
A Framework for Online Updates to Safe Sets for Uncertain Dynamics

Jennifer C. Shih, Franziska Meier, Akshara Rai

Abstract— Safety is crucial for deploying robots in the real
world. One way of reasoning about safety of robots is by
building safe sets through Hamilton-Jacobi (HJ) reachability.
However, safe sets are often computed offline, assuming perfect
knowledge of the dynamics, due to high compute time. In the
presence of uncertainty, the safe set computed offline becomes
inaccurate online, potentially leading to dangerous situations on
the robot. We propose a novel framework to learn a safe control
policy in simulation, and use it to generate online safe sets
under uncertain dynamics. We start with a conservative safe
set and update it online as we gather more information about
our dynamics. We also show an application of our framework
to a model-based reinforcement learning problem, proposing a
safe model-based RL setup. Our framework enables robots to
simultaneously learn about their dynamics, accomplish tasks,
and update their safe sets. It also generalizes to complex high-
dimensional dynamical systems, like 3-link manipulators and
quadrotors, and reliably avoids obstacles, while achieving a
task, even in the presence of unmodeled noise.

I. INTRODUCTION

Machine learning can help robots adapt to unseen scenar-
ios, but the fear of damaging the robot or its environment
hinders its deployment in the real world. Combining learning
algorithms with control theoretic tools, developed to ensure
the safety of dynamical systems, can help with this. In our
work, we build on Hamilton-Jacobi (HJ) reachability [1],
a control-theoretic framework that offers safety guarantees
for dynamical systems. Intuitively, HJ reachability computes
the set of safe states and an action policy that can together
ensure that the system does not enter a dangerous zone. Once
safe sets are computed, they can be used in combination
with learning algorithms to build frameworks that can be
guaranteed to be safe, while achieving a given task.

However, computation of safe sets suffers from the curse
of dimensionality, due to discretization of the state space. [2]
reported taking 3 days for reachability computations on a 4-
dimensional system and exact computation of reachability is
intractable for systems with more than 5 dimensions. As a
result, the optimal safe policy and safe set are often com-
puted offline for low-dimensional systems, assuming perfect
knowledge of the dynamics. In the presence of uncertainties,
however, the pre-computed safe sets might not be valid, and
can lead to dangerous situations on the robot. This makes it
important to update the safe sets online. [3], [4] address this
for low-dimensional systems.

In this work, we present a least-restrictive safety frame-
work that can be used in combination with any type of

Jennifer Shih is with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley. cshih@berkeley.edu.
Franziska Meier, Akshara Rai are with Facebook AI Research. {fmeier,
akshararai}@fb.com

Sample dynamics
p 2 P

<latexit sha1_base64="+t1QwPYJEEWuiGxby6zBrW1BxZ8=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUmqoMuiG5cV7AOaUCbTSTt0MgkzE6XEfoobF4q49Uvc+TdO2iy09cDA4Zx7uWdOkHCmtON8W6W19Y3NrfJ2ZWd3b//Arh52VJxKQtsk5rHsBVhRzgRta6Y57SWS4ijgtBtMbnK/+0ClYrG419OE+hEeCRYygrWRBnY1QR4TyIuwHhPMs9ZsYNecujMHWiVuQWpQoDWwv7xhTNKICk04VqrvOon2Myw1I5zOKl6qaILJBI9o31CBI6r8bB59hk6NMkRhLM0TGs3V3xsZjpSaRoGZzCOqZS8X//P6qQ6v/IyJJNVUkMWhMOVIxyjvAQ2ZpETzqSGYSGayIjLGEhNt2qqYEtzlL6+STqPuntcbdxe15nVRRxmO4QTOwIVLaMIttKANBB7hGV7hzXqyXqx362MxWrKKnSP4A+vzB9RVk7o=</latexit>

Learn safe policy
⇡(x, p)

<latexit sha1_base64="XWLmucnglA8qfLykXrMYMnyFfYo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MVjBfsh7VKyabYNTXZDkhXL0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBZIzbVz328mtrK6tb+Q3C1vbO7t7xf2Dpo4TRWiDxDxW7QBryllEG4YZTttSUSwCTlvB6Gbqtx6p0iyO7s1YUl/gQcRCRrCx0kNXsvLTGZKnvWLJrbgzoGXiZaQEGeq94le3H5NE0MgQjrXueK40foqVYYTTSaGbaCoxGeEB7VgaYUG1n84OnqATq/RRGCtbkUEz9fdEioXWYxHYToHNUC96U/E/r5OY8MpPWSQTQyMyXxQmHJkYTb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXjnlerdRal2ncWRhyM4hjJ4cAk1uIU6NICAgGd4hTdHOS/Ou/Mxb8052cwh/IHz+QOHdI+S</latexit>

Offline

⇡(x, p)
<latexit sha1_base64="zdxT8e5HTqPZmdN4Ck022C7PM8w=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRahgpTdKuix6MVjBfsB7VKyabYNzWZjkhXL0j/hxYMiXv073vw3pu0etPXBwOO9GWbmBZIzbVz328mtrK6tb+Q3C1vbO7t7xf2Dpo4TRWiDxDxW7QBrypmgDcMMp22pKI4CTlvB6Gbqtx6p0iwW92YsqR/hgWAhI9hYqd2VrPx0Jk97xZJbcWdAy8TLSAky1HvFr24/JklEhSEca93xXGn8FCvDCKeTQjfRVGIywgPasVTgiGo/nd07QSdW6aMwVraEQTP190SKI63HUWA7I2yGetGbiv95ncSEV37KhEwMFWS+KEw4MjGaPo/6TFFi+NgSTBSztyIyxAoTYyMq2BC8xZeXSbNa8c4r1buLUu06iyMPR3AMZfDgEmpwC3VoAAEOz/AKb86D8+K8Ox/z1pyTzRzCHzifPy/Bj2g=</latexit>

Online

Apply u

x<latexit sha1_base64="hL+FaLtOT9luwfLW3Ut08xl3Pcw=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOeHjQA=</latexit>

p1
<latexit sha1_base64="dlkuLvRLPKTpeNEp4w3DSOdaGBU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPS9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAAzo2c</latexit>

p2
<latexit sha1_base64="zVqSm7nkuXHALgIZSph8/BQiwIg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AECUo2d</latexit>

p3
<latexit sha1_base64="rXdPTvkBqW2d2L8AhLnCerr/FmA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcD1o2e</latexit>

..
.

