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Abstract

Algorithms for hyperparameter optimization abound, all of which work well
under different and often unverifiable assumptions. Motivated by the general
challenge of sequentially choosing which algorithm to use, we study the more
specific task of choosing among distributions to use for random hyperparameter
optimization. This work is naturally framed in the extreme bandit setting, which
deals with sequentially choosing which distribution from a collection to sample
in order to minimize (maximize) the single best cost (reward). Whereas the
distributions in the standard bandit setting are primarly characterized by their
means, a number of subtleties arise when we care about the minimal cost as
opposed to the average cost. For example, there may not be a well-defined “best”
distribution as there is in the standard bandit setting. The best distribution
depends on the rewards that have been obtained and on the remaining time
horizon. Whereas in the standard bandit setting, it is sensible to compare policies
with an oracle which plays the single best arm, in the extreme bandit setting, there
are multiple sensible oracle models. We define a sensible notion of regret in the
extreme bandit setting, which turns out to be more subtle than in the standard
bandit setting. We then prove that no policy can asymptotically achieve no
regret. Furthermore, we show that in the worst case, no policy can be guaranteed
to perform better than the policy of choosing each distribution equally often.

1 Introduction

Our motivation comes from hyperparameter optimization and more generally from the chal-
lenge of minimizing a black-box objective f : Ω → [0, 1] which we can only evaluate point-
wise. As an example, ω ∈ Ω may parameterize the architecture of a convolutional network,
and f(ω) may be the validation error when the network with that architecture is trained
on a particular data set. A number of approaches have been applied to the optimization
of f including Bayesian optimization, covariance matrix adaptation, random search, and a
variety of other methods (for an incomplete list, see [1, 2, 11, 8, 14, 9, 10, 7]).

In some sense, random search is the benchmark of choice. Whereas other approaches work
well under various and often unverifiable conditions (such as smoothness or convexity of
the objective), random search has strong finite-sample guarantees that hold without any
assumptions on the function under consideration. This guarantee is illustrated by the so-
called rule of 59,1 which states that the best of 59 random samples will be in the best 5
percent of all samples with probability at least 0.95. More generally, any distribution over
the set of hyperparameters Ω induces a distribution µ over the validation error in [0, 1]. Let
Fµ be the cumulative distribution function of µ, and suppose that Fµ is continuous. Suppose
that x1, . . . , xT are independent and identically-distributed samples from µ (obtained, for
instance, by independently sampling hyperparameters ωt and evaluating xt = f(ωt) for
1 ≤ t ≤ T ). The following is known.

1Though they are known, the rule of 59 and Lemma 1 do not appear in Bergstra and Bengio
[1], and they are difficult to find in the literature.
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Lemma 1. The distribution of the extreme cost min{x1, . . . , xT } is easily described with
quantiles. We have P (Fµ(min{x1, . . . , xT }) ≤ α) = 1 − (1 − α)T . More specifically,
Fµ(min{x1, . . . , xT }) is a Beta(1, T ) random variable.

Proof. The event Fµ(min{x1, . . . , xT }) > α happens if and only if Fµ(xt) > α for each t,
which happens with probability (1−α)T . Differentiating the resulting cumulative distribu-
tion function gives the density function of a Beta(1, T ) random variable.

The generality of Lemma 1 comes at a price. The guarantee is given with respect to the
distribution µ, but there is no guarantee about µ itself. Different induced distributions µ
may arise from different parameterizations of the hyperparameter space Ω (for example,
from the decision to put a uniform or a log-uniform distribution over a coordinate of ω),
and the allocation of mass over [0, 1] may vary wildly based on these choices.

Furthermore, the flip side of making no assumptions on the underlying objective is that ran-
dom search fails to adapt to easy problems. When the objective under consideration satisfies
various regularity conditions (as real-world objectives often do), more heavily-engineered ap-
proaches will likely outperform random search. That said, it is not clear how to know that
a given algorithm is outperforming random search without also running random search. For
this reason, the benefits of a potentially faster algorithm are blunted when one must also
run the slow algorithm to verify the performance of the fast algorithm.

Given the variety of existing hyperparameter optimization algorithms, it would be desirable
to devise a strategy for sequentially choosing which algorithm to use in a way that performs
nearly as well as if we had only used the single best algorithm. We consider the simpler
problem of choosing which of several distributions over hyperparameters to use for random
search. In Theorem 12, we show that even in this simplified setting, no strategy guarantees
performance that is asymptotically as good as the single best distribution, at least not
without stronger assumptions.

