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Abstract

Recent advances in contextual bandit optimization and reinforcement learning
have garnered interest in applying these methods to real-world sequential decision
making problems [1–4]. Real-world applications frequently have constraints with
respect to a currently deployed policy. Many of the existing constraint-aware algo-
rithms consider problems with a single objective (the reward) and a constraint on
the reward with respect to a baseline policy. However, many important applications
involve multiple competing objectives and auxiliary constraints. In this paper, we
propose a novel Thompson sampling algorithm for multi-outcome contextual ban-
dit problems with auxiliary constraints. We empirically evaluate our algorithm on
a synthetic problem. Lastly, we apply our method to a real world video transcoding
problem and provide a practical way for navigating the trade-off between safety
and performance using Bayesian optimization.

1 Introduction

In a typical contextual bandit problem, the decision maker observes a context-feature vector x ∈ Rd
and picks an action a from a set of actions A. The decision maker then observes a parametric
reward fθ(a) corresponding to the selected action, where θ ∈ Rd is unknown apriori. The ob-
jective is to maximize the cumulative reward from the selected actions over a time-horizon, while
simultaneously learning θ. The contextual bandit framework is commonly used to balance the
exploration-exploitation trade-offs involved in high-dimensional dynamic decision making, including
personalized recommendation [5] and clinical trials [6, 7]. While contextual bandits are well studied
in the context of optimizing a single reward metric, there is little understanding of deploying con-
textual bandits in settings involving multiple objectives (metrics), which often compete with each
other.

In this work, we focus on developing practical bandit approaches that can manage both the exploration-
exploitation trade-off, as well as the trade-offs associated with optimizing multiple metrics. In many
applications, the decision maker is concerned with improving multiple metrics under uncertain
information. Furthermore, it is common that some of the metrics compete with each other: frequently,
improvement in one metric comes at a cost in another metric. Therefore, using contextual bandit
algorithms that optimize for a single objective function is not desirable. For example, consider
an example of uploading videos, an application of particular interest to internet platforms and the
focus of this paper. When a user decides to share a video via an online platform, the platform
determines what quality (up to the quality at which the video was recorded) at which to upload the
video. With the explosion of demand for video content, platforms seek to enable users to share videos
of increasingly high quality without reducing upload reliability. These goals, however, are in conflict:
increasing quality typically makes sharing less reliable. As the video’s file size increases, upload time
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increases, making it more likely that transient connectivity will lead to failure or that an impatient
user will cancel the upload. As such, the demands of improving a video upload service dictate that
increases in quality must occur without hurting the reliability of the service. In other words, the goal
of optimization is, for each state, to find the action leading to the highest quality among actions which
will not reduce upload reliability. This set of actions may be different for each user.

We consider a stylized contextual bandit problem with auxiliary safety constraints that shares salient
features with the multi-objective bandit problem, where the goal is to develop an efficient exploration-
exploitation policy that can simultaneously manage trade-offs associated with optimizing multiple
metrics. In particular, we focus on the two-metric setting and formulate a constrained contextual
bandits problem, where we consider one of the metrics as the objective (reward) to optimize while
enforcing a safety constraint on the other (auxiliary) metric with respect to a baseline “status quo”
policy.1 We refer to this constraint as the auxiliary safety constraint. The underlying assumption is
that the decision maker is interested in optimizing the first metric only when the second metric is not
going to be degraded “too much” relative to the current status quo. This is a reasonable assumption
in many settings and in particular the video uploads application described earlier, where the platform
is focused on improving the quality without hurting the reliability. In this paper, we present a simple
and robust optimization procedure based on Thompson sampling (TS) which meets this criteria.

2 Related Work

Recently, contextual bandits have attracted increased attention. The works of [8, 9, 5, 10–12] have
considered the linear contextual bandits, a popular variant of the contextual bandits problem and
established strong theoretical guarantees while demonstrating empirical efficacy. More recently,
Filippi et al. [13] has considered the generalized contextual bandit problem and developed an upper-
confidence bound (UCB) based algorithm. However, the focus of the stream of work is on optimizing
a single objective and cannot be easily adapted to balance trade-offs associated with optimizing
multiple objectives.