<latexit sha1_base64="0ZW7zev5s+KXEgsZB1DsBHuT0BE=">AAAB7HicbVBNSwMxEJ34WdevqkcvwSJ4WnaroMeiF48V3LbQLiWbZtvQbHZJskJZ+hu8eFDEqz/Im//GtN2Dtr4QeLw3w8y8KBNcG8/7RmvrG5tb25UdZ3dv/+CwenTc0mmuKAtoKlLViYhmgksWGG4E62SKkSQSrB2N72Z++4kpzVP5aCYZCxMylDzmlBgrBa5jX79a81xvDrxK/JLUoESzX/3qDVKaJ0waKojWXd/LTFgQZTgVbOr0cs0yQsdkyLqWSpIwHRbzZaf43CoDHKfKfmnwXP3dUZBE60kS2cqEmJFe9mbif143N/FNWHCZ5YZJuhgU5wKbFM8uxwOuGDViYgmhittdMR0RRaix+Tg2BH/55FXSqrv+pVt/uKo1bss4KnAKZ3ABPlxDA+6hCQFQ4PAMr/CGJHpB7+hjUbqGyp4T+AP0+QO2Bo1O</latexit>

pK
<latexit sha1_base64="hpWdTTXimiySbc24a1PNWBzgJJU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0InipaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8NOME/YgOJA85o8ZKD0nvrlcquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/8jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvHOK9X7i3LtOo+jAMdwAmfgwSXU4Bbq0AAGA3iGV3hzhPPivDsf89YVJ585gj9wPn8AKDaNtg==</latexit>

Calculate by rolling out
for different p 2 P̂

<latexit sha1_base64="0j/xGMoXnpVYAzie5g5wMh2qRkA=">AAACAHicbVBNS8NAEJ34WetX1IMHL4tF8FSSKuix6MVjBfsBTSib7aZdutmE3Y1QQi7+FS8eFPHqz/Dmv3HT5qCtDwYe780wMy9IOFPacb6tldW19Y3NylZ1e2d3b98+OOyoOJWEtknMY9kLsKKcCdrWTHPaSyTFUcBpN5jcFn73kUrFYvGgpwn1IzwSLGQEayMN7OMEeUwgb4x15kVYjwnmWSvPB3bNqTszoGXilqQGJVoD+8sbxiSNqNCEY6X6rpNoP8NSM8JpXvVSRRNMJnhE+4YKHFHlZ7MHcnRmlCEKY2lKaDRTf09kOFJqGgWms7hRLXqF+J/XT3V47WdMJKmmgswXhSlHOkZFGmjIJCWaTw3BRDJzKyJjLDHRJrOqCcFdfHmZdBp196LeuL+sNW/KOCpwAqdwDi5cQRPuoAVtIJDDM7zCm/VkvVjv1se8dcUqZ47gD6zPH8Pyloc=</latexit>

VP̂(x; T)
<latexit sha1_base64="PbgvA80kPYdHd6pdiOveg2v+Os0=">AAACA3icbVDLSsNAFJ34rPUVdaebwSLUTUmqoOCm6MZlhb6gCWEynbRDJ5MwMxFLCLjxV9y4UMStP+HOv3HSZqGtBy4czrmXe+/xY0alsqxvY2l5ZXVtvbRR3tza3tk19/Y7MkoEJm0csUj0fCQJo5y0FVWM9GJBUOgz0vXHN7nfvSdC0oi31CQmboiGnAYUI6UlzzzseKkzQip1QqRGGLG0mWVZ9eGqdeqZFatmTQEXiV2QCijQ9MwvZxDhJCRcYYak7NtWrNwUCUUxI1nZSSSJER6jIelrylFIpJtOf8jgiVYGMIiELq7gVP09kaJQykno6878Ujnv5eJ/Xj9RwaWbUh4ninA8WxQkDKoI5oHAARUEKzbRBGFB9a0Qj5BAWOnYyjoEe/7lRdKp1+yzWv3uvNK4LuIogSNwDKrABhegAW5BE7QBBo/gGbyCN+PJeDHejY9Z65JRzByAPzA+fwASG5fH</latexit>

⇡(x, µ̂)
<latexit sha1_base64="v3ZP/XKzQxfe2yaTDC8GNgNQVzI=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16WSxCBSlJFfRY9OKxgv2AJpTNdtsu3WzC7kYtsT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMC2LOlHacbyu3srq2vpHfLGxt7+zu2cX9pooSSWiDRDyS7QArypmgDc00p+1YUhwGnLaC0fXUb91TqVgk7vQ4pn6IB4L1GcHaSF276MWs/HiKvCHWqRcmk5OuXXIqzgxombgZKUGGetf+8noRSUIqNOFYqY7rxNpPsdSMcDopeImiMSYjPKAdQwUOqfLT2ekTdGyUHupH0pTQaKb+nkhxqNQ4DExniPVQLXpT8T+vk+j+pZ8yESeaCjJf1E840hGa5oB6TFKi+dgQTCQztyIyxBITbdIqmBDcxZeXSbNacc8q1dvzUu0qiyMPh3AEZXDhAmpwA3VoAIEHeIZXeLOerBfr3fqYt+asbOYA/sD6/AFmnJNy</latexit>

If safe If unsafe

u = utask
<latexit sha1_base64="uwtxaB2rOoCFOnp7MsNp4wiclKM=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9C0IvHCOYByRJmJ7PJkNkHMz1CWPIbXjwo4tWf8ebfOEn2oIkFDUVVN91dQSqFRtf9dgpr6xubW8Xt0s7u3v5B+fCopROjGG+yRCaqE1DNpYh5EwVK3kkVp1EgeTsY38389hNXWiTxI05S7kd0GItQMIpW6hlyQ0w/Q6rH03654lbdOcgq8XJSgRyNfvmrN0iYiXiMTFKtu56bop9RhYJJPi31jOYpZWM65F1LYxpx7Wfzm6fkzCoDEibKVoxkrv6eyGik9SQKbGdEcaSXvZn4n9c1GF77mYhTgzxmi0WhkQQTMguADITiDOXEEsqUsLcSNqKKMrQxlWwI3vLLq6RVq3oX1drDZaV+m8dRhBM4hXPw4ArqcA8NaAKDFJ7hFd4c47w4787HorXg5DPH8AfO5w+ZIZFn</latexit>

u = ⇡(x, µ̂)
<latexit sha1_base64="Yzo4nEIkKQRGyq3tE/oxRtF9OBc=">AAAB/nicbVDLSgNBEJyNrxhfq+LJy2AQIkjYjYJehKAXjxHMA7JLmJ1MkiEzs8s8xLAE/BUvHhTx6nd482+cJHvQxIKGoqqb7q4oYVRpz/t2ckvLK6tr+fXCxubW9o67u9dQsZGY1HHMYtmKkCKMClLXVDPSSiRBPGKkGQ1vJn7zgUhFY3GvRwkJOeoL2qMYaSt13AMDr2CQ0NLjKQwGSKcBN+OTjlv0yt4UcJH4GSmCDLWO+xV0Y2w4ERozpFTb9xIdpkhqihkZFwKjSILwEPVJ21KBOFFhOj1/DI+t0oW9WNoSGk7V3xMp4kqNeGQ7OdIDNe9NxP+8ttG9yzClIjGaCDxb1DMM6hhOsoBdKgnWbGQJwpLaWyEeIImwtokVbAj+/MuLpFEp+2flyt15sXqdxZEHh+AIlIAPLkAV3IIaqAMMUvAMXsGb8+S8OO/Ox6w152Qz++APnM8ffAiUjA==</latexit>

