
Deep Appearance Models for Face Rendering

STEPHEN LOMBARDI, Facebook Reality Labs
JASON SARAGIH, Facebook Reality Labs
TOMAS SIMON, Facebook Reality Labs
YASER SHEIKH, Facebook Reality Labs

Ground Truth
(novel view)

Rendered Avatar
(novel view)

Average texture View-specific texture

Mesh Mesh

Encoder Decoder

Encoder Decoder

Input Animated Avatar

Multi-camera Capture Images

Domain Adaptation Variational Autoencoder

Deep Appearance Variational Autoencoder

Images from Camera
Mounted on HMD

Synthetic HMD Images

Fig. 1. Our model jointly encodes and decodes geometry and view-dependent appearance into a latent code z, from data captured from a multi-camera rig,
enabling highly realistic data-driven facial rendering. We use this rich data to drive our avatars from cameras mounted on a head-mounted display (HMD). We
do this by creating synthetic HMD images through image-based rendering, and using another variational autoencoder to learn a common representation y of
real and synthetic HMD images. We then regress from y to the latent rendering code z and decode into mesh and texture to render. Our method enables
high-fidelity social interaction in virtual reality.

We introduce a deep appearance model for rendering the human face. In-
spired by Active Appearance Models, we develop a data-driven rendering
pipeline that learns a joint representation of facial geometry and appearance
from a multiview capture setup. Vertex positions and view-specific textures
are modeled using a deep variational autoencoder that captures complex non-
linear effects while producing a smooth and compact latent representation.
View-specific texture enables the modeling of view-dependent effects such as
specularity. In addition, it can also correct for imperfect geometry stemming
from biased or low resolution estimates. This is a significant departure from
the traditional graphics pipeline, which requires highly accurate geometry
as well as all elements of the shading model to achieve realism through
physically-inspired light transport. Acquiring such a high level of accuracy
is difficult in practice, especially for complex and intricate parts of the face,

Authors’ addresses: Stephen Lombardi, Facebook Reality Labs, Pittsburgh, PA, stephen.
lombardi@fb.com; Jason Saragih, Facebook Reality Labs, Pittsburgh, PA, jason.saragih@
fb.com; Tomas Simon, Facebook Reality Labs, Pittsburgh, PA, tomas.simon@fb.com;
Yaser Sheikh, Facebook Reality Labs, Pittsburgh, PA, yaser.sheikh@fb.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/8-ART1
https://doi.org/10.1145/3197517.3201401

such as eyelashes and the oral cavity. These are handled naturally by our
approach, which does not rely on precise estimates of geometry. Instead, the
shading model accommodates deficiencies in geometry though the flexibility
afforded by the neural network employed. At inference time, we condition
the decoding network on the viewpoint of the camera in order to generate
the appropriate texture for rendering. The resulting system can be imple-
mented simply using existing rendering engines through dynamic textures
with flat lighting. This representation, together with a novel unsupervised
technique for mapping images to facial states, results in a system that is
naturally suited to real-time interactive settings such as Virtual Reality (VR).

CCS Concepts: • Computing methodologies → Image-based render-
ing; Neural networks; Virtual reality; Mesh models;

Additional Key Words and Phrases: Appearance Models, Image-based Ren-
dering, Deep Appearance Models, Face Rendering

ACM Reference Format:
Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser Sheikh. 2018.
Deep Appearance Models for Face Rendering. ACM Trans. Graph. 37, 4,
Article 1 (August 2018), 13 pages. https://doi.org/10.1145/3197517.3201401

1 INTRODUCTION
With the advent of modern Virtual Reality (VR) headsets, there
is a need for improved real-time computer graphics models for
enhanced immersion. Traditional computer graphics techniques are

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201401
https://doi.org/10.1145/3197517.3201401


1:2 • Lombardi et al.

capable of creating highly realistic renders of static scenes but at
high computational cost. These models also depend on physically
accurate estimates of geometry and shading model components.
When high precision estimates are difficult to acquire, degradation
in perceptual quality can be pronounced and difficult to control and
anticipate. Finally, photo-realistic rendering of dynamic scenes in
real time remains a challenge.
Rendering the human face is particularly challenging. Humans

are social animals that have evolved to express and read emotions in
each other’s faces [Ekman 1980]. As a result, humans are extremely
sensitive to rendering artifacts, which gives rise to the well-known
uncanny valley in photo-realistic facial rendering and animation.
The source of these artifacts can be attributed to deficiencies, both
in the rendering model as well as its parameters. This problem is
exacerbated in real-time applications, such as in VR, where limited
compute budget necessitates approximations in the light-transport
models used to render the face. Common examples here include:
material properties of the face that are complex and time-consuming
to simulate; fine geometric structures, such as eyelashes, pores, and
vellus hair that are difficult to model; and subtle dynamics from
motion, particularly during speech. Although compelling synthetic
renderings of faces have been demonstrated in the movie industry,
these models require significant manual cleanup [Lewis et al. 2014],
and often a frame-by-frame adjustment is employed to alleviate
deficiencies of the underlying model. This manual process makes
them unsuitable for real-time applications.

The primary challenge posed by the traditional graphics pipeline
stems form its physics-inspired model of light transport. For a spe-
cific known object class, like a human face, it is possible to circum-
vent this generic representation, and instead directly address the
problem of generating images of the object using image statistics
from a set of examples. This is the approach taken in Active Ap-
pearance Models (AAMs) [Cootes et al. 2001], which synthesize
images of the face by employing a joint linear model of both texture
and geometry (typically a small set of 2D points), learned from a
collection of face images. Through a process coined analysis-by-
synthesis, AAMs were originally designed to infer the underlying
geometry of the face in unseen images by optimizing the parameters
of the linear model so that the synthesized result best matches the
target image. Thus, the most important property of AAMs is their
ability to accurately synthesize face images while being sufficiently
constrained to only generate plausible faces. Although AAMs have
been largely supplanted by direct regression methods for geome-
try registration problems [Kazemi and Sullivan 2014; Xiong and
la Torre Frade 2013], their synthesis capabilities are of interest due
to two factors. First, they can generate highly realistic face images
from sparse 2D geometry. This is in contrast to physics-inspired
face rendering that requires accurate, high-resolution geometry and
material properties. Second, the perceptual quality of AAM syn-
thesis degrades gracefully. This factor is instrumental in a number
of perceptual experiments that rely on the uncanny-valley being
overcome [Boker et al. 2011; Cassidy et al. 2016].
Inspired by the AAM, in this work we develop a data-driven

representation of the face that jointly models variations in sparse
3D geometry and view-dependent texture. Departing from the linear
models employed in AAMs, we use a deep conditional variational

autoencoder [Kingma and Welling 2013] (CVAE) to learn the latent
embedding of facial states and decode them into rendering elements
(geometry and texture). A key component of our approach is the
view-dependent texture synthesis, which can account for limitations
posed by sparse geometry as well as complex nonlinear shading
effects such as specularity. We explicitly factor out viewpoint from
the latent representation, as it is extrinsic to the facial performance,
and instead condition the decoder on the direction from which the
model is viewed. To learn a deep appearance model of the face, we
constructed a multiview capture apparatus with 40 cameras pointed
at the front hemisphere of the face. A coarse geometric template
is registered to all frames in a performance and it, along with the
unwarped textures of each camera, constitute the data used to train
the CVAE. We investigated the role of geometric precision and
viewpoint granularity and found that, although direct deep image
generation techniques such as those of Radford et al. [2015], Hou
et al. [2017], or Kulkarni et al. [2015] can faithfully reconstruct data,
extrapolation to novel viewpoints is greatly enhanced by separating
the coarse graphics warp (via a triangle mesh) from appearance,
confirming the basic premise of the parameterization.
Our proposed approach is well suited for visualizing faces in

