
On the Extended TSP Problem1

Julián Mestre #2

Facebook Inc3

University of Sydney4

Sergey Pupyrev #5

Facebook Inc.6

Seeun William Umboh #7

University of Sydney8

Abstract9

We initiate the theoretical study of Ext-TSP, a problem that originates in the area of profile-guided10

binary optimization. Given a graph G = (V, E) with positive edge weights w : E → R+, and a11

non-increasing discount function f(·) such that f(1) = 1 and f(i) = 0 for i > k, for some parameter12

k that is part of the problem definition. The problem is to sequence the vertices V so as to maximize13 ∑
(u,v)∈E

f(|du − dv|) · w(u, v), where dv ∈ {1, . . . , |V |} is the position of vertex v in the sequence.14

We show that Ext-TSP is APX-hard to approximate in general and we give a (k + 1)-15

approximation algorithm for general graphs and a PTAS for some sparse graph classes such as planar16

or treewidth-bounded graphs.17

Interestingly, the problem remains challenging even on very simple graph classes; indeed, there18

is no exact no(k) time algorithm for trees unless the ETH fails. We complement this negative result19

with an exact nO(k) time algorithm for trees.20

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis21

Keywords and phrases profile-guided optimization, approximation algorithms, bandwidth, TSP22

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.6423

Related Version Full Version: https://arxiv.org/abs/2107.0781524

1 Introduction25

Profile-guided binary optimization (PGO) is an effective technique in modern compilers to26

improve performance by optimizing how binary code is laid out in memory. At a very high27

level, the idea is to collect information about typical executions of an application and then use28

this information to re-order how code blocks are laid out in the binary to minimize instruction29

cache misses, which in turn translates into running time performance gains. Newell and30

Pupyrev [20] recently introduced an optimization problem, which they call the Extended31

TSP (Ext-TSP) problem that aims at maximizing the number of block transitions that do32

not incur a cache miss.33

The input to the Ext-TSP problem is a weighted directed graph G = (V, E), which in34

the context of PGO corresponds to the control flow representation of the code we are trying35

to optimize: Every node u ∈ V corresponds to a basic block of code (for the purposes of this36

paper we can think of each of these blocks as a single instruction that takes a fixed amount of37

memory to encode); every edge (u, v) ∈ E represents the possibility of an execution jumping38

from u to v, and the weight w(u, v) captures how many times the profiler recorded said39

jump during the data collection phase. Our ultimate goal is to find a linear ordering of40

the nodes, each of which represents a possible code layout of the binary; we let this linear41

ordering be encoded by a one-to-one function d : V → {1, . . . , |V |}. Finally, each edge (u, v)42

contributes f(|du − dv|) · w(u, v) to the objective, where |du − dv| is the distance between43

© Julián Mestre, Sergey Pupyrev, and Seeun William Umboh;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 64; pp. 64:1–64:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julian.mestre@sydney.edu.au
https://orcid.org/0000-0003-4948-2998
mailto:spupyrev@fb.com
https://orcid.org/0000-0003-4089-673X
mailto:william.umboh@sydney.edu.au
https://orcid.org/0000-0001-6984-4007
https://doi.org/10.4230/LIPIcs.ISAAC.2021.64
https://arxiv.org/abs/2107.07815
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 On the Extended TSP Problem

the edge endpoints in the linear ordering, and f(·) is a non-increasing discount function such44

that f(1) = 1 and f(i) = 0 for i > k, where k = O(1) is part of the problem definition.45

Newell and Pupyrev [20] designed and evaluated heuristics for Ext-TSP leading to46

significantly faster binaries. Their implementation is available in the open source project47

Binary Optimization and Layout Tool (BOLT) [17, 20,22]. In their experiments, they found48

that setting k to be a small constant1 and f(|du − dv|) =
(

1 − |du−dv|
k

)
for 1 < |du − dv| < k,49

yields the best results. The high level intuition is that the discount factor is a proxy for the50

probability that taking the jump causes a cache miss. Thus, the Ext-TSP objective aims at51

maximizing the number of jumps that do not cause a cache miss.52

In this paper we initiate the theoretical study of Ext-TSP by providing a variety of53

hardness and algorithmic results for solving the problem both in the approximate and the54

exact sense in both general and restricted graph classes.55

1.1 Our results56

We show that Ext-TSP is APX-hard to approximate in general. We give a polynomial57

time (k + 1)-approximation algorithm and a nO(k
ϵ) time (2 + ϵ)-approximation for general58

graphs. We also give a nO(k
ϵ) time (1 + ϵ)-approximation for some sparse graphs classes such59

as planar or treewidth-bounded graphs.60

Interestingly, the problem remains challenging even on very simple graph classes; indeed,61

there is no exact no(k) time algorithm for trees unless the ETH fail. Finally, we complement62

this negative result with an exact nO(k) time algorithm for trees.63

1.2 Related work64

PGO techniques have been studied extensively in the compiler’s community. Code re-65

ordering is arguably the most impactful optimization among existing PGO techniques [22].66