Update dynamics P̂, µ̂
<latexit sha1_base64="ZTcw9ZvuNDKyAZMqO9XI+kL4L3E=">AAACBXicbVBNS8NAEN34WetX1KMeFovgQUpSBT0WvXisYD+gCWWz3bZLN5uwOxFKyMWLf8WLB0W8+h+8+W/ctDlo64OBx3szzMwLYsE1OM63tbS8srq2Xtoob25t7+zae/stHSWKsiaNRKQ6AdFMcMmawEGwTqwYCQPB2sH4JvfbD0xpHsl7mMTMD8lQ8gGnBIzUs4+8EYHUCwmMKBFpI8vOcCElWc+uOFVnCrxI3IJUUIFGz/7y+hFNQiaBCqJ113Vi8FOigFPBsrKXaBYTOiZD1jVUkpBpP51+keETo/TxIFKmJOCp+nsiJaHWkzAwnfm5et7Lxf+8bgKDKz/lMk6ASTpbNEgEhgjnkeA+V4yCmBhCqOLmVkxHRBEKJriyCcGdf3mRtGpV97xau7uo1K+LOEroEB2jU+SiS1RHt6iBmoiiR/SMXtGb9WS9WO/Wx6x1ySpmDtAfWJ8/FROY8Q==</latexit>

Fig. 1: An outline of our approach. Offline, we learn a safety policy
π(x, p), which depends on the state x and dynamics parameters p,
by randomly sampling different dynamics parameters p. Online,
we roll out π(x, µ̂) using the current estimate of dynamics, and
use it to determine the safety value at current state x. If the state is
deemed safe, a task policy is applied, and otherwise a safety policy
is applied. Finally, the dynamics parameters P̂ and µ̂ are updated
based on the new data.

controllers under uncertain dynamics by updating safe sets
online for complex high-dimensional dynamical systems.
Specifically, we focus on scenarios where the dynamics
are inaccurate due to uncertainty in rigid body parameters
such as mass, inertia, and center of mass location of links.
This is a common source of uncertainty in robots, such as
manipulators, but their identification typically does not take
safety into account. In our proposed framework, we learn a
safe policy offline by considering a distribution of dynamics
for high-dimensional systems using reinforcement learning
(RL) by building on [5]. Online, we update the distribution
of our belief of the dynamics parameters from data, and re-
compute the safe set by forward simulating the safe policy
the new belief of our dynamics parameters. As a result,
we are not overly conservative during experiments, while
staying safe. Figure 1 provides a high level overview of our
approach.

The central ideas of in our framework can also be directly
used with learning approaches with optimization compo-
nents, like model-based RL [6]. We demonstrate incorpo-
rating safety derived from our framework in a model-based
RL setting, by adding a safety constraint to the optimization,
thereby proposing a safe model-based RL setup where the
safe policy and task policy can interact with each other.

Our work is a step towards online updating and sim-to-real
transfer of reachability sets for high-dimensional systems.
We test the efficacy of our proposed framework at avoiding
obstacles during random exploration on a 8-dimensional
quadrotor, and a 3-link manipulator (6-dimensional state

space). In our experiments, our approach is able to avoid
obstacles reliably, as compared to using a nominal safe
set, especially for complex dynamics such as the 3-link
manipulator in challenging scenarios. While our work is
shown only in simulation, we emulate sim-to-real differences
by perturbing dynamics parameters and adding unmodeled
noise. We also tested incorporating safety derived from our
framework a model-based RL setting on a 2-link manipulator
and show that it is much safer when learning to complete
a task compared to using standard model-based RL. Our
results showcases the robustness of our framework, and
opens promising applications to robotic systems in the future.

II. BACKGROUND AND RELATED WORK

Safety of dynamical systems has been widely studied in
control literature, and used in combination with learning
approaches to ensure safe learning. Constrained optimization,
for example with barrier functions, can also be used to certify
probabilistic safety [7] or guide exploration to safe regions
[8]. However, barrier function methods are generally limited
to control-affine systems and the uncertainty considered in
these papers are input-independent. MPC approaches have
also been proposed to address safety as in [9], [10]. However,
safety computations in these works are either applied to
linear systems or locally linear approximations of nonlinear
systems. In comparison, our proposed approach can be
applied to general nonlinear dynamical systems directly and
the uncertainty considered in our proposed framework can
be input-dependent.

Works such as [11], [12], [13] use Lyapunov functions to
guarantee or encourage safety during learning. However, [11]
requires a Lyapunov function for a given system, [12] is lim-
ited to discrete action spaces, and [13] uses approximations
in its proposed Lyapunov constraints when addressing safety.
This can limit their applicability to the safety of complex
high-dimensional complex robots.

Our paper focuses addressing safety with HJ reachability
[1], which is a control-theoretic framework that provides
safety guarantees for general dynamical systems. There is a
lot of work on guaranteeing safety of single-agent and multi-
agent systems using reachability under different assumptions
on the dynamics and agent formation, such as [14], [15],
[16], [17]. [18] provides an overview. We will address
the most relevant HJ reachability works in the following
subsections.

A. Hamilton Jacobi (HJ) Reachability

In this work, we focus on the single-agent setting for HJ
reachability. We consider a single-player system with state
x ∈ X and action u ∈ U and dynamics ẋ = f(x, u).
We assume that f is uniformly continuous, bounded, and
Lipschitz continuous in arguments x for fixed u. In addition,
the control function u(·) ∈ U is drawn from the set of
measurable functions.

Let Z represent the danger zone, which is a set of states
that the robot should avoid. We can use a level set function

l(x) to capture Z by defining it so that l(x) < 0 if and only
if x ∈ Z .

Let ξuuux(·) be a trajectory resulting from executing uuu(·) from
state x. Then the value function V at a state x is defined as

V (x) = sup
uuu(·)

inf
t≥0

l(ξuuux(t)).

Intuitively, V (x) is the closest the trajectory gets to danger
zone Z given the best possible control to avoid the danger
zone. We define the safe set K as K = {x : V (x) ≥ 0}
and the unsafe set as the complement of of the safe set K.
Intuitively, the safe set is the set of states such that there
exists at least one control strategy for the system to avoid
the danger zone Z .

For a finite time horizon t ∈ [0, T], this value function can
be computed by solving the Hamilton-Jacobi-Bellman vari-
ational inequality described in [1] for continuous systems.
In this work, we build on [5] for approximating the best
possible control with reinforcement learning (RL), which
typically adopts a discrete-time formulation. Hence in this
paper, we work with discrete-time version of reachability
and the infinite-horizon value function V (x) is defined as

V (x) = min

{
l(x),max

u∈U
V (x+ f(x, u)∆t)

}
.

In practice, due to errors introduced by discretization, it
is common to introduce a safety level ε > 0 such that the
safe set is defined as K = {x : V (x) ≥ ε} in order to ensure
safety. We adopt this convention in this paper.

B. Learning to approximate HJ safe sets

It is intractable to compute exact reachable sets for dynam-
ical systems with more than five states, due to discretization
of state space, and the resulting curse of dimensionality. As
a result, there has been some work on approximating safe
sets for high-dimensional problems.

[2] proposed to use function approximators to represent
the optimal safety policy for control-affine systems, which
in turn generates a safe set. [5] propose a time-discounted
Safety Bellman Equation that adapts the standard dynamic
programming backup to induce a contraction mapping in the
space of value functions. As a result, RL algorithms designed
for temporal difference learning can now be used to learn
safe sets for single-player systems.