Our work is more closely related the constrained contextual bandit framework. Badanidiyuru et al.
[14] consider the linear bandit problem with linear budget constraints and present a primal-dual
algorithm that uses multiplicative updates to achieve a sub-linear regret. Agrawal and Devanur [15]
consider a generalized version of this problem, where the objective is concave and constraints are
convex and presents a UCB-based algorithm with regret guarantees. The constraints in both these
papers are modeled on the lines of resource (or budget) limitations and both the works assume that the
constraint is deterministic and known apriori. In contrast, the constraint in our problem is stochastic
and not known apriori. In particular, the constraint outcome under the baseline policy depends on the
time-varying contexts. Therefore, these two works do not trivially generalize to the “bandits with
auxiliary safety constraints.” The works of Amani et al. [16] and Kazerouni et al. [17] consider the
linear contextual bandit problem with “safety constraints” and present UCB-based approaches that
ensure that the new policy does not violate the “safety constraint.” While the objectives of both these
works are similar, neither directly translates to the contextual bandit problem with auxiliary safety
constraints; Amani et al. [16] assume the bound in the safety constraint is deterministic and known
apriori for every round, and the algorithms by Kazerouni et al. [17] address the single objective
setting, where the focus is on ensuring that the aggressive exploration tendencies of UCB approach
do not hurt the objective in the early rounds in comparison to the baseline policy.

In this paper, we present a simple and robust optimization procedure based on Thompson sampling
(TS) which meets this criteria. This is primarily motivated by the attractive empirical properties
of TS-based approaches for bandit problems that have been observed in a stream of recent papers
[18–20]. One of the main contributions of this work is in highlighting the salient features of the
constrained contextual bandits problem that need to be adapted or customized to facilitate the design
of a TS algorithm for the multi-objective bandit problem. To the best of our knowledge, this is the first
attempt in designing policies for contextual bandit problems with auxiliary context-dependent, time-
varying, safety constraints can hopefully serve as a stepping stone in designing robust multi-objective
bandit algorithms with theoretical guarantees.

1Our approach generalizes to multiple auxiliary safety constraints on different metrics, but we focus to the
case of a single auxiliary safety constraint and metric for brevity.
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3 Contextual Bandits with Auxiliary Safety Constraints

3.1 Problem Formulation

In the contextual bandit setting with an auxiliary constraint, at any time t, an agent is presented with a
context vector, xt ∈ Rd. The agent selects an action at, from a possibly infinite and time-dependent
set,At, and observes two potentially correlated metrics: a reward metric rt ∈ R and constraint metric
ct ∈ R+ sampled from distributions (models) f (r)(x, a) and f (c)(x, a) respectively. In addition, at
each time step t the agent queries a baseline policy πb and receives the action selected by the baseline
policy bt = πb(xt). For a given value of α, the goal is to maximize cumulative reward

Rt =

T∑
t=1

rt,

while simultaneously learning a policy that satisfies the constraint
E[ct|xt, at] ≥ (1− α)E[ct|xt, bt]

at each time step t. In this setting, α can be interpreted as the maximum decrease the decision maker
is willing to accept in the constraint metric, while optimizing the reward metric. Though it might be
intuitive to apply the constraint cumulatively as in Kazerouni et al. [17], we focus on enforcing the
constraint for each instance to ensure fairness; using an aggregate constraint could lead to a policy
that degrades the constraint metric for certain sub-populations. For example, in the case of video
uploads, maximizing quality while enforcing an aggregate constraint on reliability could lead to a
policy that has no change in reliability for uploading low quality videos, but reduces reliability for
uploading high quality videos.