VR since; a) sparse geometry and dynamic texture are basic build-
ing blocks of modern real-time rendering engines, and b) modern
VR hardware necessarily estimates viewing directions in real-time.
However, in order to enable interaction using deep appearance
models in VR, the user’s facial state needs to be estimated from a
collection of sensors that typically have extreme and incomplete
views of the face. An example of this is shown in the bottom left
of Figure 1. This problem is further complicated in cases where the
sensors measure a modality that differs from that used to build the
model. A common example is the use of IR cameras, which defeats
naive matching with images captured in the visible spectrum due to
pronounced sub-surface scattering in IR. To address this problem, we
leverage the property of CVAE, where weight sharing across similar
modalities tends to preserve semantics. Specifically, we found that
learning a common CVAE over headset images and re-rendered ver-
sions of the multiview capture images allows us to correspond the
two modalities through their common latent representation. This,
in turn, implies correspondence from headset images to latent codes
of the deep appearance model, over which we can learn a regression.
Coupled with the deep appearance model, this approach allows
the creation of a completely personalized end-to-end system where
a person’s facial state is encoded with the tracking VAE encoder
and decoded with the rendering VAE decoder without the need for
manually defined correspondences between the two domains.
This paper makes two major contributions to the problem of

real-time facial rendering and animation:

• A formulation of deep appearance models that can generate
highly realistic renderings of the human face. The approach
does not rely on high-precision rendering elements, can be
built completely automatically without requiring any manual
cleanup, and is well suited to real-time interactive settings
such as VR.
• A semi-supervised approach for relating the deep appearance
model latent codes to images captured using sensors with

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



Deep Appearance Models for Face Rendering • 1:3

drastically differing viewpoint and modality. The approach
does not rely on any manually defined correspondence be-
tween the two modalities but can learn a direct mapping from
images to latent codes that can be evaluated in real-time.

In §2 we cover related work, and describe our capture apparatus and
data preparation in §3. The method for building the deep appearance
models is described in §4, and the technique for driving it from head-
set mounted sensors in §5. Qualitative and quantitative results from
investigating various design choices in our approach are presented
in §6. We conclude in §7 with a discussion and directions of future
work.

2 RELATED WORK
Active Appearance Models (AAMs) [Cootes et al. 2001; Edwards
et al. 1998; Matthews and Baker 2004; Tzimiropoulos et al. 2013]
and 3D morphable models (3DMM) [Blanz and Vetter 1999; Knothe
et al. 2011] have been used as an effective way to register faces
in images through analysis-by-synthesis using a low dimensional
linear subspace of both shape and appearance. Our deep appearance
model can be a seen as a re-purposing of the generator component
of these statistical models for rendering highly realistic faces. To
perform this task effectively, there are two major modifications that
were necessary over the classical AAM and 3DMM approaches; the
use of deep neural networks in-place of linear generative functions,
and a system for view-conditioning to specialize the generated
image to the viewpoint of the camera.
Recently, there has been a great deal of work using deep net-

works to model human faces in images. Radford et al. [2015] use
Generative Adversarial Networks (GANs) to learn representations
of the face and learn howmovements in this latent space can change
attributes of the output image (e.g., wearing eyeglasses or not). Hou
et al. [2017] use a variational autoencoder to perform a similar task.
Kulkarni et al. [2015] attempt to separate semantically meaningful
characteristics (e.g., pose, lighting, shape) from a database of ren-
dered faces semi-automatically. All these methods operate only in
the image domain and are restricted to small image sizes (256×256
or less). By contrast, we learn to generate view-specific texture
maps of how the face changes due to facial expression and viewing
direction. This greatly simplifies the learning problem, achieving
high-resolution realistic output as a result.

There has also been work on automatically creating image-based
avatars using a geometric facial model [Hu et al. 2017; Ichim et al.
2015; Thies et al. 2018]. Cao et al. [2016] propose an image-based
avatar from 32 images captured from a webcam. To render the face,
they construct a specially crafted function that blends the set of
captured images based on the current facial expression and surface
normals, which captures the dependence of both expression and
viewpoint on facial appearance. Casas et al. [2016] propose a method
for rapidly creating blendshapes from RGB-D data, where the face
is later rendered by taking a linear combination of the input tex-
ture maps. Although both methods take an image-based approach,
our method learns how appearance changes due to expression and
view rather than prescribing it. Most importantly, these approaches
are geared towards data-limited scenarios and, as a result, do not
scale well in cases where data is more abundant. Our approach is

designed specifically to leverage large quantities of high quality
data to achieve the compelling depiction of human faces.
Because our method is concerned with view-dependent facial

appearance, our work has a connection to others that have studied
the view- and light-dependent appearance of materials and objects.
One way to view this work is as a compression of the “8D reflectance
function that encapsulates the complex light interactions inside an
imaginary manifold via the boundary conditions on the surface of
the manifold” [Klehm et al. 2015]. That is, we are capturing the
lightfield at a manifold on which the cameras lie and compress-
ing the appearance via a deconstruction of texture and geometry.
Image-based rendering methods [Gortler et al. 1996; Kang et al.
2000] represent the light field non-parametrically and attempt to
use a large number of samples to reconstruct novel views. The
Bidirectional Texture Function [Dana et al. 1999] is a method to
model both spatially-varying and view-varying appearance. These
approaches have served as inspiration for this work.
To drive our model we develop a technique for learning a di-

rect end-to-end mapping from images to deep appearance model
codes. Although state of the art techniques for face registration also
employ regression methods [Kazemi and Sullivan 2014; Xiong and
la Torre Frade 2013], most approaches assume a complete view of
the face where correspondences are easily defined through facial
landmarks. An approach closest to our work is that of Olszewski
et al. [2016], which employ direct regression from images to blend-
shape coefficients. The main difference to our work is in how corre-
sponding expressions are found between the two domains. Whereas
in Olszewski et al.’s work, correspondences are defined semantically
through peak expressions and auditory aligned features of speech
sequences, our approach does not require any human defined cor-
respondence, or even that the data contains the same sequence
of facial motions. Since we leverage unsupervised domain adap-
tation techniques, the only requirement of our method is that the
distribution of expressions in both domains are comparable.

There have recently been a number of works that perform unsu-
pervised domain adaptation using deep networks [Bousmalis et al.
2017; Kim et al. 2017; Liu et al. 2017; Zhu et al. 2017]. Many of
these methods rely on Generative Adversarial Networks (GANs) to
translate between two or more domains, sometimes with additional
losses to ensure semantic consistency. Some works also use VAE in
conjunction with other components to learn a common latent space
between domains [Hsu et al. 2017; Liu et al. 2017]. Our approach
differs from these works in that we leverage the pre-trained ren-
dering VAE to help constrain the structure of the common latent
space, resulting in semantics that are well matched between the
modalities.

3 CAPTURING FACIAL DATA
To learn to render faces, we need to collect a large amount of facial
data. For this purpose, we have constructed a large multi-camera
capture apparatus with synchronized high-resolution video focused
on the face. The device contains 40 machine vision cameras capable
of synchronously capturing 5120×3840 images at 30 frames per
second. All cameras lie on the frontal hemisphere of the face and are
placed at a distance of about one meter from it. We use zoomed in

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:4 • Lombardi et al.

