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ABSTRACT

In augmented reality applications, where room geometries
and material properties are not readily available, it is desirable
to get a representation of the sound field in a room from a lim-
ited set of available room impulse response measurements. In
this paper, we propose a novel method for 2D interpolation of
room modes from a sparse set of RIR measurements that are
non-uniformly sampled within a space. We first obtain the
mode parameters of a measured room. Using the common-
acoustical pole theory, the mode frequencies and decay rates
are kept constant over space, and a unique set of mode am-
plitudes is obtained for each measurement location. Based on
the general solution to the Helmholtz equation, these mode
amplitudes are modeled as periodic functions of 2D spatial
location. For low frequency room modes, the model param-
eters are found with sequential non-linear least squares. Re-
sults show accurate spatial interpolation of perceptually rele-
vant low frequency modes in rooms with simple geometries
having non-rigid walls.

Index Terms— RIR Interpolation, Sound Field Recon-
struction, Room Acoustics, Optimization

1. INTRODUCTION

In room acoustics, a long-standing problem is the interpo-
lation of Room Impulse Responses (RIRs). This is equiva-
lent to reconstructing the sound field in a room from a lim-
ited set of measurements. In augmented reality applications,
there might not be sufficient or accurate information to reli-
ably conduct simulations due to missing geometries, inaccu-
rate or unknown materials, etc. In such cases, a viable solu-
tion is to measure the RIR at specific positions in the room,
thus obtaining a sparse representation of sound field of the
room. The goal of this paper is to utilize this sparse dataset
of RIRs to characterize the entire sound field of a room for
real-time interpolation and extrapolation of RIRs.

Several attempts have been made in the literature for RIR
interpolation and sound field reconstruction, such as dynamic
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time warping [1, 2], parametric approaches [3, 4], compres-
sive sensing [5, 6, 7], spherical harmonics [8], physics-based
methods [9, 10, 11] and more recently, neural networks [12].
In this paper, we extend the common-acoustical pole and
residue model proposed by Haneda et al. in [13]. The com-
mon acoustical poles correspond to the resonance frequencies
(or modes) of a room, while the residues are simple periodic
functions of the source and receiver positions for rectan-
gular rooms (also the general solution to the homogeneous
Helmholtz equation).

We use the modal decomposition of RIRs as a basis for
the interpolation. First, we find a common set of mode fre-
quencies and decay rates using subband ESPRIT [14] on an
average of time-aligned RIRs measured in a room at different
locations. Then, we estimate the mode amplitudes at each lo-
cation with linear least squares. The mode amplitudes (equiv-
alent to the residue) are periodic functions of the source and
listener positions, and can be parameterized by a spatial fre-
quency (wave number) and a complex amplitude. For low-
frequency room modes, we find the wave numbers and com-
plex amplitudes of these functions with sequential non-linear
least squares optimization. Once these parameters are esti-
mated offline, the interpolated RIR can be synthesized in real-
time by using a bank of parallel second order filters [15].

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss room modes and their pressure distribution
as a function of the spatial location. In Section 3, we give
the details of our proposed method; Section 3.1 describes
the modal estimation algorithm and Section 3.2 describes the
proposed optimization procedure for interpolation of low-
frequency room modes. In Section 4, we show the results
of our proposed method by interpolating the low-frequency
magnitude response of rooms simulated with the finite differ-
ence time-domain method (FDTD). Finally, we conclude the
paper in Section 5 and delineate scope for future work.

2. ROOM MODES

The sound field in a room is given by the 3D wave equation
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where p is the acoustic pressure, c is the speed of sound in
the medium, and x, y, z are Cartesian coordinates. The solu-
tions to this equation are standing waves, or room modes. The
room impulse response can be characterized by a sum overM
modes, whose complex amplitudes, γ, are functions of space,
whereas frequencies and dampings, ω and α respectively, de-
termine the temporal response,

h(x, y, z, t) =

M∑
m=1

γm(x, y, z) exp [(jωm − αm)t]. (2)

The complex mode amplitudes are the solution to the homo-
geneous Helmholtz equation,

∇2p+ k2p = 0; k =
2πf

c
(3)
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)
is the Laplacian operator,

k is the 3D wave number and f is the frequency. For a fixed
source and a moving listener (or vice versa) in a rectangular
(shoebox) room with rigid walls, the solution is well-known
[16]. For a mode at a particular frequency ωm,

pm(x, y, z) = p(x) p(y) p(z)

= Cm cos(kxmx) cos(kymy) cos(kzmz).
(4)

From the boundary conditions (zero pressure gradient at the
walls), we can derive the wave numbers in each direction as

kµm
=
nmπ

lµ
;µ ∈ (x, y, z)

k =
√
k2x + k2y + k2z

(5)

where nm ∈ Z+ and lµ is the length of the room in the µ
direction, and kµm is the wave number associated with the
mth mode in the µ direction.