3.2 Thompson Sampling with Auxiliary Safety Constraints (TS-ASC)

We propose a novel algorithm called Thompson Sampling with Auxiliary Safety Constraints (TS-
ASC) for policy learning in contextual bandit problems with auxiliary safety constraints. The
algorithm, like any TS-based approach, begins with an initial distribution over models P(f), where
f is a model that outputs an estimated reward metric f (r)(x, a) and an estimated constraint metric
f (c)(x, a).2 At each time step t, a model is sampled from the posterior distribution over models
f̃t ∼ P(f |Dt) given the observed data Dt = {(xi, ai, ri, ci)}t−1

i=1 . Next, to ensure that the action
picked by the TS-ASC satisfies the auxiliary safety constraint, we need to compare the constraint
metric value obtained from the TS-ASC policy to the constraint metric value obtained from the
baseline policy. To obtain the constraint value under the baseline policy, we approximate the value of
the constraint using the model sampled from the posterior. Concretely, in each round a set of feasible
actions is defined to contain all actions a ∈ A that satisfy the constraint under the sampled model f̃t;
that is,

Afeas ← {a ∈ A|f̃ (c)
t (xt, a) ≥ (1− α)f̃

(c)
t (xt, bt)}.

The policy TS-ASC selects the action a with maximum estimated reward f̃ (r)
t (xt, a) under the

sampled model. We provide the details of TS-ASC in Algorithm 1.

Remark: While, the accuracy of the constraint typically depends on the accuracy of the sampled
model, we observe in our numerical simulations that this relaxation does not degrade the empirical
performance with regards to constraint violation. We believe that as long as there is correlation
between the reward and constraint metrics, the posterior updates of TS will eventually lead to
estimating the constraint value accurately. Proving such a statement theoretically will most likely
involve a notion of correlation between metrics and should be an interesting future direction.

4 Synthetic Experiment

4.1 Problem Setup

To demonstrate the efficacy of the TS-ASC algorithm, we adapt the synthetic example proposed by
Kazerouni et al. [17]. The problem consists of 100 arms, each with a corresponding feature vector

2The reward and the constraint could be modeled independently or jointly, but for brevity we denote the joint
or independent models together by f .
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Algorithm 1 TS-ASC

1: Input: set of actions A, initial distribution over models P (f), D1 = ∅
2: for t = 1 to T do
3: Receive context xt
4: Sample model f̃t ∼ P(f |Dt)
5: Query action from baseline policy bt ← πb(xt)

6: Determine feasible actions: Afeas ← {a ∈ A|f̃ (c)
t (xt, a) ≥ (1− α)f̃

(c)
t (xt, bt)}

7: Select an action at ← arg maxa∈Afeas
f̃

(r)
t (xt, a)

8: Observe outcomes rt, ct
9: Dt+1 ← Dt ∪ {(xt, at, rt, ct)}

10: end for

xa ∈ R4. The reward metric rt ∼ N (xTa θ
(r), σ2) and the constraint metric ct ∼ N (xTa θ

(c), σ2) are
sampled independently from two different normal distributions with the respective means being a
linear functions of the feature vectors and a known noise standard deviation σ = 0.1. We define
the baseline policy πb to be a fixed policy that takes the same action b at each time step t. To set
the baseline action b, we select the top 30 actions with respect their expected reward, sort those 30
actions with respect to their expected constraint metric, and set b to be the 20th best action with
respect to the expected constraint metric. The goal is to maximize cumulative reward,

∑T
t=1 rt,

while learning a policy that satisfies the constraint E[ct|at] ≥ (1− α)E[ct|bt] with high probability.
Following Kazerouni et al. [17], the true parameters θ(r),θ(c) and the feature vectors are all iid
samples from N (0, I4) such that the expected values of each metric xTa θ1, x

T
a θ2 are positive for all

actions. Additionally, we construct the problem that the maximum expected reward among feasible
actions is less than the maximum reward among infeasible actions in order to create a trade-off
between constraint satisfaction and cumulative reward. We model each outcome using an independent
ridge regression model (using the Bayesian interpretation for TS) with λ = 1. We follow Kazerouni
et al. [17] and set δ = 0.001 as is done in the original CLUCB synthetic experiment.