We will frame our negative result in the extreme bandit setting [5] (also called the max K-
armed bandit setting [6]). Prior work has focused on designing algorithms that perform
asymptotically as well as the single best distribution under parametric (or semiparametric)
assumptions on the possible distributions [6, 5]. Instead, we focus on probing the difficulty
of the problem, pointing out a number of subtleties that arise in this setting that do not
show up in the conventional bandit setting.

2 The Extreme Bandit Setting

Cicirello and Smith [6] introduce the extreme bandit problem (they call it the max K-armed
bandit problem) as follows. We are given a tuple of unknown distributions (arms) µK

1 =
(µ1, . . . , µK). The kth distribution generates sample xk,t at time t, for integer t ≥ 1, and all
of the samples xk,t are independent. A policy π is a function that, at each time t, chooses
the index kt of a distribution to sample based on the previously observed samples. That is,

kt = π( k1, . . . , kt−1
︸ ︷︷ ︸

past arm choices

, xk1,1, . . . , xkt−1,t−1
︸ ︷︷ ︸

past values

).

We would like to compare the performance of a policy π to that of an oracle policy π∗ that
has access to knowledge of the distributions µK

1 , so

k∗t = π∗(µ
K
1 , k∗1 , . . . , k

∗
t−1, xk∗

1
,1, . . . , xk∗

t−1
,t−1).

Both Cicirello and Smith [6] and Carpentier and Valko [5] phrase their results in terms
of the maximization of a reward rather than the minimization of a cost. They define the
“regret” of policy π with respect to the oracle π∗ over a time horizon of T as

Gπ,π∗

T = E

[

max
1≤t≤T

xk∗
t ,t

]

− E

[

max
1≤t≤T

xkt,t

]

.
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Under semiparametric assumptions on µK
1 , Carpentier and Valko [5] exhibit a policy π

satisfying

lim
T→∞

E [max1≤t≤T xkt,t]

E
[
max1≤t≤T xk∗

t ,t

] → 1. (1)

Equation 1 is equivalent to the more familiar statement that Gπ,π∗

T is o(E
[
max1≤t≤T xk∗

t ,t

]
),

and it suggests that the policy π performs asymptotically as well as the oracle. While the
condition in Equation 1 is sensible for the setting considered by Carpentier and Valko [5]
(where the distributions µK

1 have unbounded support), it is particularly sensitive to the
nature of the distributions. For instance, the result in Equation 1 is trivially achieved
when the distributions have bounded support (for example, in [0, 1] as in hyperparameter
optimization). In this case, both the numerator and denominator converge to the upper
bound of the support (for any policy that chooses each distribution infinitely often).

Furthermore, the condition in Equation 1 is assymetric with respect to maximization and
minimization. When performing minimization of a cost instead of maximization of a reward
(using distributions supported in [0, 1]), both E [min1≤t≤T xkt,t] and E

[
min1≤t≤T xk∗

t ,t

]
may

approach 0, in which case the ratio may exhibit radically different behavior. In Example 2
and Example 3, we demonstrate some of the peculiarities of this performance metric in the
minimization setting.

Example 2. Suppose µ1 is a Bernoulli distribution with mean parameter 0 < p < 1 and
suppose that µ2 is a point mass on 1. Consider a policy π which chooses µ2 at t = 1 and
then chooses µ1 for all t > 1 and a policy π∗ which always chooses µ1. We have

lim
T→∞

E [min1≤t≤T xkt,t]

E
[
min1≤t≤T xk∗

t ,t

] = lim
T→∞

pT−1

pT
=

1

p
,

which remains bounded away from 1 even though the policy π acted optimally at every time
step after t = 1.

Example 3. Suppose µ1 is the uniform distribution over [0, 1] and suppose that µ2 is a
point mass on 1. Consider a policy π which chooses µ2 at t = 1 and then chooses µ1 for
all t > 1 and a policy π∗ which always chooses µ1. We have

lim
T→∞

E [min1≤t≤T xkt,t]

E
[
min1≤t≤T xk∗

t ,t

] = lim
T→∞

T−1

(T + 1)−1
→ 1.

Note above that the minimum of T independent uniform random variables is a Beta(1, T )
random variable, which has mean 1/(T + 1).

Despite the fact that the policy π acts optimally at every time step other than t = 1 in both
Example 2 and Example 3, the ratios of their expectations to that of the oracle π∗ exhibit
wildly different behaviors.

To avoid this sensitivity, we define regret as follows.

Definition 4. We define the regret of the policy π with respect to the oracle policy π∗ over
a time horizon of T as

Rπ,π∗

T =
1

T
min
T ′≥1

{

T ′ : E

[

min
1≤t≤T ′

xkt,t

]

≤ E

[

min
1≤t≤T

xk∗
t ,t

]}

.