UNWRAP

Inference

Input

AVERAGE

TRACKING

RENDERAverage TextureView-specific Texture View-specific Texture

Input Image

Rendered Image

Mesh Vertices Mesh Vertices

zt D�E�

Fig. 2. Pipeline of our method. Our method begins with input images from the multi-camera capture setup. Given a tracked mesh, we can unwrap these
images into view-specific texture maps. We average these texture maps over all cameras for each frame and input it and the mesh to a variational autoencoder.
The autoencoder learns to reconstruct a mesh and view-specific texture because the network is conditioned on the output viewpoint. At inference time, we
learn to encode a separate signal into the latent parameters z which can be decoded into mesh and texture and rendered to the screen.

50mm lenses, capturing pore-level detail, where each pixel observes
about 50µm on the face.

We preprocess the raw video data by performing multiview stereo
reconstruction. In order to achieve the best results, we evenly place
200 directional LED point lights directed at the face to promote
uniform illumination.
To keep the distribution of facial expressions consistent across

identities, we have each subject make a predefined set of 122 fa-
cial expressions. Each subject also recites a set of 50 phonetically-
balanced sentences. The meta-data regarding the semantic content
of the recordings is not utilized in this work, but its inclusion as
additional constraints in our system is straightforward and is a
potential direction for future work.

As input to our deep appearance model learning framework, we
take the original captured images as well as a tracked facial mesh.
To generate this data, we build personalized blendshape models
of the face from the captured expression performances, similar
to Laine et al. [2017], and use it to track the face through the captured
speech performances by matching the images and the dense 3D
reconstructions.

4 BUILDING A DATA-DRIVEN AVATAR
Our primary goal is to create extremely high-fidelity facial models
that can be built automatically from a multi-camera capture setup
and rendered and driven in real time in VR (90Hz). In achieving this
goal, we avoid using hand-crafted models or priors, and instead rely
on the rich data we acquired from our multiview capture apparatus.
We unify the concepts of 3D morphable models, image-based

rendering, and variational autoencoders to create a real-time facial
rendering model that can be learned from a multi-camera capture
rig. The idea is to construct a variational autoencoder that jointly en-
codes geometry and appearance. In our model, the decoder outputs
view-dependent textures—that is, a texture map that is “unwrapped”

from a single camera image. It is view-specific and therefore con-
tains view-dependent effects such as specularities, distortions due
to imperfect geometry estimates, and missing data in areas of the
face that are occluded.
The critical piece of the proposed method is that we use a con-

ditional variational autoencoder to condition on the viewpoint of
the viewer (at training time, the viewer is the camera from which
the texture was unwrapped; at test time, the viewpoint we want
to render from; in both cases the direction is composed with the
inverse of the global head-pose in the scene), allowing us to output
the correct view-specific texture. At test time, we can execute the
decoder network in real-time to regress from latent encoding to
geometry and texture and finally render using rasterization.
Figure 2 visualizes the training and inference pipeline of our al-

gorithm. For this work, we assume that coarse facial geometry has
been tracked and we use it as input to our algorithm with the origi-
nal camera images. After geometry is tracked, we “unwrap” texture
maps for each camera and for every frame of capture. Unwrapping
is performed by tracing a ray from the camera to each texel of the
texture map and copying the image pixel value into the texel if
the ray is not occluded. These view-specific texture maps are what
we want to generate at test time: reproducing them will cause the
rendered image to match the ground truth image after rendering.
To learn how to generate them efficiently, we use a conditional vari-
ational autoencoder (CVAE) [Kingma and Welling 2013]. Because
we jointly model geometry and appearance, our autoencoder has
two branches: an RGB texture map and a vector of mesh vertex
positions.
Let Ivt be an image from the multi-camera capture rig at time

instant t from camerav (for a total ofV = 40 cameras). In this work,
we assume that the viewpoint vector is relative to the rigid head
orientation that is estimated from the tracking algorithm. At each
time instant we also have a 3D meshMt (7306 vertices × 3 = 21918-
dimensional vector) with a consistent topology across time. Using

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



Deep Appearance Models for Face Rendering • 1:5

Encoder Decoder

3
16 16 32 32 64 64 128 128

21918

2048
256

256

512

Convolutions (stride=2) Transposed Convolutions (stride=2)

3
16163232

6464128128

21918

2048

32

256

288

Fully connected Fully connected

128

128

3

128

Fig. 3. Architecture of the Encoder and Decoder. The textures Tµt and Tvt are 3-channel 1024 × 1024 images. Each convolutional layer has stride 2 and the
number of channels doubles after the first convolution every two layers. We combine the texture and mesh subencodings via concatenation. The decoder runs
these steps in reverse: we split the network into two branches and use transposed convolutions of stride 2 to double the image resolution at every step. This
decoder network executes in less than 5 milliseconds on an NVIDIA GeForce GTX 1080 GPU.

the image and mesh we can “unwrap” a view-specific texture map
Tvt by casting rays through each pixel of the geometry and assigning
the intersected texture coordinate to the color of the image pixel.
During training, the conditional VAE takes the tuple (Tµt ,Mt ) as
input and (Tvt ,Mt ) as the target. Here,

Tµt =
∑V
v=1w

v
t ⊙ Tvt∑V

v=1w
v
t
, (1)

is the average texture, where wv
t is a factor indicating whether

each texel is occluded (0) or unoccluded (1) from camera v and ⊙
represents an element-wise product. The primary reason for this
asymmetry is to prevent the latent space from containing view in-
formation and to enforce a canonical latent state over all viewpoints
for each time instant. The effects of this is discussed below.
The cornerstone of our method is the conditional variational

autoencoder that learns to jointly compress and reconstruct the tex-
ture Tvt and mesh verticesMt . This autoencoder can be viewed as a
generalization of Principal Component Analysis (PCA) in conven-
tional AAMs. The autoencoder consists of two halves: the encoder
Eϕ and the decoder Dϕ . The encoder takes as input the mesh ver-
tices and texture intensities and outputs parameters of a Gaussian
distribution of the latent space,

µzt , logσ
z
t ← Eϕ (T

µ
t ,Mt ), (2)

where the function Eϕ is parameterized using a deep neural network
with parametersϕ. At training time, we sample from the distribution,

zt ∼ N(µzt ,σ z
t ), (3)

and pass it into the decoderDϕ and compute the reconstruction loss.
This process approximates the expectation over the distribution de-
fined by the encoder. The vector zt is a data-driven low-dimensional
representation of the subject’s facial state. It encodes all aspects of
the face, from eye gaze direction, to mouth pose, to tongue expres-
sion.
The decoder takes two inputs: the latent facial code zt and the

view vector, represented as the vector pointing from the center of

the head to the camera vt (relative to the head orientation that is
estimated from the tracking algorithm). The decoder transforms the
latent code and view vector into reconstructed mesh vertices and
texture,

T̂vt , M̂t ← Dϕ (zt , vvt ), (4)

where T̂vt is the reconstructed texture and M̂t is the reconstructed
mesh. After decoding, the texture, mesh, and camera pose informa-
tion can be used to render the final reconstructed image Îvt .