4.2 Baseline Algorithm

To the best of our knowledge, there are no existing algorithms for addressing contextual bandit
problems with auxiliary safety constraints. Since the Conservative Linear Upper Confidence Bound
(CLUCB2) algorithm [17] is the closest related work to this paper, we extend CLUCB2 to our problem
for comparison. The original CLUCB2 algorithm selects the optimistic action a only if a performance
constraint with respect to a baseline policy is satisfied with high probability and otherwise takes the
action selected by the baseline policy. The performance constraint used by CLUCB2 requires that the
cumulative reward of the proposed policy be greater than some fraction α of the cumulative reward
for the baseline policy with high probability at all time steps t. More specifically,

t∑
i=1

r̂iai ≤ (1− α)

t∑
i=1

r̂ibi .

We modify this algorithm by moving the constraint from the reward metric to constraint metric.
Furthermore, we consider two variations of the the adapted CLUCB2 algorithm: one variant, referred
to as CLUCB2-ASC-C, follows the original CLUCB2 and evaluates the constraint cumulatively and
the other variant, referred to as CLUCB2-ASC-I, evaluates the constraint at the instance-level rather
than enforcing it cumulatively. Additionally, at each time step t, our both CLUCB2-ASC-C and
CLUCB2-ASC-I create a set of feasible actions Afeas that satisfy the auxiliary safety constraint and
select the actions from the feasible set with the maximum upper confidence bound on the reward
metric. We provide the exact details for CLUCB2-ASC-C in Algorithm 2.

4.3 Results

We evaluate TS-ASC across 1000 realizations of the synthetic problem and compare TS-ASC,
CLUCB2-ASC-C, and CLUCB2-ASC-I. Figure 1 plots the mean and 2 standard errors of the mean
for the evaluation metrics of interest. Figure 1a shows the per-time-step regret for all of the algorithms
for different values of α. For all values of α, TS-ASC and CLUCB2-ASC-C achieve far lower
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Algorithm 2 CLUCB2-ASC-C

1: Input: discrete set of actions A, α, rl,B,F
2: Initialize: n← 0, z ← 0, w ← 0, v ← 0, C(r)

1 ← B, C(c)
1 ← B

3: for t = 1 to T do
4: Receive context xt
5: Query action from baseline policy bt ← πb(xt)
6: Afeas ← {bt}
7: for a′t ∈ A do
8: Compute: Rt ← max

θ(c)∈C(c)t
(v + xbt)

Tθ(c)

9: Compute: Lt ← min
θ(c)∈C(c)t

(z + xa′t)
Tθ(c) + αmax

(
min

θ(g)∈C(c)t
wTθ(c), nrl

)
10: if Lt ≥ (1− α)Rt then
11: Afeas ← Afeas ∪ {a′t}
12: end if
13: end for
14: Select optimistic action: (at, θ̃

(r))← arg max
(at,θ(r))∈Afeas×C(r)t

xTatθ
(r)

15: if at 6= bt then
16: z ← z + xa′t
17: v ← v + xbt
18: else
19: w ← w + xbt
20: n← n+ 1
21: end if
22: Take action at and observe outcomes rt, ct
23: Update confidence sets C(r)

t+1, C
(c)
t+1 using (xt, at, ct, yt)

24: end for

regret compared to the baseline policy, where as CLUCB2-ASC-I is extremely conservative and does
deviate far from the baseline policy. However, there are significant differences in the policies learned
by CLUCB2-ASC-C and TS-ASC. Figure 1b shows that TS-ASC ultimately learns a policy that
satisfies the instance-level constraint with high probability, where as CLUCB2-ASC-C learns a policy
that violates the instance-level constraint more than 40% of the time for larger values of α. This is
because the cumulative performance constraint used in CLUCB2-ASC-C does not require constraint
satisfaction at the instance-level with high probability. While CLUCB2-ASC-I, does always satisfies
the instance-level constraint, it is very conservative and has significantly higher regret than TS-ASC.
That is, TS-ASC navigates an effective trade-off between regret and constraint satisfaction relative
to the CLUCB2-ASC methods. It does this with only slightly more common constraint violation
early in the learning process (as it explores slightly more). In doing so, it is able to effectively avoid
constraint violation in the final learned policy, unlike CLUCB2-ASC-I.