Note that Rπ,π∗

T depends on the tuple of distributions µK
1 , but we suppress this dependence

in our notation.

Then Rπ,π∗

T is essentially the ratio of iterations that π requires to perform as well as the
oracle π∗ over a time horizon of T . This definition is sensible regardless of whether the
samples are bounded or unbounded, whether we care about minimization or maximization,
and regardless of how we scale or translate the distributions. Note that in both Example 2
and Example 3, we have Rπ,π∗

T = T+1
T → 1.

Definition 5. We say that policy π achieves “no regret” with respect to the oracle π∗ if
lim supT Rπ,π∗

T ≤ 1 for all tuples of distributions µK
1 .

Definition 5 is fairly lenient. Had we defined “no regret” using the condition given in
Equation 1, our main result in Theorem 12 could have been made even stronger, but we
view that as undesirable as illustrated by Example 2 and Example 3.
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3 Oracle Models

In the standard multi-armed bandit setting, if an oracle with knowledge of the distributions
of the arms seeks to minimize the expected sum of the losses, it should simply choose to play
the arm with the lowest mean. This is true regardless of the time horizon. By anology with
the usual multi-armed bandit setting, Cicirello and Smith [6] and Carpentier and Valko [5]
both consider the oracle policy in Definition 6 that plays the single “best” arm.

Definition 6 (single-armed oracle). The single-armed oracle is the oracle, which over a
time horizon of T , plays the single best arm

argmin
k

E

[

min
1≤t≤T

xk,t

]

.

The single-armed oracle provides a good benchmark for comparison, but it is not the optimal
oracle policy. When the time horizon is known in advance, the optimal oracle policy is given
in Definition 7.

Definition 7 (optimal oracle). The optimal oracle over a time horizon of T plays the policy
that solves

argmin
π

E

[

min
1≤t≤T

xkt,t

]

.

When the time horizon is not known in advance, one possible oracle strategy is a greedy
strategy given in Definition 8.

Definition 8 (greedy oracle). The greedy oracle chooses the arm kt at time t that gives the
maximal expected improvement over the current best yt−1 = min1≤s≤t−1 xks,s. That is,

kt = argmin
k

E
[
min{xk,t, yt−1} |xk1,1, . . . , xkt−1,t−1

]
.

Unlike the greedy oracle, both the single-armed oracle and the optimal oracle require knowl-
edge of the time horizon. Indeed, as shown in Example 9, the notion of a “best” arm is not
well-defined outside of a specific time horizon. The best arm depends on the time horizon.
This point contrasts sharply with the usual multi-armed bandit setting.

Example 9. Suppose we have an infinite collection of arms µs indexed by 0 < s < 1.
Let xs,t be a sample from µs such that P (xs,t = s) = s and P (xs,t = 1) = 1 − s. Then the
optimal s is O((log T )/T ).

We elaborate on Example 9 in Appendix A. One difference between the single-armed oracle
and the optimal oracle is that the optimal oracle can adapt its strategy based on the samples
that it receives, whereas the single-armed oracle is non-adaptive. Its strategy is fixed ahead
of time. Example 10 shows that the single-armed oracle is not even the optimal non-adaptive
oracle. A mixed strategy may outperform any policy that plays only a single arm.

Example 10. Consider a time horizon T = 2 and consider two arms. Suppose that sam-
ples x1,t from µ1 deterministically equal 1/2 and that samples x2,t from µ2 satisfy P (x2,t =
0) = 1/4 and P (x2,t = 1) = 3/4. Then

E min
1≤t≤2

x1,t =
1

2
E min

1≤t≤2
x2,t =

9

16
Emin{x1,1, x2,2} =

3

8
.

This example shows that a fixed strategy that plays both arms can outperform any policy that
plays a single-arm.

We described three different oracle models above. One caveat is that in the event that there
is a well-defined best arm, that is, some arm k∗ such that P (xk∗,t ≤ α) ≥ P (xk,t ≤ α)
for all k and all 0 ≤ α ≤ 1, then these three oracles all coincide and we need not worry
about which oracle to use for comparison. This is roughly the case in prior work. Cicirello
and Smith [6] and Carpentier and Valko [5] make (semi)parametric assumptions on the
distributions of the arms which essentially restrict the setting to have a well-defined best
arm.
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Despite the fact that the single-armed oracle is not the optimal oracle strategy, it is often a
sufficiently strong baseline for measuring the performance of our policies. When we cannot
even do as well as the single-armed oracle, as will be the case in Theorem 12, then we also
cannot do as well as the optimal oracle. For the remainder of the paper, we will compare
to the single-armed oracle. However, the results necessarily hold for comparisons to the
optimal oracle as well.