In practice, we found that the method proposed by [5]
learns policies for complicated or high dimensional systems
more reliably. However, it assumes perfect knowledge of
the dynamics and hence does not account for discrepancies
between offline training and online environment, which can
cause the system to enter the danger zone online. We adapt
this approach to learn a safety policy under dynamics uncer-
tainty. Next, we use the learned safety policy to compute the
safe set online, while updating the estimate of the dynamics
from data.

C. Online updates to HJ safe sets in robotics problems

In this section, we give an overview of papers that address
online updates to safe sets in the presence of uncertainties

Algorithm 1: Online loop of proposed framework

Given : safety policy π(x, p), P̂0, µ̂0, x0, T , ε, t = 0
1 while t < T do
2 st = VP̂t(xt;T); // safety value based on P̂t, µ̂t
3 if st ≥ ε then
4 ut = any action (action from a learning

controller or random action)
5 else
6 ut = π(xt, µ̂t)
7 end
8 xt+1 = f(xt, ut; ptrue) ;
9 Update P̂t+1, µ̂t+1 using (xt, ut, xt+1) ;

10 t← t+ 1 ;
11 end

in dynamics or the environment. [3] propose to use local
updates and warm-start to generate safe sets online, as static
obstacles in the environment are detected. However, this
still relies on discretization of the state space and is hence
intractable for high-dimensional systems.

[4] use a Gaussian process (GP) to model uncertainty in
the dynamics of the system, followed by HJ reachability to
compute a safe set. However, this also relies on online re-
computation of HJ reachable sets, and is hence intractable
for high-dimensional systems. Moreover, the uncertainty
considered in this work is input-independent, which is easily
violated for common platforms such as robot manipulators.

In contrast, our online update framework can be used
on high-dimensional problems, and does not assume input-
independent disturbance. We assume inaccuracy in dynamics
parameters of a robot and aim to identify these parameters
online, while maintaining safety. This is relevant for tasks
such as lifting heavy objects, where the added mass can affect
a manipulator’s dynamics.

D. Model-based Reinforcement Learning

Our safety framework can be used in combination with
model-based reinforcement learning. In this section, we give
a brief overview of model-based RL, a sample-efficient learn-
ing framework, that has shown recent success at complex
robotics tasks [19].

Model-based reinforcement learning (MBRL) iteratively
tries to optimize a policy to accomplish a task, and learns
the dynamics of the robot. Similar to [19], we use model-
predictive control (MPC) to optimize the policy. The ob-
jective of model-predictive control (MPC) is to minimize
the cost J =

∑t+H−1
h=t c(xh,uh) with respect to the actions

ut:t+H−1 ≡ {ut, . . . , ut+H−1}, given the dynamics f over a
horizon H from current time t. The first action ut is applied
on the system, and the process repeats, starting with the new
current state.

We present an application of safe sets in model-based RL
in Section III-C.

III. FRAMEWORK FOR SAFE SET COMPUTATIONS FOR
UNCERTAIN DYNAMICS

Next, we present our framework for offline training and
online updates to safe sets, outlined in Figure 1. During the
offline phase, we train a safe policy π(x, p), which takes the
state x and dynamics parameters p as input. During the online
phase, we forward simulate this safe policy from the current
state x, using our current belief of the dynamics parameters.
This computes an approximate safety value function V (x)
under our range of estimated dynamics and safety policy
π(x, µ̂), where µ̂ is the current best estimate of the dynamics
parameters. If V (x) ≥ ε, we are in the safe set, and can apply
any action relating to the task. Otherwise, we apply the safe
policy to avoid entering the danger zone. The resulting state
transition on the robot is then used to update our belief about
the dynamics parameters p.

A. Offline computation of safety policy

During offline computation, we use reinforcement learning
to train a safety policy π(x, p) which is a function of both the
state x and the dynamics parameters p. Every N episodes, we
sample a new set of dynamics parameters p and use them
to collect data to train π(x, p). This data is generated by
sampling ’true’ dynamics parameters of the simulator from
the set P = [p − dp, p + dp] for some positive dp. For a
fixed p, the safe policy π(x, p) is thus trained on data from
a distribution of dynamics, with dynamics parameters drawn
from P , making it robust to slight variance in the estimated
dynamics. The value of dp is chosen based on the estimated
uncertainty on the dynamics parameters during test time.

To train π(x, p), we adapted the update rule from [5] to
suit our purposes. We use Soft Actor-Critic [20] to train
the policy and value function together, as a function of the
dynamics parameters p, along with the state. For our purpose,
the update rule of the Q-Value function we use during RL
training is:

Q(x, p, a)←(1− γ)l(x)+

γmin

{
l(x),max

a′∈U
Q(f(x, a; p), p, a′)

}
,

where f(x, a; p) is the discrete dynamics of the robot given
that its dynamics parameters are p and γ is the discount
factor.

B. Online updates to safe set

Given the safety policy π(x, p) learned offline, we can
generate safe sets online based on our estimate of the
distribution of the parameters p. We iteratively perform the
following steps at every time step, t: (1) Compute the safety
value VP̂t(x) of the current state x for the current estimate
of the dynamics parameters set P̂t. (2) Execute an action
on the robot based on whether the safety value is below the
safety threshold ε. (3) Update the estimate of the distribution
of the dynamics parameters using new data gathered.

Algorithm 1 summarizes our framework for the online
computations. We describe these three steps during the online
phase in detail below.

1) Computing the online safe set: At any given time
step t, we maintain an estimate of P̂t, a set that dynamics
parameters p fall in with high probability c. We also maintain
a current best estimate µ̂t of the parameters. For example,
for a one-dimensional p, if we estimate our belief of p with a
Gaussian distribution, i.e., p ∼ N (µ̂t, σ̂t) and c = 0.95, then
P̂t = [µ̂t−2σ̂t, µ̂t+2σ̂t]. P̂t can also be a discrete set if the
dynamics parameters are drawn from a discrete distribution.

The safety value at any state x at time t for a fixed time
horizon T is computed as follows:

VP̂t(x;T) = min
p∈P̂t

V (x; p, T), (1)

where V (x; p, T) is the estimated safety value for dynamics
parameter p and time horizon T . To compute V (x; p, T), we
roll out the optimal policy π(x, µ̂t) from x for horizon T .
We denote the resulting trajectory as ξπµ̂t ,Tx,p (·). Hence we
compute V (x; p, T) as follows

V (x; p, T) = min
t′∈{t,t+1,...,t+T}

l
(
ξ
πµ̂t ,T
x,p (t′)

)
. (2)

Intuitively, V (x; p, T) is the minimum distance between
the robot and the danger zone, when executing the policy
π(x, µ̂t), if the true dynamics parameters were p, over a
trajectory of length T . At any time t, we can compute the
safety values at all states x in the space and form a safety set
based on this. However, in practice, we only need the safety
value at the current state xt to determine the safety of the
robot. By taking the minimum of V (x; p, T) over all possible
dynamics parameters in P̂t when computing the safety value
VP̂t(x;T) at state x, the framework employs an avoidance
control if any dynamics parameter in P̂t results in a value
of V (x; p, T) that’s less than the safety threshold ε.