4.4 Fairness

The cumulative performance constraint used by CLUCB2-ASC-C leaves room for the policy to select
a mixture of actions with low values of the constraint metric ct (which would violate an instance
level constraint) and high values of the constraint metric ct such that the cumulative constraint is still
satisfied with high probability. Figure 2a highlights the difference in learned policy. The red line
indicates the instance-level constraint threshold (1−α)E[ct(xt, bt)]. For each policy, the point at time
step t is the expected constraint value E[ct|xt, at under the policy. Hence, points above the red line
satisfy the instance-level constraint and points below the red line violate the instance-level constraint.
TS-ASC quickly converges to a policy that takes a single action that satisifies the instance-level
constraint, where CLUCB2-ASC-C ultimately converges to a policy selects a mixture of infeasible
and feasible actions with respect to the instance-level constraint. While the CLUCB2-ASC-C achieves
lower regret than the TS-ASC policy, it comes at the cost of a high rate of instance-level constraint
violations. Importantly, we choose to use an instance-level constraint in the problem specification
and in our evaluation because it enforces fairness: that is, we want policies that satisfy the constraint
at the instance-level, not just the global level. Of course, if the baseline policy is not fair, then this

5



(a) Per-time-step Regret

(b) Moving average of the percentage of instance-level constraints that are violated.

Figure 1: Evaluation of constrained contextual bandit algorithms in a synthetic problem.

(a) The expected constraint outcome E[ct|xt, at]
under each policy along with the constraint thresh-
old: (1− α)E[ct|xt, bt]. A small amount of zero-
mean, iid Gaussian noise with standard deviation
of 0.02 has been added to improve visibility. This
figure shows data from a single realization of the
problem using α = 10−2.

α Mean SEM
10−1 1.2181 0.0097
10−2 1.2980 0.0097
10−3 1.3065 0.0096
10−4 1.3077 0.0096

(b) The expected constraint value (normalized with
respect to the expected baseline constraint value)
under the TS-ASC policy over the last 100 time
steps for various values of α. The means and stan-
dard errors over 1000 realizations are reported.

Figure 2: Evaluation of Constraint values

constraint will merely perpetuate those inequities, although it will, at least, not exacerbate them by
more than α.

4.5 Choosing α

Figure 1 highlights a trade-off in regret and constraint satisfaction. While TS-ASC achieves signifi-
cantly lower regret than the baseline policy and has a lower rate of instance-level constraint violations
than CLUCB2-ASC-C, TS-ASC occasionally violates the instance-level constraint for all evaluated
values of α due to randomness associated with posterior sampling. Importantly, the choice of α
controls not only the algorithm’s constraint check within TS-ASC, but also the true instance-level
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constraint evaluation. Therefore, decreasing α means that there is a higher instance-level constraint
value threshold that TS-ASC must meet. As shown in Table 2b, smaller values of α will lead to poli-
cies with larger instance-level constraint values. Depending on the tolerance for violated constraints,
the value of α used in the problem specification may not be same value of α that should be used
by TS-ASC achieve the desired constraint outcome. In some cases, it may be desired to make the
constraint criterion in the TS-ASC algorithm stricter than the constraint of the problem specification
in order reduce the likelihood of taking infeasible actions. In addition, the trade-off between the
reward and constraint metrics may not be obvious in many cases. In Section 5.3, we demonstrate how
the α can be tuned using Bayesian optimization in order to achieve a satisfactory trade-off between
the reward and constraint metrics Section 5.