4 Main Result

Theorem 12 shows that no policy can be guaranteed to perform asymptotically as well as
the single best distribution. That is, it is impossible to achieve “no regret” in the extreme
bandit problem. Moreover, in the worst case, no policy can asymptotically outperform the
policy of choosing each distribution equally often, at least not without further assumptions.

Remark 11. If πeq is the policy that chooses kt ≡ t mod K (that is, it chooses each arm
equally often) and π∗ is the single-armed oracle from Definition 6, then lim supT R

πeq,π∗

T ≤ K
regardless of the distributions µK

1 = (µ1, . . . , µK).

We show in Theorem 12 that no policy π can improve on the guarantee of πeq given in
Remark 11.

Theorem 12. For any policy π, there exist distributions µK
1 such that lim supT Rπ,π∗

T ≥ K,
where π∗ is the single-armed oracle.

We prove Theorem 12 in Section 4.3. The main components of the proof are Lemma 14,
which upper bounds the performance of the single-armed oracle and Lemma 16, which lower
bounds the performance of the policy π.

This result shows that the extreme bandit problem is fundamentally different from the
standard multi-armed bandit problem, where a variety of policies perform asymptotically as
well as the single best arm. Indeed, in the standard bandit problem, the arms are primarily
characterized by their means, and so it suffices to estimate the means of the arms and play
the best one. However, as discussed in Example 9, there is no well-defined best arm in the
extreme bandit problem. Our construction will create a situation where the “best” arm
periodically switches among the K distributions so that the policy π often ends up choosing
the “wrong” arm.

For i ≥ 1, let αi = (8K)−(i!)2. Our construction will involve a sum of point masses at the
values αi. It is easily verified that the sequence αi satisfies the conditions in Lemma 13.

Lemma 13. The sequence αi satisfies the following properties.

(A)
∑∞

j=1 αj ≤ 1/2

(B) αi ≤
1

4(1+i)

(C)
∑∞

j=i+1 αj ≤
αi

iK

(D) αi ≤ αi
i−12

−i.

Henceforth, we will not need the exact values of the sequence, we will only need the prop-
erties enumerated in Lemma 13. For b = (b1, b2, . . .) ∈ {1, . . . ,K}∞, define the tuple of
distributions µK

1 (b) = (µ1(b), . . . , µK(b)) via

µk(b) = γk(b)δ1 +

∞∑

i=1

1l[bi = k]αi δαi
where γk(b) = 1−

∞∑

i=1

1l[bi = k]αi.

Here, δc represents a point mass at c, 1l[ξ] is the {0, 1}-indicator function of the event ξ,
and γk(b) is chosen to make µk(b) a probability measure. Let MK be the set of tuples of
distributions that can be obtained in this way. The value bi simply assigns the point mass
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δαi
to one of the K distributions. We let D denote the distribution over the set {1, . . . ,K}∞

defined so that the bi’s are independent uniform random variables in {1, . . . ,K}.

Define the time horizon Ti = ⌈log(1/αi)/αi⌉. Instead of controlling Rπ,π∗

T for every T , we
will control the quantity specifically for the time horizons Ti. In our construction, the bith
arm in the tuple will be the best arm over the time horizon Ti, and the other arms will be
substantially worse. We will show that, for a fixed i, we can construct a tuple µK

1 so that
the policy π takes roughly K times longer than the single-armed oracle π∗ to obtain the
value αi (that is, π∗ requires roughly Ti samples and π requires roughly T ′

i ≈ KTi samples).
Using the probabilistic method, we will then show that we can find a tuple µK

1 so that the
policy takes roughly K times longer than the oracle to obtain the value αi for infinitely
many values of i.

4.1 Upper Bound on Oracle Performance

We begin by giving an upper bound on the performance of the oracle policy that plays the
single best arm over the time horizon Ti. This bound holds uniformly over MK .

Lemma 14. Suppose that µK
1 (b) ∈ MK . If π∗ is the single-armed oracle from Definition 6,

then

E

[

min
t≤Ti

xk∗,t

]

< 2αi.

Proof. Recall that bi is the index of the distribution that has a point mass at αi. We have

E

[

min
t≤Ti

xk∗,t

]

= min
k

E

[

min
t≤Ti

xk,t

]

≤ E

[

min
t≤Ti

xbi,t

]

.

The term on the right hand side can be rewritten as

E

[

1l

[

min
t≤Ti

xbi,t ≤ αi

]

min
t≤Ti

xbi,t

]

+ E

[

1l

[

min
t≤Ti

xbi,t > αi

]

min
t≤Ti

xbi,t

]

≤ αiP

[

min
t≤Ti

xbi,t ≤ αi

]

+ P

[

min
t≤Ti

xbi,t > αi

]

≤ αi + P

[

min
t≤Ti

xbi,t > αi

]

.

