rests at an adapted NN architecture for the target platform
and use scenario.

We formulate EES as a constrained optimization prob-
lem. The objective is to maximize accuracy under a given
resource constraint on a target platform:

maximize A(x) subject to F(x, plat) ≤ thres (1)

where A, F , plat, and thres refer to mapping of x to
network accuracy, mapping of x to the network perfor-
mance metric (e.g., latency or energy), target platform, and
resource constraint determined by the use scenario (e.g.,
20ms), respectively. We merge the resource constraint as
a regularization term in the fitness function R as follows:

R = A(x)− [αH(F (x, plat)− thres)]w (2)

where H is the Heaviside step function, and α and w are
positive constants. Consequently, the aim is to find the net-
work gene x that maximizes R:

x = argmax
x

(R) (3)

We next estimate F and A to solve the optimization prob-
lem. Choice of F depends on constraints of interest. In this
work, we mainly study F based on direct latency and en-
ergy measurements, as opposed to an indirect proxy, such as
FLOPs, that has been shown to be sub-optimal [33]. Thus,
for each NN candidate x, we need three metrics to calculate
its R(x): accuracy, latency, and energy consumption.

Extracting the above metrics through network training
and direct measurements on hardware, however, is too time-
consuming [19]. To speed up this process, we bypass the

training and measurement process by leveraging accuracy,
latency, and energy predictors, as shown in Fig. 1. These
predictors enable metric estimation in less than one CPU
second. We give details of our accuracy, latency, and energy
predictors next.

3.2. Efficient Accuracy Predictor

To significantly speed up NN architecture candidate
evaluation, we utilize an accuracy predictor to estimate the
final accuracy of a model without actually training it. There
are two desired objectives of such a predictor:

1. Reliable prediction: The predictor should minimize
the distance between predicted and real accuracy, and
rank models in the same order as their real accuracy.

2. Sample efficiency: The predictor should be built with
as few trained network architectures as possible. This
saves computational resources.

Next, we explain how we tackle these two objectives
through GP regression and Bayesian optimization based
sample architecture selection for training.

3.2.1 Gaussian Process Model

We choose a GP regressor as our accuracy predictor to
model A as:

A(xi) = f(xi) + εi, i = 1, 2, ..., s

f(·) ∼ GP(·|0,K), εi ∼ N (·|0, σ2)
(4)

where i denotes the index of a training vector among s train-
ing vectors and εi’s refer to noise variables with indepen-
dentN (·|0, σ2) distributions. f(·) is drawn from a GP prior
characterized by covariance matrixK. We use a radial basis
function kernel for K:

K(x, x′) = exp(−γ||x− x′||2) (5)

A GP regressor provides two benefits. First, it offers
reliable predictions when training data are scarce. As an
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Figure 2. Performance comparison of different accuracy prediction
models, built with 240 pre-trained models under different config-
urations. MSE refers to leave-one-out mean squared error.

example, we compare several regression models for Mo-
bileNetV2 accuracy prediction in Fig. 2. The GP regressor
has the lowest mean squared error (MSE) among all six re-
gression models. Second, a GP regressor produces predic-
tions with uncertainty estimations, which offers additional
guidance for new sample architecture selection for training.
This helps boost the convergence speed and improves sam-
ple efficiency, as shown next.

Algorithm 1 Steps for building an accuracy predictor
Input: k: sample architecture pool size, p: exploration sample
count, q: exploitation sample count, e: MSE threshold
Pool = Get k QMC samples from the adaptation search space
All samples = Randomly select samples from Pool
Train (All samples)
Predictor = Build a GP predictor with all observations
while Eval(Predictor) ≥ e do

for Architecture in (Pool \ All samples) do
ai = Predictor.getAccuracy(Architecture)
vi = Predictor.getUncertainty(Architecture)
flopi = getFLOP(Architecture)

end for
Sexplore = {Architectures with p highest vi}
Sexploit = {Architectures with q highest ai

flopi
}

All samples = All samples ∪ Sexplore ∪ Sexploit

Train (Sexplore ∪ Sexploit)
Predictor = Build a GP predictor with all observations

end while
Return Predictor

Figure 3. An illustration of ‘samples of interest’ and sample selec-
tion result.