In a rectangular room with non-rigid walls, damping is
introduced and the general solution changes to

pm(µ) = Cµm
exp(jkµm

u) +Dµm
exp(−jkµm

µ)

kµm
=
nmπ

lµ
+ jδµ.

(6)

The wave numbers, determined by the boundary conditions,
are no longer real but have an imaginary component deter-
mined by the wall absorption, δµ. Typically, we do not have
information about lµ or δµ. The goal of this paper is to find
the wave numbers, kµm , and the constants, Cµm , Dµm , from
an observed set of RIR measurements when either the source
or the listener is fixed and the other moves in a 2D plane that
contains the measurement points.

3. PROPOSED METHOD

3.1. Modal estimation

The RIRs measured at different locations in a specific room
are time-aligned and averaged since they share a common set
of poles. The common mode parameters - frequencies and
decay rates, are estimated with subband ESPRIT [14]. The
mean RIR is filtered into 12 non-uniform overlapping fre-
quency bands based on a Bark scale [17], and decimated by
a factor of r = 8, so that nearby modes in the low frequen-
cies can be resolved. The mode frequencies and dampings
are the generalized eigenvalues of the Hankel matrix formed
by the impulse response and its shifted copy. Repeated poles
are discarded, and the effect of filtering and decimation is un-
done by shifting the frequencies up the spectrum, and raising
the decay rates to their rth roots.

In Eq. (7), a matrix of RIR measurements, H ∈ RT×L,
with sampled time along its columns and sampled locations
along its rows, is written as a product of a Vandermonde
matrix, V , of decaying complex sinusoids and a matrix of
complex mode amplitudes, Γ, sampled at different locations.
Once the mode frequencies and dampings are estimated with
ESPRIT, the mode amplitudes at each location can be es-
timated using linear least squares. Here, † stands for the
Moore-Penrose matrix inverse.

H = V Γ, Γ ≈ V †H (8)

3.2. Non-linear optimization for low-frequency modes

At low frequencies, the room modes are well separated. Be-
yond the Schroeder frequency, however, the resonant peaks
overlap and it is not possible to isolate the effect of individual
modes [16]. According to the Nyquist limit, if the minimum
distance between any two measured points is d m, then the
maximum mode frequency that can be correctly interpolated
without aliasing is fu = c

2d Hz. The advantage of optimiza-
tion lies in overcoming this constraint. We want to spatially
interpolate low frequency modes given an arbitrarily sampled,
sparse set of RIR measurements from a room. Once the modal
parameters are estimated, our aim is to fit parametric func-
tions of the form of Eq. (6) to the complex mode amplitudes
as a function of spatial location. Each mode amplitude at a
specified location (x, y) on a 2D plane can be written as

γ̂m(x, y) =C1me
−j(kxmx+kymy) +D1me

j(kxmx+kymy)+

C2me
−j(kxmx−kymy) +D2me

−j(kxmx−kymy)
(9)



The constants C1, D1, C2, D2 and wave numbers kx, ky are
unknown for each mode. For a set of measurements at L lo-
cations - (x1, y1), (x2, y2), · · · , (xL, yL),
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To find the optimal parameters, we use a sequential op-
timization scheme [18]. For each mode, we first update the
constants using linear least squares, and then update the wave
numbers with non-linear least squares. The details of the al-
gorithm are given in Algorithm 1. � is the element-wise divi-
sion of two matrices and Mc is the number of low-frequency
room modes. The difference in measured and modeled mode
amplitudes is specified in decibels.

Algorithm 1 Sequential optimization

Require: 0 ≤ kxm
, kym ≤

ωm+jαm

c ∀m
for m = 1 · · ·Mc do

Initialize kxm = kym = ωm+jαm√
2c

repeat
cmi = U

∗†
mi−1

γm
γ̂mi

= U∗mi−1
cmi

J(kxmi
, kymi

) = ||20 log10(γm � γ̂mi
)||22

k∗xmi
, k∗ymi

= argminkxm ,kym J
until convergence

end for

4. EXPERIMENTS AND RESULTS

To test the efficacy of our proposed method, we simulated
RIRs with a wave-based FDTD solver [19]. We present re-
sults for two simulated rooms - a shoebox room of dimensions
3×2×3 m3 with different frequency-independent admittances
(Kd) on the walls - front and back wall Kd = 0.9, left and
right wall Kd = 0.8, floor and ceiling Kd = 0.99, and an-
other non-rectangular room with no parallel walls, of dimen-
sion 3 m on the longest edge in each direction, made of the
same materials and having tilted walls at an angle of 9.4◦ in
the x, z directions. We used an omni-directional point source
and placed virtual microphones in a rectangular grid on the
xy plane at a height of 1.7 m (nominal standing height). The
grid resolution was 0.2 m, yielding a total of 442 measured
RIRs for the shoebox room, and 594 RIRs for the room with
tilted walls. The sampling rate was 240 kHz for the simula-