Figure 3 shows the architecture of the encoder and decoder. Con-
ditioning is performed by concatenating the conditioning variable
to the latent code z after each are transformed by a single fully con-
nected layer. Since the mesh should be independent of viewpoint, it
is only a function of the latent code. The texture decoder subnetwork
consists of a series of strided transposed convolutions to increase
the output resolution. In each layer, reparameterize the weight ten-
sor using Weight Normalization [Salimans and Kingma 2016]. We
use leaky ReLU activations between layers with 0.2 leakiness. The
decoder network must execute in less than 11.1 milliseconds to
achieve 90Hz rendering for real-time VR systems. We are able to
achieve this using transposed strided convolutions even with a final
texture size of 1024 × 1024. This is a major departure from most
previous work for generating facial imagery that has been limited
to significantly smaller output sizes.
Texture maps have non-stationary statistics that we can exploit

in our network design. For example, DeepFace [Taigman et al. 2014]
utilizes “locally-connected layers”, a generalization of convolution
where each pixel location has a unique convolution kernel. We
utilize a similar but simpler approach: each convolutional layer has
a bias that varies with both channel and the spatial dimensions.
We find that this greatly improves reconstruction error and visual
fidelity.
To train our system, we minimize the L2-distance between the

input texture and geometry and the reconstructed texture and ge-
ometry plus the KL-divergence between the prior distribution (an

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:6 • Lombardi et al.

isotropic Gaussian) and the distribution of the latent space:

ℓ(ϕ) =
∑
v,t

λT

wv
t ⊙

(
Tvt − T̂vt

)2 + λM Mt − M̂t

2+
λZ KL

(
N

(
µzt ,σ

z
t
) N (

0, I
) )
,

(5)

wherewv
t is a weighting term to ensure the loss does not penalize

missing data (i.e., areas of the face that are not seen by the camera)
and λ∗ are weights for each term (in all experiments we set these
values to λT=1.0, λM=1.0, λZ=0.01). We use the Adam algorithm
[Kingma and Welling 2013] to optimize this loss. Before training,
we standardize the texture and geometry so that they have zero
mean and unit variance. For each subject, our dataset consists of
around 5,000 frames of capture under 40 cameras per frame. Training
typically takes around one day for 200,000 training iterations with
a mini-batch size of 16 on an NVIDIA Tesla M40.

During test time, we execute the decoder half to transform facial
encodings z and viewpoint v into geometry and texture. Using the
architecture shown in Figure 3, this takes approximately 5 millisec-
onds on an NVIDIA GeForce GTX 1080 graphics card; well within
our target of 11.1 milliseconds. In practice, we find that in VR it
is desirable to decode twice, creating one texture for each eye to
induce parallax also in the generated texture. Our network is able
to generalize in viewpoint enough that the small difference in view-
point between the two eyes improves the experience by giving an
impression of depth in regions that are poorly approximated by the
sparse geometry (e.g., the oral cavity).
For our viewpoint conditioning to work, the decoder network

Dϕ must rely on the viewpoint conditioning vector to supply all the
information about the viewpoint. In other words, the latent code
z should contain no information about the viewpoint of the input
texture. This should be true for all types of variables that we may
want to condition on at test time. The use of variational autoencoders
[Kingma and Welling 2013] does promote these properties in the
learned representation (as we will discuss in section 4.1). However,
for the special case of viewpoint, we can explicitly enforce this
factorization by supplying input Tµt as the input texture, that is
averaged across all cameras for a particular time instant t . This
allows us to easily enforce a viewpoint-independent encoding of
facial expression and gives us a canonical per-frame latent encoding.

4.1 Conditioned Autoencoding
A critical piece of our model is the ability to condition the out-
put of the network on some property we want to control at test
time. For our base model to work properly, we must condition on
the viewpoint of the virtual camera. The idea of conditioning on
some information we want to control at test time can be extended
to include illumination, gaze direction, and even identity. We can
broadly divide conditioning variables into two categories: extrinsic
variables (e.g., viewpoint, illumination, etc.) and intrinsic variables
(e.g., speech, identity, gaze, etc.).

4.1.1 Viewpoint Conditioning. The main variable that must be
conditioned on is the virtual camera viewpoint. We condition on
viewpoint so that at test time we will generate the appropriate tex-
ture from that viewer’s point of view (relative to the avatars position

and orientation). For this to work properly, the latent encoding z
must not encode any view-specific information.

A viewpoint-independent expression representation can be achieved
by using a variational autoencoder [Kingma and Welling 2013],
which encourages the latent encoding z to come from a zero-mean
unit-variance Gaussian distribution. It has been observed that vari-
ational autoencoders tend to learn a minimal encoding of the data
because of the regularization of the latent space [Chen et al. 2016].
Because of this, the network is encouraged to use the condition-
ing variable (in this case, viewpoint) as much as possible in or-
der to minimize the number of dimensions used in the encoding.
Rather than rely only on this mechanism, we input a texture map
averaged over all viewpoints to the encoder network to ensure a
viewpoint-independent latent encoding z. We will, however, exploit
this mechanism for other conditioning variables.

4.1.2 Identity Conditioning. Avatars built with this system are
person-specific. We would like to have a single encoder/decoder that
models multiple people through an identity conditioning variable.
With enough data, we may be able to learn to map single images
to identity conditioning vectors, allowing us to dynamically create
new avatars without needing a multi-camera capture rig.
Interestingly, with this identity conditioning scheme, we notice

that the network learns an identity-independent representation of
facial expression in z despite not imposing any correspondence
of facial expression between different people. This is because the
variational autoencoder (VAE) is encouraged to learn a common
representation of all identities through its prior. Semantics tend to
be preserved probably because the network can reuse convolutional
features throughout the network.

5 DRIVING A DATA-DRIVEN AVATAR
Now that we are able to train the decoder to map latent encodings
to texture and geometry, we can render animated faces in real-time.
We would like the ability to drive our avatars with live or recorded
performance rather than only playing back data from the original
capture. In this section, we detail how to animate our avatar by
controlling the latent facial code z with an unsupervised image-
based tracking method. Because our focus is on creating the highest
possible quality avatars and facial animation, we limit our scope to
person-specific models (i.e., a person can drive only his or her own
avatar).

The primary challenge for driving performance with these avatars
is obtaining correspondence between frames in our multi-camera
capture system and frames in our headset. Note that this is a unique
problem for virtual reality avatars because one cannot wear the
headset during the multi-camera capture to allow us to capture
both sets of data simultaneously, as the headset would occlude the
face. We address this problem by utilizing unsupervised domain
adaptation.

5.1 Video-driven Animation
Our approach centers around image-based rendering on the rich
multi-camera data to simulate headset images. The first step is
to compute approximate intrinsic and extrinsic headset camera
parameters in the multi-camera coordinate system (we do this by

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



Deep Appearance Models for Face Rendering • 1:7

Real Headset Frame

Synthetic Headset Frame

Real Headset Frame

Synthetic Headset Frame

Rendered
Views

Split
along batch

Concatenate 
along batch

VR Headset
Cameras

Fig. 4. Facial Tracking Pipeline. First, we generate synthetic headset images using image-based rendering on our multi-camera capture data. These images
look geometrically like real headset images but not photometrically because of the difference in lighting. To account for this difference, we encode both
synthetic headset images and real headset images using a VAE, which encourages learning a common representation of both sets. We can translate between
the two modalities by flipping a conditioning variable.

hand for one frame and propagate the tracked head pose). Then,
for each pixel of the synthetic headset image, we raycast into the
tracked geometry and project that point into one of themulti-camera
images to get a color value. This allows to produce synthetic images
from the perspective of a headset with our multi-camera system.
Unfortunately, the lighting in the headset images and multi-

camera images is quite different (and, in fact, of a different wave-
length) so naively regressing from these synthetic headset images
to facial encoding z will likely not generalize to real headset images.
There has been much work recently on performing unsuper-

vised domain adaptation using adversarial networks that learn to
translate images from one domain to another without any explicit
correspondence (e.g., [Zhu et al. 2017]). One possibility for us is to
use an image-to-image translation approach to transform synthetic
headset images into real headset images and then learn a regression
from translated synthetic headset images to our latent code z. This
scheme has two main drawbacks: first, the network learning the
regression to latent code z never trains on real headset images; sec-
ond, the adversarial component of these methods tend to be difficult
to train.