3.2.2 Iterative Sample Selection

As mentioned earlier, our objective is to train the GP pre-
dictor with as few NN architecture samples as possible.
We summarize our efficient sample generation and predic-
tor training method in Algorithm 1. Since the number of
unique architectures in the adaptation search space can still
be quite large, we first sample representative architectures
from this search space to form an architecture pool. We
adopt the QMC sampling method [2], which is known to
provide similar accuracy to Monte Carlo sampling but with
orders of magnitude fewer samples. We then build the ac-
curacy predictor iteratively. In each iteration, we use the
current predictor as a guide for selecting additional sample
architectures to add to the training set. We train these sam-
ple architectures and then upgrade the predictor based on
new architecture-accuracy observations.

To improve sample efficiency, we further incorporate
Bayesian optimization into the sample architecture selec-
tion process. This enables Algorithm 1 to converge faster
with fewer samples [27]. Specifically, we select both ex-
ploitation and exploration samples in each iteration:

• Exploitation samples: We choose sample architectures
with high accuracy/FLOPs ratios. These desirable ar-
chitectures, or ‘samples of interest,’ are likely to yield
higher accuracy with less computation cost. They typ-
ically fall in the top left part of the accuracy-FLOPs
trade-off graph, as shown in Fig. 3.

• Exploration samples: We choose samples with large
uncertainty values. This helps increase the prediction
confidence level of the GP regressor over the entire
adaptation search space [27].

Based on these rules, we show the selected sample archi-
tectures from the architecture space in Fig. 3. It can be ob-
served that we have higher sampling density in the area of
‘samples of interest,’ where adaptation typically rests.

3.3. Latency Predictor

Recently, great efforts have been made towards develop-
ing more efficient and compact NN architectures for better



(a) (b)
Figure 4. Latency vs. #Channels for a 1×1 convolution on an
input image size of 56×56 and stride 1 on (a) Snapdragon 835
CPU and (b) Hexagon v62 DSP. Red (blue) color indicates high
(low) latency.

accuracy-latency trade-offs. Most of them optimize NNs
based on FLOPs, which is an often-used proxy [37, 35].
However, optimization based on direct latency measure-
ment instead of FLOPs can better explore hardware traits
and hence offer additional advantages. To illustrate this
point, we show the measured latency surface of a 1×1 con-
volution operator with varying numbers of input and out-
put channels in Fig. 4. The latency is measured on a Snap-
dragon 835 mobile CPU and a Hexagon v62 DSP. It can be
observed that FLOPs, though generally effective in provid-
ing guidance for latency reduction, may not capture desired
hardware characteristics upon model deployment.

Extracting the latency of an NN architecture during EES
execution through direct measurement, however, is chal-
lenging. Platform-specific latency measurements can be
slow and difficult to parallelize, especially when the number
of available devices is limited [33]. Therefore, large-scale
latency measurements might be expensive and become the
computation bottleneck for Chameleon. To speed up this
process, we construct an operator latency LUT for the target
device to enable fast and reliable latency estimations. The
LUT is supported by an operator latency database, where
we benchmark operator-level latency on real devices with
different input dimensions. For an NN model, we sum up
all its operator-level latencies as an estimate of the network-
level latency:

tnet = Σ toperator (6)

Building the operator latency LUT for a given device is a
one-time cost, but can be substantially reused across vari-
ous NN models, different tasks, and different applications
of architecture search and model adaptation.

Latency estimation based on operator latency LUT can
be completed in less than one CPU second, as opposed
to real measurements on hardware that usually take min-
utes. Moreover, it also supports parallel query, hence sig-
nificantly enhancing simultaneous latency extraction effi-
ciency across multiple NN candidates. This enables latency
estimation in EES to consume very little time. We com-
pare the predicted latency value against real measurement
in Fig. 5. The distance between the predicted value and real
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Figure 5. Latency predictor evaluation on Snapdragon 835 CPU.

measurement is quite small.

3.4. Energy Predictor

Battery-powered devices (e.g., smart watches, mobile
phones, and AR/VR products) have limited energy budgets.
Thus, it is important to adjust the NN model to fit the en-
ergy constraint before deployment [5]. To solve this prob-
lem, we incorporate energy constraint-driven adaptation in
Chameleon for different platforms and use scenarios.
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Figure 6. Energy predictor evaluation on Snapdragon 835 CPU.