As described in Equation 1, to compute the safety value
VP̂t(xt;T) at xt, we need to forward simulate dynamics for
all p ∈ P̂t. When P̂t is a continuous set, in practice, we
discretize finely over P̂t and simulate the dynamics with
each of the discretized values of the dynamics parameters
in parallel.

Given our proposed approach, we now formally present a
proof of guaranteed safety of our proposed framework under
specific conditions.

Theorem 1: Assume that P̂t is a discrete set. For any time
t and state x, if the true dynamics parameter ptrue ∈ P̂t,
VP̂t(x;T) ≤ V ?(x; ptrue, T) for the fixed time horizon
T where V ?(x; ptrue, T) is the true value function based
on the true dynamics parameters ptrue under discrete-time
dynamics.

Proof: First, we remind the reader that V (x; p, T) is the
safety value at x derived from using policy π(x, µ̂t) as seen
in equation 2. Now we know that for any p, V (x; p, T) ≤
V ?(x; p, T) because π(x, µ̂) is at most as good as the true op-
timal policy π?(x, p). Hence, VP̂t(x;T) = min

p∈P̂t
V (x; p, T) ≤

min
p∈P̂t

V ?(x; p, T) ≤ V ?(x; ptrue, T), where the second in-

equality holds because ptrue ∈ P̂t under our assumption.

This implies that our framework results in a conservative
estimate of the true safe set under the aforementioned
assumptions, as long as ptrue ∈ P̂t. For cases where
dynamics parameters are drawn from a continuous set, we
discretely sample in the dynamics set P̂t. As a result, we
lose guaranteed safety, but we still demonstrate empirically
that using our proposed approach is safer than using nominal
safe sets.

2) Determining the action to take: If VP̂t(xt;T) ≥ ε, we
can guarantee that by executing the safe control π(xt, µ̂t),
we can avoid the danger zone for time horizon T , under
assumptions outlined in 1. Although these conditions may
not be satisfied in practice, this decision rule still provides
a good criterion for selecting whether or not to execute
the safe policy. When the robot is determined safe, we
can apply any action, such as an action determined by any
learning controller. When VP̂t(xt;T) < ε, we apply the
action determined by the safety policy. In this sense, we
have a least-restrictive safety framework such that the robot
is free to perform any action until it is close to the unsafe
set, at which point, the safety controller takes over.

3) Updating dynamics from data: To update our belief
about the dynamics parameters p, we can use any system
identification approach that gives us a probabilistic estimate
of p. Identifying dynamics parameters such as for robot
manipulators is widely studied in robotics, such as in [21],
[22]. In this paper, we use Bayesian Linear Regression
(BLR) to update our belief over µ̂t and σ̂t for the Gaussian
distribution, and in turn use them to update P̂t. Please see
Chapter 3 [23] for details about Bayesian Linear Regression
(BLR). This gives us an online, continual way of learning
dynamics parameters that can easily generalize to tasks such
as picking and placing heavy objects. In cases where the
uncertain parameters are not linear in the dynamics, we can
use more advanced techniques for parameter identification,
such as [22].

C. Safe Model-based Reinforcement Learning

Our approach can easily be used in combination with
model-based learning approaches, like model-based RL. We
add a safety constraint to the model-based RL optimization,
which renders the search for the optimal policy to be biased
towards safety. Given current state xt and the current best
estimate µ̂t of the parameters, the safe model-based RL
optimization problem becomes

ut:t+H−1 = arg minut:t+H−1

t+H−1∑
h=t

c(xh, uh) (3)

s.t. xh+1 = f(xh, uh; µ̂t) (4)
VP̂t(xh+1;T) ≥ ε ∀h ∈ {t, . . . , t+H − 1} (5)

where f(xh, uh; µ̂t) is the discrete dynamics function assum-
ing the dynamics paramters are µ̂t. After ut is applied on the
robot, the (state,action,next state) transition is measured and
used to update the our belief about the dynamics. The current
state is updated to the new state, and the process repeated.
If no feasible action sequence can be found, the safety

policy is applied, i.e., ut = π(xt, µ̂t). [24] propose a related
setup for model-predictive control, with ellipsoidal safe sets
with linearized dynamics. On the other hand, our approach
incorporates safety directly using the original dynamical
system.

Note that the planning horizon H is typically chosen to be
much shorter than the safety horizon T . This is because in-
creasing H increases the dimensionality of the optimization
(actions ut:t+H−1). Due to non-convexity of the problem,
this can lead to poorer solutions for longer horizons. On the
other hand, T does not affect the optimization dimension,
and can be much larger. This ensures that even though our
model-based RL algorithm has a short foresight, our safety
constraint maintains a longer horizon plan for safety. We
use random sampling in the space of actions to optimize the
optimization problem described in Equation 3.

IV. ILLUSTRATION : DUBINS CAR

In this section, we demonstrate our proposed framework
on a 3-dimensional Dubins car obstacle avoidance problem.
The dynamics of Dubins car can be described as:

q̇x = v cos θ, q̇y = v sin θ, θ̇ = ω. (6)
The 3-dimensional state variables qx, qy, θ represent the
(x, y)-position and the heading of the vehicle. v is the
constant speed. The control input ω is the rate of change
of the heading of the vehicle. Input is constrained to be
|ω| ≤ 1. The uncertain dynamics parameter p is the speed
v, emulating measurement noise or sensor biases. The initial
estimated speed is v̂0 = 1.8 m/s, while the true speed is
vtrue = 2.0 m/s. We add Gaussian noise with zero mean and
standard deviation 0.1 to the transitions of the true dynamics
model to further simulate differences between simulation and
real world.

A. Obstacle avoidance with our framework vs. using a
nominal safe set

Figure 2 shows an example where the vehicle is avoiding
an obstacle (red) and reaching a goal (green). Our method
starts with the initial estimate v̂0 = 1.8, σ̂0 = 0.3, which
gives us P̂0 = [1.2, 2.4]. On the other hand, the baseline as-
sumes the nominal speed v̂0 = 1.8 throughout the execution.

During the offline learning phase, we use Q-learning to
train the optimal safety policy π(x, p). Online, as more data
is collected, our estimate of dynamics is updated and the
safety set is updated online as described in Section III-B.1.

As seen in Figure 2, with our approach, the vehicle suc-
cessfully avoids the obstacle and reaches the goal (top row),
while with the safe set from inaccurate nominal dynamics,
the vehicle hits the obstacle (bottom row). The black and grey
curves in each figure show the initial unsafe set computed
based on the estimated speed and the true speed, respectively.
As expected, the unsafe set (black) computed using our
framework is larger than the true unsafe set (grey), as we take
into account the uncertainty in the dynamics. However, as
we learn more about the dynamics and update our estimated
safe set, the difference between our estimate and the true
safe set becomes smaller. This experiment shows the benefit

(a) Ours at t = 0 (b) Ours at t = 10

(c) Nominal at t = 0 (d) Nominal at t = 8

Fig. 2: Behavior of using our framework (top row) vs. using the
nominal safe set (bottom row). Our framework avoids obstacle (red)
early and successfully reaches the goal (green). Using the nominal
speed, the vehicle avoids too late, and hits the obstacle. The blue
dots represent trajectory to the current frame and the green dots
in the top right graph illustrate future trajectory. For each safe set
plot, we plot the slice of the safe set over x-y plane at the current
heading θ of the vehicle.

of using our framework even when the estimation error in
the dynamics parameter is small.