5 Video Upload Transcoding

We demonstrate the utility of TS-ASC on a real world video upload transcoding application serving
millions of uploads per day. The task is sequential decision making problem, where the policy receives
a request that a video be uploaded and the policy must choose the upload quality (or equivalently how
to transcode the video) given contextual features about the video. The context x includes information
such as device model and operating system, connection class (e.g. 2G, 3G, etc.), network download
speed, and the country, as well as features about the video such as the file size, the source bitrate, and
the resolution. Uploading at a higher quality is desired, but is less likely to succeed than uploading
at a lower quality because the upload takes longer to complete, which increases the likelihood that
a frustrated user cancels the upload or experiences a connectivity failure. The high level goal is to
maximize quality among successfully uploaded videos without reducing upload reliability relative
to a baseline policy. It is important to note that the video quality is deterministic and known apriori
given the upload quality—the only stochasticity is around whether the upload is successful or not.
For example, if a video with a source quality of 720p is trancoded to 480p, it is known in advance
that if the upload succeeds, the video quality will be 480p.

5.1 Problem Formulation

We define the task as a contextual bandit problem with an auxiliary safety constraint, where the agent
receives a context x ∈ R39 and selects one of 4 actions in A = {360p, 480p, 720p, 1080p}. As in
many applications, the true reward function is unknown, and it is not obvious how to specify the
reward function to achieve the goal of increasing video upload quality without decreasing reliability.
We choose a tabular reward function where the reward is 0 for a failed upload, and the reward
strictly, monotonically increases for successful uploads with higher qualities. We parameterize
the reward function in terms of a set of positive, additive offsets Ω = {ωa ∀ a ∈ A} such that
rt = I(yt = 1)

∑
a′≤at ωa′ . To ensure high reliability relative to the baseline production policy

πb, we use the success outcome yt|xt, at as the constraint metric and introduce an auxiliary safety
constraint on reliability: E[ct|xt, at] ≥ (1 − α)E[ct|xt, bt], where bt = πb(xt). Importantly, this
choice of instance-level auxiliary safety constraint encodes a fairness requirement: namely, it requires
that the probability of a successful upload (the expected value of the Bernoulli success outcome)
under the new policy must be at least 1 − α times the probability of a successful upload under
the baseline policyπb. Hence, the auxiliary safety constraint protects against policies that achieve
satisfactory reliability at the global-level through a mixture of high and low reliability actions, which
could lead to a disproportionately poorer upload experience for sub-populations of videos, networks,
or devices relative to the status quo.

5.2 Modeling Approach

Since the reward is deterministic given the success outcome yt and the action a, we only need to
model success outcome yt as a function of the context xt and action at. Since the task includes several
sparse features, we follow recent work on using Bayesian deep learning for Thompson sampling
[20]. For this task, we leverage ideas from deep kernel learning [21] and NeuralLinear models [20]
in using a shared two-layer fully-connected neural network (with 50 and 4 hidden units respectively)
as feature extractor to learn a feature representation φa for each context-action feature vector xa. We
use the learned feature representation as the input to a Gaussian Process (GP) with a linear kernel and
a Bernoulli likelihood. For details regarding the modeling and training procedure, see Appendix 6.1.
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5.3 Reward Shaping and Tuning α

Since the optimal parameters Ω of the reward function and value of α are unknown, we use Bayesian
optimization to jointly optimize the reward function [22] and α to find parameters that achieve a
satisfactory trade-off between metrics. While there many ways to measure the quality of video
uploads, our strictly increasing reward function with respect quality and reliability constraint create
correlations between many of these quality metrics. We select one quality metric for our objective—
the fraction of 1080p videos that are uploaded at 1080p, which we refer to as the quality preserved at
1080p—and report all quality metrics to the system designers for evaluation. Formally, the objective
is

max
α,Ω

E
[
q1080p|π(α,Ω)