We build the energy predictor in a similar manner to the
accuracy predictor. We build a GP energy predictor that
incorporates Bayesian optimization and acquire the energy
values from direct measurements on hardware. However,
for the energy predictor, we only select exploration samples
in each iteration (i.e., samples with large uncertainty). The
concept of ‘samples of interest’ is not applicable in this sce-
nario. We show the performance of our energy predictor for
MobileNetV2 in Fig. 6.

4. Experiments
In this section, we apply Chameleon to various NN ar-

chitectures over a wide spectrum of platforms and resource
budgets. We use PyTorch [23] and Caffe2 for the imple-
mentation. For mobile platforms, we train the model with
full precision (float32) and quantize to int8. We report full
precision results for accuracy comparison but we see no or
minimal loss of accuracy for quantized models with fake-
quantization fine-tuning. We benchmark the latency using
Caffe2 int8 back-end with Facebook AI Performance Eval-
uation Platform [1]. We report results on the ImageNet
dataset [8], which is a well-known benchmark consisting
of 1.2M training and 50K validation images classified into



1000 distinct classes. We randomly reserve 50K images
from the training set (50 images per class) to build the ac-
curacy predictor. We measure latency and energy with the
same batch size of 1.

In the EES process, we set α = 10/ms and α =
10/mJ for latency- and energy-constrained adaptation, re-
spectively, and w = 2. We set the initial QMC architecture
pool size to k = 2048. We generate the accuracy and en-
ergy predictors with 240 samples selected from the archi-
tecture pool. Latency estimation is supported by a operator
latency LUT with approximately 350K records. In evolu-
tionary search, the population size of each generation is set
to 96. We pick the top 12 candidates for the next genera-
tion. The total number of search iterations is set to 100. We
present our experimental results next.

4.1. Adaptation for Mobile Models

This section presents the adaptation results leverag-
ing the efficient inverse residual building block from Mo-
bileNetV2, which is the state-of-the-art handcrafted archi-
tecture for mobile platforms. It utilizes inverted residual and
linear bottleneck to significantly cut down on the number of
operations and memory needed per inference [24]. We first
show the adaptation search space used in our experiments
in Table 1, where t, c, n, and s refer to the expansion fac-
tor, number of output channels, number of repeated blocks,
and stride, respectively. The adaptation search range for
each hyperparameter is denoted as [a, b], where a denotes
the lower bound and b the upper bound. The default values
used in MobileNetV2 1.0x are also shown next to our search
ranges, following the notation rule used in [24].

Table 1. Adaptation space of ChamNet-Mobile
Input resolution→ 224 [96, 224]
stage t c n s

conv2d - 32 [8,48] 1 2
bottleneck 1 16 [8,32] 1 1
bottleneck 6 [2,6] 24 [8,40] 2 [1,2] 2
bottleneck 6 [2,6] 32 [8,48] 3 [1,3] 2
bottleneck 6 [2,6] 64 [16,96] 4 [1,4] 2
bottleneck 6 [2,6] 96 [32,160] 3 [1,3] 1
bottleneck 6 [2,6] 160 [56,256] 3 [1,3] 2
bottleneck 6 [2,6] 320 [96,480] 1 1
conv2d - 1280 [1024,2048] 1 1
avgpool - - 1 -
fc - 1000 - -

We target two different platforms in our experiments:
Snapdragon 835 mobile CPU (on a Samsung S8) and
Hexagon v62 DSP (800 MHz frequency with internal NN
library implementation). We evaluate Chameleon under a
wide range of latency constraints: 4ms, 6ms, 10ms, 15ms,
20ms, and 30ms.

We compare our adapted ChamNet-Mobile models with
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Figure 7. Performance of ChamNet-Mobile on a Snapdragon 835
CPU. Numbers in parentheses indicate input image resolution.

5 10 15 20 25 30
Latency (ms)

45

50

55

60

65

70

75

To
p-

1 
ac

cu
ra

cy
 (%

)

76.575.374.5
71.7

67.1
63.6

MobileNetV2 (224)
MobileNetV2 (192)
MobileNetV2 (160)
MobileNetV2 (128)
MobileNetV2 (96)
MnasNet (224)
ChamNet-Mobile (Ours)

Figure 8. Performance of ChamNet-Mobile on a Hexagon v62
DSP.

state-of-the-art models, including MobileNetV2, Shuf-
fleNetV2, and MnasNet in Fig. 7 and 8 on mobile CPU
and DSP, respectively. Models discovered by Chameleon
outperform all the previous manually designed or automati-
cally searched architectures on both platforms consistently.
Our ChamNet has an 8.2% absolute accuracy gain com-
pared to MobileNetV2 0.5x with an input resolution of
96×96, while both models share the same 4.0ms run-time
latency on the mobile CPU.