The first inequality follows by upperbounding the term mint≤Ti
xbi,t by αi in the first term

and by 1 in the second term. The second inequality follows by upperbounding the first
probability by 1. To finish the lemma, note that

P

[

min
t≤Ti

xbi,t > αi

]

≤ (1− αi)
Ti < e−αiTi ≤ αi,

where the third inequality uses the definition Ti = ⌈log(1/αi)/αi⌉.

4.2 Lower Bound on Performance of π

Here, we give a lower bound on the performance of any fixed policy π, when averaged over
a collection of tuples of distributions.

Define the time horizon T ′
i = ⌊ciK log(1/αi)/αi⌋, where ci = (1 − 1/i)/((1 + 1/i)2 + 2/i).

The constant ci is a correction term that converges to 1 as i → ∞. Its specific value is not
meaningful. The goal of this section is roughly to show that the performance of the policy
π over a time horizon of T ′

i is comparable to the performance of the oracle policy over a
time horizon of Ti.

Throughout this section, we will fix an index i and we fix bj for all j 6= i. Then we define

the sequence bk
′

= (bk
′

1 , bk
′

2 , . . .) via bk
′

j = bj for j 6= i and bk
′

i = k′. The K tuples µK
1 (bk

′

)
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for different values of k′ are identical in all respects except for the index of the distribution
that possesses the point mass δαi

and the amount of mass γk(b
k′

) that the kth distribution
in the k′th tuple assigns to δ1.

Define the tuple of distributions ηK1 (b) = (η1(b), . . . , ηK(b)) by ηk(b) = 1
K

∑K
k′=1 µk(b

k′

).

Let γk(b) :=
1
K

∑K
k′=1 γk(b

k′

) denote the probability that ηk(b) assigns to the value 1. The

tuple ηK1 (b) is the average of the tuples µK
1 (bk

′

) over the different values of k′.

We begin with Lemma 15 which compares the probability that policy π obtains the value
αi when averaged over the tuples µK

1 (bk
′

) with the probability that π obtains the value

αi in the tuple ηK1 (b). This comparison is helpful because each distribution in the tuple
ηK1 (b) assigns the same mass of αi/K to αi and so the probability that π obtains αi when

run on the tuple ηK1 (b) does not depend on π (it is simply (1 − αi/K)T
′
i where T ′

i is the
time horizon). Of course, as stated, we are actually concerned with the probability that π
obtains a value less than or equal to αi, but because of Lemma 13(C), the contribution of
the smaller terms will not be too great.

Lemma 15. We have

1

K

K∑

k′=1

P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
µK
1 (bk

′

)

]

≥ cP

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
ηK1 (b)

]

,

where c = e−
2αiT

′
i

iK . In our notation, we condition on µK
1 (bk

′

) to indicate the tuple of
distributions being used.

Proof. Define S(π, µK
1 , T ) to be the set of actions and values that can be obtained by

following policy π on the tuple µK
1 for a time horizon of T . That is,

S(π, µK
1 , T ) =

{
(kt, xt)

T
t=1 : kt = π(k1, . . . , kt−1, x1, . . . , xt−1), xt ∈ supp(µkt

)
}
,

where supp(µkt
) is the support of the distribution µkt

. Then define S(π, µK
1 , T, i) to be the

subset of S(π, µK
1 , T ) such that all values are greater than or equal to αi−1. That is,

S(π, µK
1 , T, i) =

{
(kt, xt)

T
t=1 ∈ S(π, µK

1 , T ) : xt ≥ αi−1

}
.

Critically, note that

S(π, µK
1 (b1), T ′

i , i) = · · · = S(π, µK
1 (bK), T ′

i , i) = S(π, ηK1 (b), T ′
i , i). (2)

Equation 2 holds because the supports of the tuples µK
1 (bk

′

) and ηK1 (b) only differ on αi,
but we are considering only values that are at least αi−1, so this difference does not affect
the sets. We shall refer to this common set as S. We have

P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
µK
1 (bk

′

)

]

=
∑

S





i−1∏

j=1

α
|{t :xt=αj}|
j

K∏

k=1

γk(b
k′

)|{t : kt=k,xt=1}|



 . (3)

It follows that

1

K

K∑

k′=1

P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
µK
1 (bk

′

)

]

=
1

K

K∑

k′=1

∑

S





i−1∏

j=1

α
|{t :xt=αj}|
j

K∏

k=1

γk(b
k′

)|{t : kt=k,xt=1}|





=
∑

S





i−1∏

j=1

α
|{t :xt=αj}|
j

(

1

K

K∑

k′=1

K∏

k=1

γk(b
k′

)|{t : kt=k,xt=1}|

)

