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ABSTRACT
We present a motion in-betweening framework to generate high
quality, physically plausible character animation when we are given
temporally sparse keyframes as soft animation constraints. More
specifically, we learn imitation policies for physically simulated
characters by using deep reinforcement learning where the policies
can access limited information only. Once learned, the physically
simulated characters are capable of adapting to external perturba-
tions while following given sparse input keyframes. We demon-
strate the performance of our framework on two different motion
datasets and also compare our results with the the results generated
by a baseline imitation policy.
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1 INTRODUCTION
Creating realistic human motions for 3D skeletal characters is one
of the fundamental processes in graphics applications such as ani-
mation, games, or virtual/augmented reality. Motion in-betweening
is a popular method to create skeletal animations, where users
(artists) provide keyframe poses with less temporal granularity and
the system automatically generates intermediate poses with finer
granularity. When keyframe poses are temporally close enough, a
simple linear or spline interpolation could generate smooth and
plausible results while it becomes non-trivial as they get more
sparse because the problem is highly under-constrained. Recently,
motion in-betweening methods for sparsely keyframed poses (e.g.
longer than 1 second) have been proposed [Harvey et al. 2020]. The
main idea is to learn a deep neural network in a supervised fashion
by using existing motion datasets. Once the model is learned, the
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Figure 1: An overview of our system. The input to ourmotion
in-betweening framework is a sequence of sparse keyframes
temporally separated by a fixed time interval. We use a re-
inforcement learning based policy to generate in-between
motion for a physically simulated character.

generated intermediate poses will fall under the distribution of the
training data, potentially resolving both under-constrained and
naturalness issues if sufficiently large and high-quality data is used.

In this literature, we demonstrate a new approach to solve the
motion in-betweening problem given sparsely keyframed poses.
More specifically, our approach generates intermediate poses based
on physically simulated characters of which control policies (a.k.a
controllers) are trained by using deep reinforcement learning (RL).
We develop new formulation that is suitable for the problem, where
the state can only access the sparse input poses while the reward is
computed from the ground-truth motions. Because our approach
uses physically simulated characters, it has several unique advan-
tages over existing kinematics-based approaches. For example, our
method can generate physically plausible motions even if bad in-
put poses are given. Additionally, motions adapting to external
perturbation can emerge during the motion generation.

2 OUR APPROACH
Our system takes a sequence of keyframe poses(
Pkey0 , Pkey

𝑘
, Pkey2𝑘 , · · ·

)
with a fixed coarse time interval

as input (𝑘 = 1 in our model), then outputs a motion(
P0, P𝑚, · · · , P𝑘−𝑚, P𝑘 , · · · , P2𝑘−𝑚, P2𝑘 , · · ·

)
at a desired dense

time interval (𝑚 = 1/30 in our model). The goal is to generate
motion that is smooth, physically plausible, natural-looking, and
reasonably satisfying the input keyframe constraints (see Figure 1).

More specifically, our framework learns an imitation policy based
on deep reinforcement learning (RL). The state s𝑡 = (skey𝑡 , ssim𝑡 ) in
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Figure 2: A deep RL control policy for motion in-betweening.

RL includes both the keyframe state skey𝑡 =
(
Pkeyt , Pkeyt+1 , F

key
offset, ttta

)
and the simulation state s𝑠𝑖𝑚𝑡 =

(
Ssimbody, F

sim
offset

)
, where

(
Pkeyt , Pkeyt+1

)
are the current and next input keyframes, Fkeyoffset refers to the rel-
ative facing frame (i.e. homogeneous transformation of the root
joint projected onto the ground plane) of the next keyframe with
respect to the current keyframe, ttta is the time-to-arrival feature
that includes time remaining to reach the next keyframe (in sec-
onds) and temporal embedding of the current time step as described
in [Harvey et al. 2020], Ssimbody is the dynamic state of the simulated

character as constructed in [Won et al. 2020], and Fkeyoffset is the
relative facing frame of the simulated character with respect to
the current keyframe. The action a𝑡 in RL is a target pose for the
stable PD controller, which computes joint torques 𝜏body to actu-
ate the simulated character. Physics simulation then computes the
next state s𝑡+1. We use the same multiplicative reward function r𝑡
used in [Won et al. 2020], which measures the similarity between
simulated motion and the ground-truth motion through the five dif-
ference terms: joint angles, joint velocities, end-effector positions,
center-of-mass position, and the root joint transformation.

Figure 2 depicts an encoder-decoder structure that we adopt
for our control policy. The idea here is to employ the keyframe
encoder to produce a reduced vector representation z of the in-
between pose for the current time step. The output of the encoder
is concatenated with the simulation state and fed to the dynamics
decoder to produce an action.

3 RESULTS
We adopted an open-sourced implementation of ScaDiver [Won
et al. 2020] to deploy our method. PyBullet and RLlib were used for
physics simulation and deep reinforcement learning, respectively,
and Proximal Policy Optimizationwas used as our deep RL algorithm.
We trained our model independently on two types of motion: 11 lo-
comotion sequences (≈45.5 min) from the LaFAN1 dataset [Harvey
et al. 2020], 10 walking sequences (≈10 min) randomly generated
using a pretrained Phase-Functioned Neural Network (PFNN) con-
troller [Holden et al. 2017]. The training takes approximately 3 days
in total, where 400M simulated steps were approximately generated.
Figure 1 shows a snapshot of intermediate postures generated by
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(a) PFNN generated dataset
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(b) LaFAN1 locomotion dataset

Figure 3: Imitation reward for each frame of in-betweening
of keyframes from unseen motions.

our model trained with LaFAN1 dataset (see supplementary video
for example sequences), where the learned control policy can suc-
cessfully match input sparse keyframes while generating motions
that are physically plausible and resemble ground-truth motions.

To compare the effectiveness of our approach, we trained a base-
line imitation policy based on [Won et al. 2020] on the same data as
above, where the policy consumes the densely specified keyframe
postures (i.e., future reference motion). Since such information is
not available during test time, we provided pseudo-reference mo-
tion by linearly interpolating the input sparse keyframe postures.
Figure 3 shows the performance comparison over unseen motions
(in-distribution), where the reward values are depicted along the
normalized time. Our policy outperforms the baseline, that suffers
from state mismatch between training/test time, by a large margin.

4 CONCLUSION
We demonstrated a new approach for motion in-betweening given
temporally sparse keyframes by using physically simulated char-
acters and deep RL. There are many directions for future work.
We want to remove the constraint on the time interval between
consecutive keyframes, which is currently fixed as 1s. Additionally,
the control policy that we learned can only generate locomotion.
We want to build a more general model that can generate more
diverse behaviors, for example, the entire CMU or LaFAN1 dataset.
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