We take the following alternative approach to solve this problem.
First, we train a single variational autoencoder to encode/decode
both real headset images and synthetic headset images. The Gauss-
ian prior of the latent space will encourage the code y to form a
common representation of both sets of images. We condition the
decoder on a binary value indicating whether the image was from
the set of real headset images or the set of synthetic images so that
this information is not contained in the latent code. Next, we learn
a linear transformation Ay→z that maps the latent code y to the
rendering code z for the synthetic headset images because we have
correspondence between images of our multi-camera system Ivt and
latent codes zt = Eϕ (T

µ
t ,Mt ) through our rendering encoder. If the

VAE is successful in learning a common, semantically-consistent
representation of real and synthetic headset images, then this linear
regression will generalize to real headset images.
Note that while there is no guarantee that the semantics of the

expression are the samewhen decoding in each of the twomodalities,
we observe that semantics tend to be preserved. We believe the

primary reason for this is because the two image distributions are
closely aligned and therefore the encoder network can make use of
shared features.
Figure 4 shows a pipeline of our technique. In this pipeline, the

encoder E takes one headset frame Ht consisting of three images,
mouth Hm

t , left eye Hl
t , and right eye Hr

t . Each headset frame is
either real HR

t or synthetic HS
t . The encoder E produces a latent

Gaussian distribution,

µ
y
t , logσ

y
t ← E (Ht ) . (6)

At training time, we sample from this distribution to get a latent
code,

yt ∼ N
(
µ
y
t ,σ

y
t

)
, (7)

as before. Our decoderD produces a headset frame given the latent
code and an indicator variable :

Ĥt ← D (yt ,R) , (8)

where R ∈ {0, 1} indicates whether the decoder should decode a real
headset frame or a synthetic headset frame. This indicator variable
allows the latent code to contain no modality-specific information
because the decoder network can get this information from the
indicator variable instead.

The architecture of our headset encoder E is as follows: for each of
the three types of headset images (lower mouth, left eye, right eye),
we create a three-branch network with each branch containing eight
stride-2 convolutions with each convolution followed by a leaky
ReLU with 0.2 leakiness. The number of output channels for the first
layer is 64 and doubles every other convolutional layer. The three
branches are then concatenated together and two fully-connected
layers are used to output µyt and logσy

t . For our experiments, the
latent vector y has 256 dimensions. The decoder network D is sim-
ilar: three branches are created, with each branch consisting of a
fully-connected layer followed by eight stride-2 transposed convo-
lutions with each layer followed by a leaky ReLU with 0.2 leakiness.
The first transposed convolution has 512 channels as input and this
value halves every other transposed convolution. We condition the
decoder by concatenting the conditioning variable R to every layer,
replicating across all spatial dimensions for convolutional layers.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:8 • Lombardi et al.

We don’t use any normalization in these networks. Our encoder
network runs in 10ms on an NVIDIA GeForce GTX 1080, which
enables real-time tracking.

To train the network, we optimize the reconstruction loss, retar-
getting loss, and KL-divergence loss,

ℓ(θ ) =
∑
t
λH

Ht − Ĥt
2 + λA zt − Ay→zyt

2 +
λYKL

(
N

(
µ
y
t ,σ

y
t

) N (
0, I

) )
,

(9)

where zt is known only for synthetic headset frames HS , Ay→z
linearly maps from tracking latent code y to rendering code z, and
λ · are weights for each term of the loss (in all experiments we
set λH=1.0, λA=0.1, and λY=0.1). We optimize this loss using the
Adam optimizer [Kingma and Ba 2014], as before. To make our
method robust to the position of the HMD on the face, we perform
a random translation, scaling, and rotation crop on the images. We
also randomly scale the intensity values of the images to provide
some robustness to lighting variation.
This completes the entire pipeline: a headset image is input to

the headset encoding network E to produce the headset encoding
y, then it is translated to the multi-camera encoding z, and finally it
is decoded into avatar geometry M̂ and texture T̂ and rendered for
the user. This architecture also works well for social interactions
over a local- or wide-area network as only the latent code z needs
to be sent across the network, reducing bandwidth requirements.

5.2 Artist Controls
In addition to driving the deep appearance model with video, we
want to provide a system for rigging these models by character
artists. To do this, we use a geometry-based formulation where
we optimize to find a latent code that satisfies some geometric
constraints, similar to Lewis and Anjyo [2010]. The artist can click
vertices and drag them to a new location to create a constraint.

To find the latent code given the geometric constraints, we solve,

argmin
z

N∑
i=1
∥M̂i − M̃i ∥2 + λP ∥z∥2, (10)

where N is number of constraints, M̂ = Dϕ (z) is the mesh resulting
from decoding z, M̂i is the vertex of constraint i , and M̃i is the
desired location for the vertex of constraint i . The regularization on
z can be seen as a Gaussian prior, which is appropriate because the
variational autoencoder encourages z to take on a unit Gaussian
distribution (we set λP=0.01). Even though the constraint is only
placed on geometry, the model will produce a plausible appearance
for the constraints because geometry and appearance are jointly
modeled.

6 RESULTS
In this section, we give quantitative and qualitative results of our
method for rendering human faces and driving them from HMD
cameras. First, we explore the effects of geometric coarseness, view-
point sparsity, and architecture choice on avatar quality. Next, we
demonstrate how our tracking variational autoencoder can pre-
serve facial semantics between two modalities (synthetic and real)

by switching the conditioning label. Finally, we show results of
our complete pipeline: encoding HMD images and decoding and
rendering realistic avatars.

6.1 Qualitative Results
Figure 5 shows results of our method’s renderings compared to
ground truth images for three different subjects. Our model is able
to capture subtle details of motion and complex reflectance behavior
by directly modeling the appearance of the face. Although some
artifacts are present (e.g., blurring inside the mouth), they are less
distracting than other types of facial rendering artifacts.

Figure 6 shows results of our multi-identity model. For this exper-
iment, we used data from 8 different people and trained one network
conditioned on a latent identity vector. Currently this model cannot
generate plausible interpolations of people, but we believe this will
be possible with significantly more data.

6.2 Effect of Geometric and Viewpoint Coarseness
A fundamental part of our model is that we jointly model geometry
and texture. As a consequence, our model is able to “correct” for
any bias in mesh tracking by altering the output of the texture maps
to best match the true view-specific texture map. This powerful
ability is part of what allows us to produce highly realistic avatars.
There is a limit, however, to the ability of the texture network to
resolve those errors. To explore this, we have constructed a series
of experiments to analyze quantitatively and qualitatively how the
model behaves when the geometry becomes coarser and viewpoints
become sparser.

We investigate four different types of geometric coarseness: our
original tracked geometry, significant smoothing of the original
tracked geometry (we use 1000 iterations of Taubin smoothing for
this [Taubin 1995]), a static ellipsoid subsuming the original mesh,
and a billboard quad. We test billboard quad because image-based
face generation in computer vision is typically performed on flat
images. For each of these cases, we build our deep appearance model
with different sets of training viewpoints (32 viewpoints, 16 view-
points, 8 viewpoints, and 4 viewpoints) and compare performance
in terms of mean-squared error on a set of 8 validation viewpoints
held out from the total set of training viewpoints.
Figure 7 shows quantitative results for each of the four levels of

geometric coarseness with four different sets of training viewpoints.
The image-space mean-squared error (MSE), computed on the 8 vali-
dation viewpoints, shows a clear decrease in quality as the geometry
is made more coarse. When the geometry input to our algorithm
does not match the true geometry of the scene, the texture network
must do more work to fill in the gaps, but there are limits to how
well it generalizes. When the geometry fits well, the model performs
well even with a small number of training viewpoints. When the
geometry is too coarse, however, many viewpoints are needed for
good generalization to new viewpoints.