(a) Mode at 58 Hz, measured (b) Mode at 58 Hz, fit

(c) Mode at 62 Hz, measured (d) Mode at 62 Hz, fit

Fig. 1: Optimization fits using 10 receivers at locations ×.
Shoebox room (top), room with tilted walls (bottom).

tor1, and 0.5 s of RIR was calculated. We resampled the RIRs
to 48 kHz.

Mode shape fits for a low frequency are shown in Fig. 1
for both rooms. 10 microphones (locations marked in crosses)
were used for the fit. The color intensity indicates sound pres-
sure magnitude in decibels. The dark blue grids in Fig. 1c in-
dicate points outside the room where the measured pressure is
zero. To replicate the sparsity condition, we varied the num-
ber of microphones from 5 to 50. We ran Ntr = 100 trials for
each set, placing the microphones in different configurations
in each trial and evaluated the following metrics to show the
effect of the number of measurement points on our results.

• Mean Structural Similarity Index Measure (MSSIM)
- SSIM indicates the structural similarity between two
images [20], and has values in the range [0, 1]. It has
been used in [12] as an evaluation metric. A high SSIM
index indicates that the measured and optimized mode
shapes match closely. We average the SSIM over 100
trials to get the mean SSIM (MSSIM).

• Absolute Mean Spectral Difference Error (AMSDE)
- The absolute difference between the frequency re-
sponses (averaged over all measurement points and all
configurations) of the measured and modeled RIR, ex-
pressed in decibels. An AMSDE of 0 dB indicates per-
fect reconstruction. H and Ĥ denote the measured and
fit frequency responses respectively.

AMSDE(ω) =
1

Ntr

Ntr∑
n=1

∣∣∣∣∣20 log10
(∑L

l=1Hl,n(ω)∑L
l=1 Ĥl,n(ω)

)∣∣∣∣∣
(11)

1The sampling rate for FDTD simulations is typically large to reduce dis-
persion errors.
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Fig. 2: Mean SSIM index
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Fig. 3: Absolute Mean Spectral Difference Error (dB) between measured and interpolated responses

The variation in SSIM index with number of microphones is
shown in Fig. 2. With only 5 microphones, the SSIM is no-
ticeably worse. Beyond that, increasing the number of micro-
phones does not yield a significant improvement. It is to be
noted that the SSIM is only calculated at the modal frequen-
cies. There is an overall decrease in SSIM with increase in
frequency, similar to what is observed in [12]. With increas-
ing frequency, the mode shapes become more complex, and
need to be characterized by multiple periodic functions.

The AMSDE, as shown in Fig. 3, shows a similar trend,
with 5 microphones performing worse than others. These re-
sults are promising given the small number of data points,
and show that as few as 10 measurement points are adequate
to capture the low frequency sound field of a room. The min-
ima often appear at the modal frequencies, marked in black
crosses, where the fit is nearly perfect. As we go further away
from the mode frequencies, the error reaches a maximum.

5. CONCLUSION AND FUTURE WORK

In this paper we have proposed a novel method for interpo-
lation of low-frequency room modes based on the general
solution to the Helmholtz equation. The spatial distribution
of mode amplitudes has been modeled as a periodic function

characterized by a wave number in each direction, and an as-
sociated complex amplitude. We have proposed a sequential
optimization scheme to estimate these parameters. Finally,
we have tested the method on two rooms - a simple shoe-
box made of different materials, and another non-rectangular
room with tilted walls. Two metrics have been evaluated as
objective measures - the SSIM index and absolute mean spec-
tral difference error between measured and modeled signals.

Our analysis with FDTD simulations of rooms has shown
that the proposed method is capable of accurate RIR inter-
polation in the lower frequencies with a very small number
of randomly distributed microphones. One advantage of this
method compared to machine-learning based approaches [12]
is that only a handful of parameters need to be stored for
characterizing the low-frequency spatial response of a room
- mode frequencies, dampings, two wave numbers and four
constants for each mode. The RIR can be interpolated very
efficiently in real-time once these parameters have been es-
timated offline. However, further questions need to be ad-
dressed, such as, comparison with existing approaches, more
robust analysis with rooms of different sizes and geometries,
and perceptual evaluation. It will also be useful to extend
the model beyond low frequencies. We leave these questions
open for a more detailed future work.
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