 ,

(4)

where the first equality uses Equation 3 and the second equality simply rearranges the terms.
We would like to essentially apply Jensen’s inequality to say something like

1

K

K∑

k′=1

K∏

k=1

γk(b
k′

)|{t : kt=k,xt=1}| ≥

K∏

k=1

γk(b)
|{t : kt=k,xt=1}|. (5)
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Unfortunately, despite the fact that γk is convex on the relevant region,
∏K

k=1 γk is not quite
convex. However, it is nearly convex, and as we show in Lemma 18, Equation 5 holds up to

a correction factor of e−
2αiT

′
i

iK . Using this result in Equation 4 gives

1

K

K∑

k′=1

P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
µK
1 (bk

′

)

]

≥ e−
2αiT

′
i

iK

∑

S





i−1∏

j=1

α
|{t : xt=αj}|
j

K∏

k=1

γk(b)
|{t : kt=k,xt=1}|





= e−
2αiT

′
i

iK P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
ηK1 (b)

]

.

the first inequality uses Lemma 18 and the last equality holds for the same reason that
Equation 3 holds.

In Lemma 16, we turn the bound in Lemma 15 on the probability of obtaining αi into a
bound on the performance of π. Note that Lemma 16 holds uniformly over the values of bj
for j 6= i.

Lemma 16. We have

1

K

K∑

k′=1

E

[

min
t≤T ′

i

xkt,t

∣
∣
∣
∣
µK
1 (bk

′

)

]

≥ 2αi.

Proof. We have

1

K

K∑

k′=1

E

[

min
t≤T ′

i

xkt,t

∣
∣
∣
∣
µK
1 (bk

′

)

]

≥
αi−1

K

K∑

k′=1

P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
µK
1 (bk

′

)

]

≥ αi−1e
−

2αiT
′
i

iK P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
ηK1 (b)

] (6)

The first inequality is Markov’s inequality. The second inequality is Lemma 15. We have

P

[

min
t≤T ′

i

xkt,t ≥ αi−1

∣
∣
∣
∣
ηK1 (b)

]

≥



1−
αi

K
−

∞∑

j=i+1

αj





T ′
i

≥

(

1−
αi(1 +

1
i )

K

)T ′
i

≥ e−αi(1+
1

i
)2T ′

i/K

≥ α
(1+ 1

i
)2ci

i .

(7)

The first inequality lower bounds the probability of obtaining a value of αi or less at every
iteration. The second inequality uses Lemma 13(C). The third inequality uses Lemma 19
and Lemma 13(B). The fourth inequality uses the definition T ′

i = ⌊ciK log(1/αi)/αi⌋. Com-
bining the Equation 6 and Equation 7 gives

1

K

K∑

k′=1

E

[

min
t≤T ′

i

xkt,t

∣
∣
∣
∣
µK
1 (bk

′

)

]

≥ αi−1e
−

2αiT
′
i

iK α
(1+ 1

i
)2ci

i

≥ 2α
1

i

i α
2ci
i

i α
(1+ 1

i
)2ci

i

= 2αi.

The second inequality uses Lemma 13(D) and the definition of T ′
i . The third line uses the

definition ci = (1 − 1/i)/((1 + 1/i)2 + 2/i), which was chosen to make the third line hold.
This completes the proof of the lemma.

8



Noting that Lemma 16 holds uniformly over the values of bj for j 6= i, a direct consequence
of Lemma 16 is Corollary 17.

Corollary 17. We have

Pb∼D

(

E

[

min
t≤T ′

i

xkt,t

∣
∣
∣
∣
µK
1 (b)

]

≥ 2αi

)

≥
1

K
,

where D is the distribution over {1, . . . ,K}∞ defined by sampling each component indepen-
dently and uniformly at random from {1, . . . ,K}. The outer propability is over b, and the
inner expectation is over the xkt,t.

4.3 Proof of Theorem 12

Here we synthesize the above results to prove Theorem 12. Lemma 14 and Corollary 17
together imply that

Pb∼D

(

E

[

min
t≤T ′

i

xkt,t

∣
∣
∣
∣
µK
1 (b)

]

≥ 2αi > E

[

min
t≤Ti

xk∗,t

∣
∣
∣
∣
µK
1 (b)

])

≥
1

K
,

which directly implies that P (Rπ,π∗

Ti
≥ T ′

i/Ti) ≥ 1/K. Recall that for a sequence of events

Ai, we have P (infinitely manyAi happen) ≥ lim supP (Ai). This can be seen by applying
Fatou’s lemma to the relevant indicator functions. It follows that

Pb∼D

(

Rπ,π∗

Ti
≥

T ′
i

Ti
for infinitely many i

)

≥
1

K
.