Figure 8 shows qualitative results for the same experiment. This
figure shows that accurate geometry (column “tracked”) general-
izes even when there are few views for training. Coarse geometry,
(columns “ellipsoid” and “billboard”), however, generalizes poorly

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



Deep Appearance Models for Face Rendering • 1:9

GT Prediction GT Prediction GT Prediction

Fig. 5. Qualitative Results. This figure shows comparisons between the ground truth recordings and rendered mesh and texture predicted by our network
(note that these frames were not in the training set) for four different subjects. We can see that our model achieves a high level of realism although it has some
artifacts, in particular blurring within the mouth (we do not have tracked geometry inside the mouth, so our network must try to emulate that geometry with
the texture). We find that these artifacts are less bothersome than traditional realtime human face renderings.

Fig. 6. Identity Conditioning. Here we demonstrate the automatic expres-
sions correspondence obtained through identity conditioning. Here we
decode the same latent code z into different people by conditioning on
separate identity one-hot vectors.

Tracked Geometry Smoothed Ellipsoid Billboard

100

200

300

400

M
ea

n
Sq

ua
re

d
Er

ro
r

Sensitivity to Geometric and View Coarseness

32 views
16 views
8 views
4 views

Fig. 7. Quantitative Effects of Geometric and Viewpoint Coarseness. We
show the image-based mean-square error (MSE) for each geometry model
and each set of training cameras (32, 16, 8, and 4 viewpoints). Here we see
that accuracy of the geometric model allows the model to generalize well
to the 8 validation viewpoints even when it has only seen 4 viewpoints at
train time.

by introducing artifacts or by simply replicating the closest train-
ing viewpoint. Note that with coarse geometry the network has

no problem learning the appearance of the training views but the
generalization to new viewpoints is very poor.

6.3 Architecture Search
We perform an evaluation of different architectures for our render
encoder and decoder networks. We primarily tested across two axes:
conditioning techniques and normalization methods. For condition-
ing techniques we tested two categories of conditioning: condition-
ing on an early decoder layer by concatenation and conditioning
on all decoder layers by addition. For normalization techniques, we
tested no normalization, batch normalization [Ioffe and Szegedy
2015], and weight normalization [Salimans and Kingma 2016]. Fi-
nally, we investigate the advantage of a deep architecture over
a linear or bilinear model. In each case, we report image-space
mean-squared error for all valid head pixels. Here, head pixels are
determined by raycasting into a dense stereo reconstruction of each
frame.

6.3.1 Conditioning Methods. Figure 9 shows the results of our
conditioning evaluation. The figure shows the reconstruction loss
and the MSE for a series of experiments changing the conditioning
method. We evaluate across two main axes: expanding the view
vector to a larger dimensionality with a fully connected layer before
conditioning, and conditioning on one early layer versus condition-
ing on all layers. Here, we found that conditioning on a single early
layer in the decoder overall seems to outperform conditioning all
layers in terms of the image-based mean-squared error on the set of
8 validation views. We also found that transforming the view vector
before conditioning seems to be beneficial.

6.3.2 Normalization Methods. Figure 10 shows the results of our
normalization evaluation. We tested three normalization methods:
no normalization, batch normalization, and weight normalization.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:10 • Lombardi et al.

32 Training Views

8 Training Views

Tracked Smoothed Ellipsoid BillboardGT

Tracked Smoothed Ellipsoid BillboardGT

Fig. 8. Qualitative Results for Evaluating the Effects of Geometric and Viewpoint Coarseness. We show renderings of the avatar trained with four different
geometry models and with two different sets of viewpoints. Each render has an inset showing the squared difference image from the ground truth. Note that
the viewpoint shown was not seen during training. We see that when geometry matches the true geometry well, the rendering model generalizes to new
viewpoints (see row “8 Training Views”, column “Tracked”). When the geometry is too far from the true geometry, we start to see strange artifacts in the
resulting image (see row “32 Training Views”, column “Billboard”).

In addition, we tested weight normalization without using per-
channel-and-pixel biases (described in section 4). The figure shows
that weight normalization far outperforms the other normalization
techniques and that per-channel-and-pixel biases are very important
for accuracy.

6.3.3 Linear AAM vs. Deep AAM. Aside from view conditioning,
the main way we have augmented traditional AAMs is by changing
the latent subspace from linear to nonlinear. The primary effect
of this is to increase the expressiveness of the model although it
also reduces the number of parameters. To evaluate the trade-off,
we train our deep model compared to a linear model and a bilinear
model (bilinear in view and facial state) with the same latent space
dimensionality. Unfortunately a linear model requires (21918 + 3 ·
10242) · 128 · 4 · 2 = 3.24GB of weights so we use only a 512 × 512
output resolution for the linear and bilinear models.

Table 1 shows quantitative results for linear and nonlinear repre-
sentations. For each subject and method, we give the image-space
mean-squared error. Our model has clear advantages over linear
and bilinear models, including compactness in terms of number of
parameters and reconstruction performance.

Table 1. Linear vs. Nonlinear representation. We evaluate our proposed
method compared to a linear model (i.e., texture and geometry is a linear
function of the latent code z). Our model is not only better in terms of the
image-based mean-squared error but also smaller in number of parameters
(110MB vs. 806MB vs. 1.6GB).

Model Type

Our method Linear Bilinear

Subject 1 39.12 59.00 69.17

Subject 2 87.67 121.44 128.94

Subject 3 128.07 173.33 168.16

6.4 Image-based vs. Texture/Geometry-based Loss
Traditional AAMs have been formulated as a PCA decomposition
in terms of the texture and geometry jointly. By reformulating the
AAM as an autoencoder we can actually make the loss a function
of the reconstructed image Îvt itself. This is useful as it allows us
to train on the metric on which we want to evaluate. It also opens
the possibility of allowing the model to refine the output geometry
over the input tracked geometry that may be erroneous.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



Deep Appearance Models for Face Rendering • 1:11

0 25000 50000 75000 100000 125000 150000 175000 200000
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

C
om

bi
ne

d
R

ec
on

st
ru

ct
io

n
Lo

ss

46.0

46.5

47.0

47.5

48.0

M
SE

Conditioning Method Evaluation

condition once (3 channels)
condition once (8 channels)
condition once (32 channels)
condition all (3 channels)
condition all (8 channels)

condition once (3 channels)
condition once (8 channels)
condition once (32 channels)
condition all (3 channels)
condition all (8 channels)

Fig. 9. Evaluation of Conditioning Method. We evaluate several ways to
condition the network on viewpoint (red conditions the raw view vector on
a single layer, blue conditions the view vector after a 3 × 8 fully-connected
layer, purple conditions after a 3 × 32 fully-connected layer, grey conditions
the raw view vector on all decoder layers, and yellow conditions the view
vector after a 3 × 8 fully-connected layer on all decoder layers). Solid lines
show training error (reconstruction loss), dashed lines show validation error
(reconstruction loss), and flat dashed lines show image-space mean-squared
error on a held-out set of cameras. Overall, conditioning on one early layer
in the network tends to perform best.