For this 3-dimensional system, at each time step, the
computation time for updating estimate of dynamics and
computing the updated safe value is about 1× 10−4 s and
0.056 s respectively. In comparison, [4] take about 2 s to re-
compute the safety set for a 2-dimensional system.

B. Benefit of online update vs. conservative initial estimate

Offline, we learn a conservative estimate of the safe set
which can keep the system safe. However, it can be too
restrictive in some settings, and online updates can help
achieve better performance by making the safe set less
restrictive over time. This is illustrated in Figure 3, where
using the initial conservative estimate (bottom row) causes
the vehicle to miss the goal as it starts avoiding the obstacle
too soon. On the other hand, using the updated safe set (our
approach, top row) allows the robot to reach the goal.

V. EXPERIMENTS

In this section, we present experimental results on 2-
link and 3-link manipulators (4D and 6D problems), and
an 8D quadrotor system. We perform extensive experiments
to compare performance of our framework against standard
reachability, with inaccurate nominal dynamics. Furthermore
we present results on the benefit of using MBRL with safety
constraints derived from our framework, versus using MBRL
with no safety constraints.

We experiment with two different kinds of scenarios,
random and challenging. We observe that the system gets

(a) With updates at t = 6 (b) With updates at t = 12

(c) No updates at t = 6 (d) No updates at t = 13

Fig. 3: Benefit of using online updates (top row) vs. using the
initial conservative estimate (bottom row) of the safe set without
updating our dynamics estimate. The black curve shows the unsafe
set. Both methods ensure safety, however, always using the initial
estimate can make the system overly cautious and miss the goal.

closer to unsafe states much more commonly in challenging
scenarios than random scenarios. In general, our method
shines in conditions that were tough. For safety, it is im-
portant to avoid obstacles in all scenarios, and challenging
initial conditions showcase the robustness of our approach
vs. using the nominal safe set.

In all trials across different scenarios and methods, the
nominal dynamics parameter is always p̂0 = 2. For the
random initialization, the true dynamics is sampled from
the set ptrue ∼ uniform[p̂0 − 2σ, p̂0 + 2σ] and for the
difficult scenario the true dynamics is sampled from ptrue ∼
uniform[p̂0 − 2σ, p̂0], for σ = 0.1, 0.3.

In our first set of experiments, we simulate 200 trials for
various dynamical systems. Each trial lasts for T = 100 time
steps. We define a trial successful if the robot does not hit
any obstacle throughout the entire trial, and terminate early
if it hits the obstacle. In each trial, we apply a uniformly
random action, if the algorithm determines that the robot is
safe, and apply the safety policy otherwise. We compare the
rate of success of our framework with that of a nominal safe
set with inaccurate dynamics. We use Soft Actor-Critic [20],
implementation from [25], to train the safety policy π(x, p)
for all dynamical systems.

Both methods start from the same, safe initial condition.
To emulate sim to real differences, we add random Gaussian
noise with zero mean and standard deviation of 0.1 to the
control inputs for all systems. Note that the noise added to
the control input does not satisfy the assumptions of BLR
(III-B.3), but our proposed method consistently outperforms
the baseline in challenging scenarios. In addition, for the
3-link manipulator, we also performed an extensive experi-
ment where our framework assumes a damping coefficient
different from the true damping coefficient, without updating
our belief. This shows the robustness of our approach to
situations that violate the assumptions of our algorithm.

A. 2-link manipulator

We consider the task of safely controlling a 2-link manip-
ulator in the x-y plane. The dynamics of a manipulator are:

M(q)q̈ + C(q, q̇)q̇ = u. (7)

Here q = [θ1, θ2] are the joint angles of the two links, M(q)
is the inertia matrix, and C(q, q̇) is the Coriolis matrix. The
full state of the system is 4-dimensional, x = [θ1, θ2, θ̇1, θ̇2].
u = [τ1, τ2] is the 2-dimensional control input or torque
in the joints, which is constrained to |τ1| , |τ2| ≤ 1. We use
simplified dynamics with masses at the end of each link (each
of length 1.0 m), and first mass m1 =1.0 kg. The uncertainty
in the dynamics comes from uncertainty in the mass at the
end-effector p = m2. The square obstacle has edge length
1.0m.

While we did not consider gravity in our dynamics in
Equation 8, these dynamics generalize to manipulators with
manufacturer-provided gravity compensation, such as Kuka
LBR [26]. The initialization of the states for the random and
challenging scenarios are:

[θ1, θ2] [θ̇1, θ̇2]

Random [0, 0] + xrand [0, 0] + dxrand

Challenging [π
7
, π
6
] + xchal [0.3, 0.4] + dxchal

where each variable is sampled from the uniform dis-
tribution within the range: xrand : [−π, π] rad, dxrand :
[−0.5, 0.5]rad/s, xchal : [−0.5, 0.5] rad, and dxchal :
[−0.5, 0.5]rad/s. Figure 4 visualizes the challenging initial
conditions.

As summarized in Table I, with random initialization, the
success rates for our proposed framework and using the
nominal safe sets are similar. However, in the challenging
scenario with σ = 0.3, our approach successfully avoids the
obstacle with a 99.5% success rate, while using the nominal
safe set only succeeds 85% of the time. This shows that
even on a 4-dimensional system, inaccurate dynamics can
adversely affect the performance of safety approaches, espe-
cially in challenging scenarios. In such a case, online updates
to the safe sets can significantly improve rate of successfully
avoiding obstacles, and other dangerous situations.

B. 3-link manipulator

The 3-link manipulator has similar dynamics to the 2-
link system, but with an additional link. This makes the
state space 6-dimensional and action space 3-dimensional,
adding computational complexity. The full state is x =
[θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]. u = [τ1, τ2, τ3] is the torque, where
|τ1| |τ2| , |τ3| ≤ 1. Note that this system is intractable for
standard reachability. The manipulator has masses m1 =
1.0,m2 = 2.0 and m3 at the end of each link (each of
length 1.0). The uncertainty in the dynamics comes from
uncertainty in the mass at the end-effector p = m3.

The initialization of the states are described as follows:
[θ1, θ2, θ3] [θ̇1, θ̇2, θ̇3]

Random [0, 0, 0] + xrand [0, 0, 0]+rand

Challenging [π
7
, π
6
, π
5
] + xchal [0.2, 0.2, 0.2] + dxchal

where each variable is sampled from the uniform dis-
tribution within the range: xrand : [−π, π] rad, dxrand :
[−0.5, 0.5] rad/s, xchal : [−0.2, 0.2] rad, and dxchal :
[−0.2, 0.2] rad/s. Figure 4 visualizes the challenging initial
conditions.

Fig. 4: Environments and the challenging initial conditions that
we randomize around for the 2-link and 3-link manipulators exper-
iments. The arrows represent the velocities at the joints and end
effectors. The red squares are the obstacles.