Recall the definitions

Ti = ⌈log(1/αi)/αi⌉ T ′
i = ⌊ciK log(1/αi)/αi⌋.

Since ci → 1, it follows that T ′
i/Ti → K, and so there exists a tuple µK

1 ∈ MK such that
lim supT Rπ,π∗

T ≥ K, proving the claim.

5 Related Work

Our setting is closely related to the multi-armed bandit problem, which has been studied
extensively. See Bubeck and Cesa-Bianchi [3] for a survey. Regret is the most common
measure of performance, though some authors study “simple regret” [4], where the goal is
to identify the arm with the lowest mean. However, these settings provide little guidance on
designing a policy to minimize the single smallest cost. The extreme bandit problem, where
we care not about the average cost but about the single minimal cost, has been significantly
less studied.

The extreme bandit problem (also called the max K-armed bandit problem) is introduced in
Cicirello and Smith [6] and further developed in Streeter and Smith [12, 13]. The problem is
additionally studied in Carpentier and Valko [5], where the authors give an explicit algorithm
and prove that it exhibits asymptotically no regret in the sense of Equation 1. However,
all results in previous work have relied heavily on strong parametric or semiparametric
assumptions on the distributions µK

1 under consideration. Motivated by extreme value
theory, Cicirello and Smith [6] assume that the distributions belong to the Gumbel family
and Carpentier and Valko [5] consider distributions in the Fréchet family (or distributions
that are well approximated by the Fréchet family). When the individual samples arise as the
maxima of a large number of independent, identically-distributed random variables, then
these assumptions may be realistic. These assumptions dramatically simplify the problem.
As in the multi-armed bandit setting, where every sample from a distribution provides
information about the mean of the distribution, in the parametric setting, every sample
provides information about the parameters of the distribution. Once we have accurately
estimated each distribution, we can make sensible choices about which distribution to choose.
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Our work shows that some form of assumptions are necessary to improve on the guarantees
of the policy that chooses each arm equally often.

We do not expect the parametric assumptions motivated by extreme value theory to make
sense in the setting of hyperparameter optimization. However, the question of what realistic
assumptions are likely to hold in practice for hyperparameter optimization is an important
question.

The no free lunch theorems are another form of hardness result in the optimization setting.
Wolpert and Macready [15] show that in a discrete setting, all optimization algorithms that
never revisit the same point perform equally well in expectation with respect to the uniform
distribution over all possible objectives.

6 Discussion

We have shown that no policy can be guaranteed to perform better than the policy of
choosing each distribution equally often. This result should not be construed to say that no
policy can do better in practice. Indeed, hyperparameter optimization problems in the real
world possess many nice structural properties. For instance, many hyperparameters have a
sweet spot outside of which the algorithm performs poorly. This suggests that many black-
box objectives for hyperparameter optimization may exhibit coordinate-wise quasiconvexity.
Crafting plausible assumptions on the objectives and understanding how they translate into
conditions on the induced distributions over algorithm performance is an important problem.
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References

[1] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The
Journal of Machine Learning Research, 13(1):281–305, 2012.

[2] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
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A The Best Arm Depends on the Time Horizon

In Example 9, we considered an infinite collection of arms µs indexed by 0 < s < 1. Samples
xs,t from µs satisfy P (xs,t = s) = s and P (xs,t = 1) = 1 − s. We claimed that for a time
horizon of T , the optimal s is O((log T )/T ).

We have

E

[

min
1≤t≤T

xs,t

]

= s(1− (1− s)T ) + 1(1− s)T = s+ (1− s)T+1.

Let s∗ be the index of the optimal distribution, so mins E[min1≤t≤T xs∗,t] = s∗+(1−s∗)
T+1.

For large T , we can consider the range 0 < s ≤ 1
2 . We have

s+ e−2s(T+1) ≤ s+ (1− s)T+1 ≤ s+ e−s(T+1).

It follows that

s∗ + e−2s∗(T+1) ≤ min
s

E

[

min
1≤t≤T

xs,t

]

≤ min
s

s+ e−s(T+1) ≤
logT

T + 1
+

1

T
≤

2 logT

T
.

Therefore, s∗ ≤ (2 logT )/T and e−2s∗(T+1) ≤ (2 logT )/T . The latter implies that

s∗ ≥
− log 2− log logT + logT

2(T + 1)

These results imply that s∗ is O((log T )/T ).