]
s.t. E

[
c|π(α,Ω)

]
≥ E

[
c|πb

]
,

where q1080p is a binary variable indicating if the 1080p upload quality is preserved and π(α,Ω)
is the TS-ASC policy learned given α and Ω. We fix ω360p = 1 and ω480p ∈ (0, 0.05], ω720p ∈
(0, 0.04], ω1080p ∈ (0, 0.03] and α ∈ [0, 0.06]. Each parameterization is evaluated using an A/B
test which allows us to measure the mean and standard error of each metric. Since the optimization
problem involves noisy outcomes and outcome constraints, we use Noisy Expected Improvement
[23] as our acquisition function.

5.4 Results

Figure 3a and Figure 3b show the modeled response surface for the mean percent change in quality
preserved for 1080p and reliability, respectively, relative to the baseline policy. The response surfaces
in Figure 3 demonstrate that α is a powerful lever for constraining in the new policy. When α is
close to 0, Figure 3b shows no decrease in reliability relative to the baseline policy regardless of the
value of reward for a 1080p upload. As α increases, the constraint is relaxed and TS-ASC actions are
feasible even with a small relative drop in the expected reliability, which we observe when using a
larger reward for a successful 1080p upload. In correspondence, Figure 3a shows the inverse effect in
the lower right quadrant. Figure 3c demonstrates the importance of TS-ASC in finding satisfactory
policies: all policies using vanilla TS decrease reliability, whereas there are many parameterizations
that lead to TS-ASC policies with increases in both quality and reliability.

(a) 1080p quality preserved (b) Reliability

(c) Comparison of quality/reliability
trade-off for TS and TS-ASC poli-
cies.

Figure 3: Response surface of mean percent change relative to baseline policy in (a) 1080p quality
preserved and (b) reliability, and (c) metric trade-offs for different parameterizations.

6 Conclusion

In this paper, we identify and give formalism to a contextual bandit problem with auxiliary safety
constraints, which is ubiquitous in real world applications. We propose a novel algorithm called
Thompson Sampling with Auxiliary Safety Constraints (TS-ASC) for learning policies under these
conditions, demonstrate its performance empirically, and apply it to a real world video transcoding
task, which highlights the necessity of the auxiliary safety constraint for constrained policy optimiza-
tion. We hope that this paper motivates future research on this type of problem and inspires work on
theoretical guarantees in this setting.
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Appendix

6.1 Modeling for Video Uploads

We use a shared two-layer fully-connected neural network (with 50 and 4 hidden units respectively) as feature
extractor to learn a feature representationφa for each context-action feature vector xa. We use the learned feature
representation as the input to a Gaussian Process (GP) with a linear kernel and a Bernoulli likelihood by placing
a Gaussian Process prior over the latent function P(f (c)) = N (0,K) where Kij = k(φi,φj) = φT

i Σpφj .
Since we only have observations of the binary success outcome y, we use a Bernoulli distribution for the
likelihood of the observed outcomes given the latent function P(yt|f (c)(φat)), which we can write as:

P(y|f (c)) =

T∏
t=1

Φ
(
f (c)(φat)

)yt(1− Φ
(
f (c)(φat)

)1−yt ,

where Φ is the inverse probit link function (Normal CDF). Hence, the joint distribution of the latent function and
the observed outcomes is given by

P(y, f (c)) =

T∏
t=1

B(yt|Φ(f (c)(φat))N (f (c)|0,K)

[24]. Since inference over the posterior is intractable with a non-conjugate likelihood, we use variational
inference to approximate the posterior and train the model by maximizing the evidence lower bound (ELBO)
using stochastic variational inference 1000 inducing points. We use a decoupled training procedure for training
the neural network feature extractor and fitting variational GP. The neural network is first trained on end-to-end
to minimize the negative log likelihood using mini-batch stochastic gradient descent. Then the last linear layer
of the network is discarded and variational GP is fit using learned feature representation.
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