In the random initialization scenario, we observe compa-
rable performance between our framework v.s. the baseline,
with ours succeeding 96.5% of the time and the baseline
succeeding 91.5% of the time for σ = 0.3. Our framework
shines in this complicated dynamical systems in difficult
scenarios, with the success rate being 53.0% with our
framework and 35.5% for the baseline for σ = 0.1. The
performance of all reachability approaches gets worse as
the complexity of the dynamics increase, but nominal safe
set computations are more brittle than our framework. This
highlights the need for robust, reliable and online updated
reachability sets, especially for complex high-dimensional
systems. The complete results are summarized in Table I.

C. 3-link damped manipulator

We also consider a damped variant of a 3-link manipulator,
whose dynamics are given by

M(q)q̈ + C(q, q̇)q̇ +Bq̇ = u. (8)

Here, B is the damping coefficient and the rest of the
notations are identical to Equation 8. The experimental
settings are exactly identical to the non-damped version de-
scribed previously, except for the added damping. To emulate
unmodelled, sim-to-real differences, we do not update the
damping coefficient of our dynamics. The inaccuracy in
dynamics arises from the mass of the last link m3, as well
as the dampling B. m3 is updated online, while B is not.

For all experiments, we fix the inaccurate damping coef-
ficient to be 0.4. In each trial, for the random scenarios, the
true damping coefficient is sampled from a uniform distri-
bution between [0.3, 0.5] while in the challenging scenario,
the true damping coefficient is sampled from a uniform
distribution between [0.3, 0.4]. Our experiments show that
even with such unmodelled disturbances, our approach can
avoid obstacles 87% of the time in challenging scenarios
with σ = 0.3. On the other hand, the nominal safe set
only avoids the obstacle 64.5% of the time. This shows that
our framework learns a robust representation of the safe set,
that generalizes to unmodelled disturbances, and successfully
avoids the danger zone. Note that the success rates are higher
than those from 3-link manipulator without damping in the
previous section because adding damping makes it easier to
learn a good safe policy offline.

D. Quadrotor (8-dimensional system)

We also consider an 8-dimensional quadrotor dynamical
system for our experiments. The states of the quadrotor are

[x, y, z, vx, vy, vz, θ, φ], where x, y, z are the positions in x-
y-z space, vx, vy, vz are the velocities, and θ, φ are the roll
and yaw angles. Assuming gravity g, the dynamics are:

q̇x = vx, q̇y = vy, q̇z = vz (9)
v̇x = gtanθ, v̇y = −gtanφ (10)

v̇z =
uz
m
− g, θ̇ =

uθ
m
, φ̇ =

uφ
m
. (11)

The input to the systems are forces uθ, uφ, uz that directly
affect the vertical and rotational accelerations of the quadro-
tor. The uncertainty in the dynamics arise from uncertainty
over the mass m. The bounds on the control are: |uθ| , |uφ| ≤
0.1 and uz ∈ [g − 2.0, g + 2.0]. The obstacle is a cube at
[qx, qy, qz] = [0, 0, 0] with edge length 1.0.

The initialization of the states are described as follows:

[qx, qy , qz] [vx, vy , vz]

Random [0, 0, 0] + xrand [0, 0, 0] + dxrand

Challenging qx = 0, qy = 0, qz = xchal [0, 0, 0] + dxchal

where xrand and dxrand are sampled from the uni-
form distribution within the range: xrand : [−2, 2]m,
dxrand : [−0.2, 0.2]m/s, xchal : [0.55, 0.6]m, and dxchal :
[−0.1, 0]m/s. For both random and challenging scenarios, the
initial [θ, φ] is always [0, 0]rad in the experiment.

Even though the quadrotor is higher dimensional than
the manipulators, the control of the quadrotor dynamics is
simpler. Hence, it is easier to find control policies that can
successfully avoid the obstacle from most initial conditions.
Both the nominal safe set and updated safe set have close to
100% success at avoiding the obstacle for random initializa-
tion. For the challenging scenario, we amplified the difficulty
by applying a downward uz when safe, instead of a random
action. In this setting with σ = 0.3, our framework has a
success rate of 95% while the baseline has a success rate of
85%, again displaying the robustness of our framework as
compared to the nominal safe set. Results are summarized
in Table I.

The compute time of updating the safe sets online for the
different dynamical systems is shown in Table II, demonstrat-
ing that our framework is very fast at updating dynamics and
corresponding safe sets.
E. Experiments with safe model-based RL

In this section, we present experimental results on applying
our proposed method for maintaining safety under uncertain
dynamics to model-based RL as described in section III-C.
First we demonstrate qualitatively the benefit of incorporat-
ing safety in MBRL in Figure 5. When considering safety,
the 2-link manipulator learns to apply actions that avoid the
obstacle (red) while reaching the goal (green). On the other
hand, standard MBRL without safety hits the obstacle while
getting to the goal. Both approaches start at the same initial
configuration, [θ1, θ2, θ̇1, θ̇2] = [− π

12 ,
13π
20 , 0, 0]. The obstacle

is a square centered at [x, y] = [0, 1.5] with side length 1.0
and the goal is a circle centered at [x, y] = [1.5, 1.0] with
radius 0.03. The uncertainty comes from the mass m2 at the
end-effector.

2-link manipulator (4D) 3-link manipulator (6D) 3-link-damped (6D) Quadrotor (8D)

σ = 0.1 σ = 0.3 σ = 0.1 σ = 0.3 σ = 0.1 σ = 0.3 σ = 0.1 σ = 0.3

Random Nominal (Baseline) 99.5 97 93.5 91.5 97 98.5 100 99.5
Our framework 100 98.5 93.5 96.5 98.5 97 100 98.5

Challenging Nominal (Baseline) 93 85 35.5 27.5 80.5 64.5 89.5 85
Our framework 99 99.5 53 39.5 93.5 87 93.5 95

TABLE I: In this table, we show comparisons of success rates between using our framework and the nominal safe set. For the scenario
using completely random initialization, our framework performs slightly better than the baseline. This is due to the fact that with this
initialization, the robot rarely gets to a situation where it’s close to being unsafe. However, to test the robustness of our approach and
the baseline, we consider random initialization around challenging scenarios. We can clearly see the performance benefit with using our
method in these scenarios, especially for systems with complicated dynamics such as the 3-link robot arm. Here σ determines the range
of values we sample the true dynamics parameter ptrue from and is explained in detail in the text.

2-link 3-link Quadrotor

Compute time 0.17 s 0.25 s 0.10 s

TABLE II: Average computation time for re-computing safety
values at each time step. Even though the quadrotor has higher
number of dimensions, its dynamics are much simpler than the
those of the manipulators

To compare safe MBRL with standard MBRL, we ran a
large scale experiment with 100 randomized runs to evaluate
the effect of incorporating safety into MBRL. For each trial,
the obstacle location and the initial state are identical to
that presented in Figure 5. We randomize the goal location
for each run. We set the maximum time steps allowed to
reach the goal for both methods to be 300, with integration
time-step dt = 0.1. For each run, both methods (with
and without safety constraints) start with the same initial
condition and have the same goal. A trial terminates early
when the robot hits the obstacle or reaches the goal. For this
set of experiments, the dynamics uncertainty comes from the
mass at the end-effector. The true mass at the end-effector
is p = m2 = 2.4. For both approaches, we start with
an initial belief of the uncertain dynamics parameter as a
Gaussian distribution with mean 2.2 and standard deviation
0.1 and update the belief over time as MBRL runs. Note
that both approaches update the dynamics parameter using
BLR, as in Section III-B.3, but MBRL with safety explicitly
reasons about safety using our framework when solving the
optimization in Equation 3.