4.2. Adaptation for Server Models

We also evaluate Chameleon for server models on both
CPU and GPU. We choose residual building blocks from
ResNet as the base for adaptation because of its high accu-
racy and widespread usage. The target platforms are the
Intel Xeon Broadwell CPU with 2.4 GHz frequency and
Nvidia GTX 1060 GPU with 1.708 GHz frequency. We use
CUDA 8.0 and CUDNN 5.1 in our experiments.

We show the detailed adaptation search space in Table 2,
where the notations are identical to the ones in Table 1.
This search space for ChamNet-Res includes #Filters, ex-
pansion factor, and #Bottlenecks per layer. Note that the
maximum number of layers in the adaptation search space



Table 2. Adaptation space of ChamNet-Res
Input resolution→ 224
stage t c n s
conv2d - 64 [16,64] 1 2
bottleneck 4 [2,6] 64 [16,64] 3 [1,3] 2
bottleneck 4 [2,6] 128 [32,128] 4 [1,8] 2
bottleneck 4 [2,6] 256 [64,256] 6 [1,36] 2
bottleneck 4 [2,6] 512 [128,512] 3 [1,3] 2
avgpool - - 1 -
fc - 1000 - -
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Figure 9. Latency-constrained ChamNet-Res on an Intel CPU.
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Figure 10. Latency-constrained ChamNet-Res on an Nvidia GPU.

is 152, which is the largest reported depth for the ResNet
family [12].

We set a wide spectrum of latency constraints for both
Intel CPU and Nvidia GPU to demonstrate the generality
of our framework. The latency constraints for the CPU are
50ms, 100ms, 200ms, and 400ms, while the constraints for
the GPU are 2.5ms, 5ms, 10ms, and 15ms. We compare
the adapted model with ResNets on CPU and GPU in Fig. 9
and 10, respectively. Again, Chameleon improves the accu-
racy by a large margin on both platforms.

4.3. Energy-Driven Adaptation

Next, we study the energy-constrained use scenario for
ChamNet-Mobile on mobile phones. We obtain the energy
measurements from the Snapdragon 835 CPU. We first re-
place the battery of the phone with a Monsoon power mon-
itor with a constant voltage output of 4.2V. During mea-
surements, we ensure the phone is kept in the idle mode for
18 seconds, then run the network 1000 times and measure
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Figure 11. Energy-constrained ChamNet-Mobile on a Snapdragon
835 CPU.

the current at 200µs intervals. We then deduct the baseline
current from the raw data in a post-processing step and cal-
culate the energy consumption per forward pass.

To demonstrate Chameleon’s applicability under a wide
range of constraints, we set six different energy constraints
in our experiment: 15mJ, 30mJ, 50mJ, 75mJ, 100mJ,
and 150mJ. We use the same adaptation search space as
ChamNet-Mobile.

We show the accuracy of ChamNet and compare it with
MobileNetV2 in Fig. 11. We achieve significant improve-
ment in accuracy-energy trade-offs. For example, compared
to the MobileNetV2 0.75x with input resolution 96×96
baseline (58.8% accuracy at 19mJ per run), our adapted
models achieves 60.0% accuracy at only 14mJ per run.
Therefore, our model is able to reduce energy by 26% while
simultaneously increasing accuracy by 1.2%.

4.4. Comparisons with Alternative Adaptation and
Compression Approaches

In this section, we compare Chameleon with relevant
work, including:

1. MNAS [28]: this is an RL-based NN architecture
search algorithm for mobile devices.

2. AutoML model compression (AMC) [13]: this is an
RL-based automated network compression method.

3. NetAdapt [33]: this is a platform-aware filter pruning
algorithm that adapts a pre-trained network to a spe-
cific hardware under a given latency constraint.