0 25000 50000 75000 100000 125000 150000 175000 200000
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

C
om

bi
ne

d
R

ec
on

st
ru

ct
io

n
Lo

ss

46

47

48

49

50

51

52

53

M
SE

Architecture Evaluation

weight normalization
batch norm
no normalization
no untied biases

weight normalization
batch norm
no normalization
no untied biases

Fig. 10. Evaluation of Architectures. Solid lines show training error (recon-
struction loss), dashed lines show validation error (reconstruction loss), and
flat dashed lines show image-space mean-squared error on a held-out set
of cameras. We found that using both weight normalization [Salimans and
Kingma 2016] and per-channel-and-pixel biases yields the highest quality
avatar.

To optimize with respect to the image-based reconstruction error,
we rewrite the loss function as,

ℓ(ϕ) =
∑
v,t

λI
mv

t ⊙
(
Ivt − Îvt

)2 + λT wv
t ⊙

(
Tvt − T̂vt

)2+
λM

Mt − M̂t
2 + λZKL(N(µzt ,σ z

t )
N(0, I)), (11)

Table 2. Image MSE for Different Training Loss Combinations. We train with
two different training objectives (TG–texture + geometry loss, TGI–texture
+ geometry + image loss) to determine the optimal training objective. We
found that using the texture + geometry + image loss produces the best
results.

Loss Type

TG TGI

Subject 1 39.12 33.66

Subject 2 87.67 75.48

where Îvt is the reconstructed image from view v at time-instant t ,
andmv

t is a mask that only penalizes pixels that contain the head
(derived from the dense stereo reconstructions). We create a semi-
differentiable rendering layer using two steps: the first step (non-
differentiably) rasterizes triangle indices to an image; the second
step (differentiably) computes texel coordinates for each pixel given
the triangle indices, camera parameters, and mesh vertices and
samples the texture map at the coordinate computed for each pixel.
This layer allows us to backpropagate through the parameters of
our model and train the system end-to-end.
To evaluate how an image-based loss during training may im-

prove the results we compare two different models: a model op-
timized with texture+geometry loss and a model optimized with
texture+geometry+image loss. We found that without a geometry
term, the loss becomes unstable and the geometry tends to lose its
structure.
Table 2 shows the quantitative results from these experiments.

For each combination of training loss (TG–texture + geometry, TGI–
texture + geometry + image) we give the image-based loss on set of 8
validation viewpoints. Incorporating the image-based loss certainly
helps lower the MSE although qualitatively the results are similar.
We also found that training was unstable without the geometry loss.
This is likely because there is not enough long-range signal in the
image gradients to effectively estimate geometry.

6.5 Video-driven Animation
In this section, we show how our tracking VAE (E,D) builds a
common representation of facial state across two differentmodalities
and then we give qualitative results showing our full live animation
pipeline. Note that in this work our pipeline is entirely person-
specific.
Figure 11 shows examples of encoding with one modality and

decodingwith the other.We can see in these examples that semantics
tend to be preserved when the modality is changed at inference time
despite only encoding and decoding the same modality at train time.
This is primarily due to the variational autoencoder prior, which
encourages the latent space to take on a unit Gaussian distribution.

Figure 12 shows qualitative results of a user driving an avatar in
real time. Our system works well not only for expressions but also
for subtle motion during speech. The benefit of our model is that
it encodes facial state with high accuracy, encoding it into a joint
geometry and appearance model. This allows us to model complex

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:12 • Lombardi et al.

(a) Synthetic to real

(b) Real to synthetic

Sy
nt

he
ti

c 
In

pu
t 

A
da

pt
ed

 
R

ea
l I

np
ut

 
A

da
pt

ed
 

Fig. 11. Translating between real headset images to synthetic headset im-
ages. Sub-figure (a) shows synthetic headset images (top row) translated
to real headset images (bottom row) by switch the conditioning variable in
the VAE. Sub-figure (b) shows real headset images (top row) translated to
synthetic headset images (bottom row) with the same method). This shows
that the y contains a common representation of facial state regardless of
being synthetic or real.

changes in appearance due to changes in blood flow, complex mate-
rials, and incorrect geometry estimates. Please see our supplemental
video for additional examples.

7 DISCUSSION
In this paper, we presented a method for capturing and encoding
human facial appearance and rendering it in real-time. The method
unifies the concepts of Active Appearance Models, view-dependent
rendering, and deep networks. We showed that the model enables
photo-realistic rendering by leveraging multiview image data and
that we can drive the model with performance. We believe there
are exciting opportunities for extending our approach in different
ways.

Our approach is unique because we directly predict a shaded
appearance texture with a learned function. This is in contrast
to traditional approaches that predict physically-inspired lighting
model parameters (e.g., albedo maps, specular maps) which enable
relighting. A limitation of our approach in its current form is a lim-
ited ability to relight. With improvements to our capture apparatus
to allow for dynamic lighting during capture, we believe we can
alleviate these limitations by introducing lighting as a conditioning
variable.

As our experiments showed, we are able to accurately predict the
appearance of the face when our tracked geometry closely matches
the true surface of the face. This approach is even effective for
regions of the face that are typically very difficult to accurately
model because of their complex reflectance properties (e.g., eyes
and teeth). Some artifacts still remain, however (e.g., blurring on the
teeth) especially where there is no true smooth surface (e.g., hair).

We may be able to turn to alternative representations of geometry
(e.g., point clouds) to alleviate some of these problems.

Our tracking model enables high-fidelity real-time tracking from
cameras mounted on a virtual reality headset by automatic unsuper-
vised correspondence between headset images and multi-camera
capture images. In this work, we limited the scope to building person-
specific trackers and rendering models. To increase the scalability of
our work, we need to modify our approach to support tracking and
rendering for arbitrary people. This is a difficult problem because it
requires learning semantic facial correspondence between different
people.
Finally, we believe that building realistic avatars of the entire

body with our approach will help enable self- and social- presence in
virtual reality. This task comes with a new set of problems: handling
the dynamics of clothing, the difficulties of articulating limbs, and
modeling the appearance of interactions between individuals. We
are confident that these are tractable problems along this line of
research.

REFERENCES
Volker Blanz and Thomas Vetter. 1999. AMorphable Model for the Synthesis of 3D Faces.

In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 187–194. https://doi.org/10.1145/311535.311556

S. M. Boker, J. F. Cohn, B. J. Theobald, I. Matthews, M. Mangini, J. R. Spies, Z Am-
badar, and T. R. Brick. 2011. Motion Dynamics, Not Perceived Sex, Influence Head
Movements in Conversation. J. Exp. Psychol. Hum. Percept. Perform. 37 (2011),
874–891.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip
Krishnan. 2017. Unsupervised Pixel-Level Domain Adaptation with Generative
Adversarial Networks. (07 2017), 95–104.

Chen Cao, Hongzhi Wu, Yanlin Weng, Tianjia Shao, and Kun Zhou. 2016. Real-time
Facial Animation with Image-based Dynamic Avatars. ACM Trans. Graph. 35, 4,
Article 126 (July 2016), 12 pages. https://doi.org/10.1145/2897824.2925873

Dan Casas, Andrew Feng, Oleg Alexander, Graham Fyffe, Paul Debevec, Ryosuke
Ichikari, Hao Li, Kyle Olszewski, Evan Suma, and Ari Shapiro. 2016. Rapid Pho-
torealistic Blendshape Modeling from RGB-D Sensors. In Proceedings of the 29th
International Conference on Computer Animation and Social Agents (CASA ’16). ACM,
New York, NY, USA, 121–129. https://doi.org/10.1145/2915926.2915936

S. A. Cassidy, B. Stenger, K. Yanagisawa, R. Cipolla, R. Anderson, V. Wan, S. Baron-
Cohen, and L Van Dongen. 2016. Expressive Visual Text-to-Speech as an Assistive
Technology for Individuals with Autism Spectrum Conditions. Computer Vision and
Image Understanding 148 (2016), 193–200.

Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schul-
man, Ilya Sutskever, and Pieter Abbeel. 2016. Variational Lossy Autoencoder. CoRR
abs/1611.02731 (2016). arXiv:1611.02731 http://arxiv.org/abs/1611.02731

Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. 2001. Active Appear-
ance Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 6
(June 2001), 681–685.

Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. 1999.
Reflectance and Texture of Real-world Surfaces. ACM Transactions on Graphics 18,
1 (Jan. 1999), 1–34.

G. J. Edwards, C. J. Taylor, and T. F. Cootes. 1998. Interpreting Face Images Using Active
Appearance Models. In Proceedings of the 3rd. International Conference on Face &
Gesture Recognition (FG ’98). IEEE Computer Society, Washington, DC, USA, 300–.

P. Ekman. 1980. The Face of Man: Expressions of Universal Emotions in a New Guinea
Village. Garland Publishing, Incorporated.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The
Lumigraph. In Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 1996). ACM, New York, NY, USA, 43–54.

X. Hou, L. Shen, K. Sun, and G. Qiu. 2017. Deep Feature Consistent Variational Autoen-
coder. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).
1133–1141.

Wei-Ning Hsu, Yu Zhang, and James R. Glass. 2017. Unsupervised Learning of Disentan-
gled and Interpretable Representations from Sequential Data. In NIPS. 1876–1887.

Liwen Hu, Shunsuke Saito, Lingyu Wei, Koki Nagano, Jaewoo Seo, Jens Fursund, Iman
Sadeghi, Carrie Sun, Yen-Chun Chen, and Hao Li. 2017. Avatar Digitization from a
Single Image for Real-time Rendering. ACM Trans. Graph. 36, 6, Article 195 (Nov.
2017), 14 pages. https://doi.org/10.1145/3130800.31310887

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.

https://doi.org/10.1145/311535.311556
https://doi.org/10.1145/2897824.2925873
https://doi.org/10.1145/2915926.2915936
http://arxiv.org/abs/1611.02731
http://arxiv.org/abs/1611.02731
https://doi.org/10.1145/3130800.31310887


Deep Appearance Models for Face Rendering • 1:13

Input Images Output Rendering Input Images Output Rendering Input Images Output Rendering

Fig. 12. Video-driven Animation. This figure shows three examples per subject of HMD images (left) encoded into the latent code z and decoded into geometry
and appearance and rendered (right). Despite only seeing parts of the face, our animation method captures and reproduces facial state well.

Alexandru Eugen Ichim, Sofien Bouaziz, and Mark Pauly. 2015. Dynamic 3D Avatar
Creation from Hand-held Video Input. ACM Transactions on Graphics 34, 4, Article
45 (July 2015), 14 pages.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.. In ICML (JMLR Workshop
and Conference Proceedings), Francis R. Bach and David M. Blei (Eds.), Vol. 37.
JMLR.org, 448–456. http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15

Sing Bing Kang, R. Szeliski, and P. Anandan. 2000. The geometry-image representa-
tion tradeoff for rendering. In Proceedings 2000 International Conference on Image
Processing, Vol. 2. 13–16 vol.2.

Vahid Kazemi and Josephine Sullivan. 2014. One Millisecond Face Alignment with an
Ensemble of Regression Trees. In IEEE International Conference on Computer Vision
and Pattern Recognition.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. 2017. Learn-
ing to Discover Cross-Domain Relations with Generative Adversarial Networks. In
ICML.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. Proceedings of the 3rd International Conference on Learning Representations
abs/1412.6980 (2014).

Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. In
Proceedings of the 2nd International Conference on Learning Representations.

Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek Bradley, Christophe Hery, Bernd
Bickel, Wojciech Jarosz, and Thabo Beeler. 2015. Recent Advances in Facial Appear-
ance Capture. Computer Graphics Forum (Proceedings of Eurographics) 34, 2 (May
2015), 709–733.

Reinhard Knothe, Brian Amberg, Sami Romdhani, Volker Blanz, and Thomas Vetter.
2011. Morphable Models of Faces. Springer London, London, 137–168.

Tejas D. Kulkarni, William F. Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum.
2015. Deep Convolutional Inverse Graphics Network. In Proceedings of the 28th
International Conference on Neural Information Processing Systems (NIPS’15). MIT
Press, Cambridge, MA, USA, 2539–2547.

Samuli Laine, Tero Karras, Timo Aila, Antti Herva, Shunsuke Saito, Ronald Yu, Hao Li,
and Jaakko Lehtinen. 2017. Production-level Facial Performance Capture Using Deep
Convolutional Neural Networks. In Proceedings of the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (SCA ’17). ACM, New York, NY, USA, Article 10,
10 pages.

J.P. Lewis and Ken Anjyo. 2010. Direct Manipulation Blendshapes. IEEE Computer
Graphics and Applications 30, 4 (2010), 42–50.

John P. Lewis, Ken ichi Anjyo, Taehyun Rhee, Mengjie Zhang, Frédéric H. Pighin, and
Zhigang Deng. 2014. Practice and Theory of Blendshape Facial Models. In Proc.
Eurographics State of The Art Report.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised Image-to-Image
Translation Networks. In NIPS.

Iain Matthews and Simon Baker. 2004. Active Appearance Models Revisited. Interna-
tional Journal of Computer Vision 60, 2 (Nov. 2004), 135–164.

Kyle Olszewski, Joseph J. Lim, Shunsuke Saito, and Hao Li. 2016. High-Fidelity Facial
and Speech Animation for VR HMDs. Proceedings of ACM SIGGRAPH Asia 2016 35,
6 (December 2016).

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015). http://arxiv.org/abs/1511.06434

Tim Salimans and Diederik P Kingma. 2016. Weight Normalization: A Simple Reparam-
eterization to Accelerate Training of Deep Neural Networks. In Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett (Eds.). Curran Associates, Inc., 901–909.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. DeepFace:
Closing the Gap to Human-Level Performance in Face Verification. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’14).
IEEE Computer Society, Washington, DC, USA, 1701–1708.

G. Taubin. 1995. Curve and Surface Smoothing Without Shrinkage. In Proceedings of
the Fifth International Conference on Computer Vision (ICCV ’95). IEEE Computer
Society, Washington, DC, USA, 852–.

J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2018. FaceVR:
Real-Time Gaze-Aware Facial Reenactment in Virtual Reality. ACM Transactions on
Graphics 2018 (TOG) (2018).

Georgios Tzimiropoulos, Joan Alabort-i Medina, Stefanos Zafeiriou, and Maja Pantic.
2013. Generic Active Appearance Models Revisited. Springer Berlin Heidelberg, Berlin,
Heidelberg, 650–663.

Xuehan Xiong and Fernando De la Torre Frade. 2013. Supervised Descent Method and
its Applications to Face Alignment. In IEEE International Conference on Computer
Vision and Pattern Recognition. Pittsburgh, PA.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks. (December
2017).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.

http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://arxiv.org/abs/1511.06434

	Abstract
	1 Introduction
	2 Related Work
	3 Capturing Facial Data
	4 Building A Data-driven Avatar
	4.1 Conditioned Autoencoding

	5 Driving a Data-Driven Avatar
	5.1 Video-driven Animation
	5.2 Artist Controls

	6 Results
	6.1 Qualitative Results
	6.2 Effect of Geometric and Viewpoint Coarseness
	6.3 Architecture Search
	6.4 Image-based vs. Texture/Geometry-based Loss
	6.5 Video-driven Animation

	7 Discussion
	References