The results are summarized in table III. Completion rate
indicates the percentage of trials in which the robot reaches
the goal without hitting the obstacle, and collision rate refers
to the numb er of trials with collision out of all runs. We
can see that by incorporating safety in MBRL, the collision
rate is 4% compared with 21% when not incorporating
safety. Hence using MBRL with safety leads to a much safer
learning process.

VI. CONCLUSION AND FUTURE WORK

In this work, we present a framework for offline training
and online updates to safe sets in the context of Hamilton-
Jacobi reachability analysis. We start by learning a robust
safe policy by considering a distribution over dynamics.
This is then used online to generate safe sets by rolling out
the safe policy from a given state and current estimate of
the dynamics. Simultaneously, we collect dynamics data to

With safety Without safety

Completion rate 93 77
Collision rate 4 21

TABLE III: This table summarizes our large scale experimental re-
sults for incorporating safety into MBRL. Completion rate indicates
the percentage of runs the robot reaches the goal without hitting the
obstacle. We can see that incorporating safety in MBRL decreases
the collision rate considerably. Note that the sum of completion
rate and collision rate is not 100% because there are runs where
the robot neither reaches the goal nor hits an obstacle as we set a
limit on the number of time steps allowed for task completion.

(a) MBRL with safety (b) MBRL without safety

Fig. 5: With the same initial configuration (grey), MBRL with
safety learns to reach the goal (green) without hitting the obstacle
while MBRL without safety hits the obstacle while moving towards
the goal. Without safety, the robot speeds towards the goal greedily
and needs to turn around due to torque saturation. It ends up hitting
the obstacle while with safe MBRL, the robot moves slowly and
safely towards the goal.

update our estimate of the dynamics parameters. This gives
rise to a safe learning framework that can learn about its
dynamics, and achieve a task, while maintaining safety. Our
framework generalizes to high-dimensional systems, such
as 3-link manipulators and quadrotors, and reliably avoids
obstacles in challenging scenarios, where using a nominal
safe set might fail. In addition, we demonstrate that the
central idea of our framework can be used in combination
with MBRL to learn to accomplish a task safely.

While our experimental results demonstrate that our
framework is robust to uncertainties in dynamics, our ex-
periments are conducted in simulation with added noise and
unmodeled inaccuracy in the dynamics parameters. The next
step is to study this approach on a real high-dimensional
robot arm. In such cases, some of the modeling inaccuracy
arises from inertial parameters, but there are also other
sources of inaccuracy, such as state-dependent friction co-

efficient, which are not captured in our current setup. In
the future, we would like to study more general dynamics
and safety learning approaches that can generalize to such
problems.

REFERENCES

[1] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games,”
IEEE Transactions on Automatic Control, vol. 50, no. 7, pp. 947–957,
2005.

[2] V. Rubies-Royo, D. Fridovich-Keil, S. Herbert, and C. J. Tomlin, “A
classification-based approach for approximate reachability,” in 2019
International Conference on Robotics and Automation (ICRA), May
2019, pp. 7697–7704.

[3] A. Bajcsy, S. Bansal, E. Bronstein, V. Tolani, and C. J. Tom-
lin, “An efficient reachability-based framework for provably safe
autonomous navigation in unknown environments,” arXiv preprint
arXiv:1905.00532, 2019.

[4] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, July 2019.

[5] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin,
“Bridging hamilton-jacobi safety analysis and reinforcement learning,”
in 2019 International Conference on Robotics and Automation (ICRA),
May 2019, pp. 8550–8556.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of
quadrotor dynamics using barrier certificates,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2460–2465.

[8] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-
critical continuous control tasks,” CoRR, vol. abs/1903.08792, 2019.
[Online]. Available: http://arxiv.org/abs/1903.08792

[9] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety
certification for learning-based control,” CoRR, vol. abs/1803.08552,
2018. [Online]. Available: http://arxiv.org/abs/1803.08552

[10] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
Conference on Decision and Control (CDC), 2018, pp. 6059–6066.

[11] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Proc. of Neural Information Processing Systems (NeurIPS), 2017.
[Online]. Available: https://arxiv.org/abs/1705.08551

[12] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” in Advances
in Neural Information Processing Systems, 2018, pp. 8092–8101.

[13] Y. Chow, O. Nachum, A. Faust, M. Ghavamzadeh, and E. Duenez-
Guzman, “Lyapunov-based safe policy optimization for continuous
control,” arXiv preprint arXiv:1901.10031, 2019.

[14] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin,
“Decomposition of reachable sets and tubes for a class of nonlinear
systems,” IEEE Transactions on Automatic Control, vol. 63, no. 11,
pp. 3675–3688, Nov 2018.

[15] A. Dhinakaran, M. Chen, G. Chou, J. C. Shih, and C. J. Tomlin,
“A hybrid framework for multi-vehicle collision avoidance,” in 56th
IEEE Annual Conference on Decision and Control, CDC 2017,
Melbourne, Australia, December 12-15, 2017, 2017, pp. 2979–2984.
[Online]. Available: https://doi.org/10.1109/CDC.2017.8264092

[16] M. Chen, J. C. Shih, and C. J. Tomlin, “Multi-vehicle
collision avoidance via hamilton-jacobi reachability and mixed
integer programming,” in 55th IEEE Conference on Decision
and Control, CDC 2016, Las Vegas, NV, USA, December
12-14, 2016, 2016, pp. 1695–1700. [Online]. Available:
https://doi.org/10.1109/CDC.2016.7798509

[17] S. Bansal, M. Chen, J. F. Fisac, and C. J. Tomlin, “Safe sequential
path planning under disturbances and imperfect information,” in 2017
American Control Conference (ACC), May 2017, pp. 5550–5555.

[18] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
reachability: A brief overview and recent advances,” 2017.

[19] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in Advances in Neural Information Processing Systems, 2018,
pp. 4754–4765.

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2017.

[21] C. H. An, C. G. Atkeson, and J. M. Hollerbach, “Estimation of inertial
parameters of rigid body links of manipulators,” in 1985 24th IEEE
Conference on Decision and Control. IEEE, 1985, pp. 990–995.

[22] J.-A. Ting, A. D’Souza, and S. Schaal, “Bayesian robot system
identification with input and output noise,” Neural Networks, vol. 24,
no. 1, pp. 99–108, 2011.

[23] C. M. Bishop, Pattern Recognition and Machine Learning. New
York: Springer, 2007.

[24] T. Koller, F. Berkenkamp, M. Turchetta, J. Boedecker, and A. Krause,
“Learning-based model predictive control for safe exploration and
reinforcement learning,” 2019.

[25] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus,
“Improving sample efficiency in model-free reinforcement learning
from images,” arXiv preprint arXiv:1910.01741, 2019.

[26] Kuka LBR iiwa. [Online]. Available: https://www.kuka.com/en-
us/products/robotics-systems/industrial-robots/lbr-iiwa