4. MorphNet [9]: this is a network simplification algo-
rithm based on sparsifying regularization.

Table 3 compares different model compression and adap-
tation approaches on the Snapdragon 835 CPU, wherem, n,
and k refer to the number of network models, distinct plat-
forms, and use scenarios with different resource budgets,
respectively1. ChamNet yields the most favorable accuracy-
latency trade-offs among all models. Moreover, most exist-

1The latency LUT and pre-trained models are available at:
https://github.com/facebookresearch/mobile-vision



Table 3. Comparisons of different architecture search and model adaptation approaches.
Model Method Direct Scaling Latency(ms) Top-1

metrics based complexity accuracy (%)
MobileNetV2 1.3x [24] Manual − − 33.8 74.4
ShuffleNetV2 2.0x [21] Manual Y − 33.3 74.9
ChamNet-A EES Y O(m + n) 29.8 75.4
MobileNetV2 1.0x [24] Manual − − 21.7 71.8
ShuffleNetV2 1.5x [21] Manual Y − 22.0 72.6
CondenseNet (G=C=4) [16] Manual − − 28.7∗ 73.8
MnasNet 1.0x [28] RL Y O(m · n · k) 23.8 74.0
AMC [13] RL Y O(m · n · k) − −
MorphNet [9] Regularization N O(m · n · k) − −
ChamNet-B EES Y O(m + n) 19.9 73.8
MobileNetV2 0.75x [24] Manual − − 16.6 69.8
ShuffleNetV2 1.0x [21] Manual Y − 14.9 69.4
MnasNet 0.75x [28] RL Y O(m · n · k) 18.4 71.5
NetAdapt [33] Pruning Y O(m · k + n) 16.6 (63.6+) 70.9
ChamNet-C EES Y O(m + n) 15.0 71.6
MobileNetV2 0.5x [24] Manual − − 10.6 65.4
MnasNet 0.35x [28] RL Y O(m · n · k) 10.7 62.4
ChamNet-D EES Y O(m + n) 10.0 69.1
MobileNetV2 0.35x [24] Manual − − 9.3 60.3
ShuffleNetV2 0.5x [21] Manual Y − 8.8 60.3
ChamNet-E EES Y O(m + n) 6.1 64.2
We report five of our ChamNet models with A-30ms, B-20ms, C-15ms, D-10ms, and E-6ms latency constraints. ∗: The inference engine is faster than other

models. +: Ref. [33] reports 63.6ms latency with TensorFlow Lite on Pixel 1. For a fair comparison, we report the corresponding latency in our experimental

setup with Caffe2 on Samsung Galaxy S8 with Snapdragon 835 CPU.
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Figure 12. FLOPs distribution and stage-wise CPU processing
speed of MobileNetV2 and ChamNet on a mobile CPU.

ing approaches need to be executed at least once per net-
work per device per constraint [28, 33, 9, 13], and thus have
a total training cost of O(m · n · k). Chameleon only builds
m accuracy predictors and n resource predictors (e.g., la-
tency LUT), and thus reduces the cost to O(m + n). The
search cost is negligible once the predictors are built. Such
one-time costs can easily be amortized when the number
of use scenarios scales up, which is generally the case for
large-scale heterogeneous deployment.

We compare the FLOPs distribution at each stage (except
for avgpool and fc) for MobileNetV2 0.5x and ChamNet
with similar latency in Fig. 12. Our model achieves 71.6%
accuracy at 15.0ms compared to the MobileNetV2 that has
69.8% accuracy at 16.6ms. We have two observations:

1. ChamNet redistributes the FLOPs from the early
stages to late stages. We hypothesize that this is be-

cause when feature map size is smaller in the later
stages, more filters or a larger expansion factor are
needed to propagate the information.

2. ChamNet has a better utilization of computation re-
sources. We estimate the CPU processing speed at
each stage using the ratio of FLOPs and latency, as
shown with the green curve in Fig. 12. The operators
in early stages with large input image size have signifi-
cantly lower GFLOPs per second, hence incur a higher
latency given the same computational load. A possi-
ble reason is incompatibility between cache capacity
and large image size. Through better FLOPs redis-
tribution, ChamNet enables 1.8% accuracy gain while
reducing run-time latency by 5% against the baseline
MobileNetV2.

5. Conclusions

This paper proposed a platform-aware model adaptation
framework called Chameleon that leverages efficient build-
ing blocks to adapt a model to different real-world platforms
and use scenarios. This framework is based on very ef-
ficient predictive models and thus bypasses the expensive
training and measurement process. It significantly improves
accuracy without incurring any latency or energy overhead,
while taking only CPU minutes to perform an adaptation
search. At the same latency or energy, it achieves signifi-
cant accuracy gains relative to both handcrafted and auto-
matically searched models.
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