B Proof of Lemma 18

Here we state and prove Lemma 18, which is used in the proof of Lemma 15. The goal of
Lemma 18 is to show that the probability of a particular sequence of values under the tuple
µK
1 (bk

′

), when averaged over the possible values of k′, is at least as great (up to a constant
c) as the probability of the same sequence of values under the averaged tuple ηK1 . Since all
values other than the values 1 and αi have equal probability under all tuples (for j 6= i, the
value αj has probability αj under the bjth element of each tuple), this lemma focuses on the

probabilities of the values that equal 1. Recall that γk(b
k′

) is the probability of obtaining a

value of 1 from µk(b
k′

) and γk(b) is the probability of obtaining a value of 1 from ηk.
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Lemma 18. For integers n1, . . . , nK ≥ 0 such that nk ≤ T , we have

1

K

K∑

k′=1

K∏

k=1

γk(b
k′

)nk ≥ c

K∏

k=1

γk(b)
nk ,

where c = e−
2αiT

iK .

Proof. This result nearly follows from Jensen’s inequality. Indeed, if the function

f(c1, . . . , cK) =

K∏

k=1




1− ckαi −

∞∑

j=1

j 6=i

1l[j = k]αj






nk

were convex, then the result would follow from a single application of Jensen’s inequality.
That is, the result with c = 1 is precisely the statement

f(1, 0, . . . , 0) + · · ·+ f(0, . . . , 0, 1)

K
≥ f

(
1

K
, . . . ,

1

K

)

.

Unfortunately, despite the fact that f is the product of convex functions (over the relevant
domains), f itself is not convex. To circumvent this difficulty, we will approximate each term
with the exponential of an affine function, so that the product of approximations remains
convex (because the affine functions simply add). As our approximation is imperfect, we
pick up a penalty in the form of the constant c. Let

ωk = 1−

∞∑

j=1

j 6=i

1l[j = k]αj βi,k =
αi

ωk
,

First write

1

K

K∑

k′=1

K∏

k=1

γk(b
k′

)nk =
1

K

K∑

k′=1

K∏

k=1

(ωk − 1l[k′ = k]αi)
nk

=
1

K

(
K∏

k=1

ωnk

k

)
K∑

k′=1

(1 − βi,k′)nk′ .

(8)

Note that by Lemma 13(A), we have ωk′ ≥ 1
2 and so βi,k′ ≤ 2αi. It follows from Lemma 19

and Lemma 13(B) that we can write

1

K

K∑

k′=1

(1− βi,k′ )nk′ ≥
1

K

K∑

k′=1

e−(1+1/i)βi,k′nk′

≥ e−(1+1/i) 1

K

∑
K

k′=1
βi,k′nk′

≥ e−
2αiT

iK e−
1

K

∑K

k′=1
βi,k′nk′

≥ e−
2αiT

iK

K∏

k′=1

(

1−
βi,k′

K

)nk′

.

(9)

The second inequality is Jensen’s inequality. The third inequality breaks the 1 + 1/i term
into two terms and uses the bounds βi,k′ ≤ 2αi and nk′ ≤ T . The fourth inequality uses
the fact that e−x ≥ 1− x. Combining Equation 8 and Equation 9 gives

1

K

K∑

k′=1

K∏

k=1

γk(b
k′

)nk ≥ e−
2αiT

iK

(
K∏

k=1

ωnk

k

)
K∏

k′=1

(

1−
βi,k′

K

)nk′

= e−
2αiT

iK

K∏

k=1

(

ωk −
αi

K

)nk

= e−
2αiT

iK

K∏

k=1

γk(b)
nk ,

which finishes the proof.
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C Upper Bound on Exponential

Throughout this paper, we make use of the inequality e−x ≥ 1 − x. However, on a couple
of occasions, we need to lower bound 1 − x by an exponential of the form e−rx for some
constant r. The bound that we use is given in Lemma 19.

Lemma 19. For i ≥ 1 and y ∈ [0, 1
2(1+i) ], we have e−y(1+ 1

i
) ≤ 1− y.

Proof. More generally, the convexity of e−x implies that for 0 ≤ x ≤ c, we have

e−x ≤ 1−
1− e−c

c
x.

The right hand side is the formula for the line interpolating between the points (0, 1) and
(c, e−c) on the graph of e−x. Choosing c = log(1 + 1

i ), and noting that 0 ≤ x ≤ 1
1+i implies

that 0 ≤ x ≤ c because of the standard inequality 1 − 1
x ≤ log x, we see that 0 ≤ x ≤ 1

1+i

implies that

e−x ≤ 1−
1− i

1+i

log(1 + 1
i )
x ≤ 1−

1
1+i
1
i

x = 1−
i

1 + i
x.

Setting y = i
1+ix and using the fact that 1

2(1+i) ≤ i
(1+i)2 gives the result.
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