The classical approach for code layout is initiated by Pettis and Hansen [24], who formulated67

the problem of finding an ordering of basic blocks as a variant of the maximum directed68

TRAVELING SALESMAN PROBLEM on a control flow graph. They describe two69

greedy heuristics for positioning of basic blocks. Later, one of the heuristics (seemingly70

producing better results) has been adopted by the community, and it is now utilized by71

many modern compilers and binary optimizers, including LLVM and GCC. Very recently,72

Newell and Pupyrev [20] extended the classical model and suggested a new optimization73

problem, called Extended-TSP. With an extensive evaluation of real-world and synthetic74

applications, they found the objective of Ext-TSP is closely related to the performance of a75

binary; thus, an improved solution of the problem yields faster binaries. We refer to [20] for76

a complete background on this literature.77

The problem of laying out data in memory to minimize the cache misses has been studied78

in the Algorithms community [1, 12, 19, 30]. In this setting a number of requests arrives79

online and our job is to design an eviction policy [31]. Even though ultimately, we are also80

concerned with minimizing cache misses, there are two main differences: first, the profile data81

gives us information about future request that we can exploit to improve locality; second,82

this optimization is done at the compiler, which does not have control over the operating83

system’s cache eviction policy. The benchmark used for online algorithms is the competitive84

ratio: the number of cache misses incurred by the online algorithm divided by the number of85

1 To be more specific, k is the number of blocks that can fit into 1024 bytes of memory.

J. Mestre, S. Pupyrev, and S. W. Umboh 64:3

cache misses incurred by an optimal algorithm that knows the entire sequence of requests in86

advance. It is known that the best competitive ratio is Θ(k) for deterministic algorithms87

and is Θ(log k) [1], where k is the size of the cache.88

There are many classical optimization problems that seek for to sequence the vertex set of89

a graph to optimizing some objective function. The two most closely related to our problem90

are Max TSP and Min Bandwidth.91

An instance of Max TSP consists of a weighted undirected graph and our objective is92

sequence the vertex set to maximize the weight of adjacent nodes. The problem is known to be93

APX-hard [23] and a number of approximation algorithms are known [4,7,13,15,16,18,21,28],94

with the best being the 5/4-approximation of Dudycz et al. [7] that runs in O(n3).95

An instance of Min Bandwidth consists of an undirected graph and our objective is to96

sequence the vertex set to minimize the maximum distance between the endpoints of any97

edge in the graph. The problem admits an nO(b) time exact algorithm [26], where b is the98

bandwidth of the graph. On the negative side, there is no exact g(b)no(b) time algorithm [5]99

and unless the ETH fails, even in trees of pathwidth at most two. Several poly-logarithmic100

approximation algorithms exist for different graphs classes [9, 11, 14]; on the other hand, it is101

NP-hard to approximate the problem within any constant even for caterpillars [6].102

A somewhat related problem is the Min Linear Arrangement problem. An instance103

consists of an undirected graph and our objective is to sequence the vertex set to minimize104

the sum of the distances between the endpoints of each edge in the graph. Minimizing this105

objective function is equivalent to maximizing the Ext TSP objective function with the106

discount function f(i) = 1− i/n. Min Linear Arrangement admits polynomial-time exact107

algorithms on trees [29]; however, we are not aware of any results for higher treewidth. There108

are several poly-logarithmic approximation algorithms [3,8,10,25] based on the spreading109

metrics technique of Even et al. [8]; however it is unclear how these techniques can be made110

to work for Ext TSP. Moreover, for our applications, we are interested in the regime where111

k ≪ n, so this connection does not yield a result of practical relevance.112

2 Problem definition and hardness113

An instance of Ext-TSP problem consists of a directed graph G = (V, E) with positive114

edge weights w : E → R+ and a non-increasing discount function f(·) where f(1) = 1 and115

f(i) = 0 for i > k, where k, where k is a parameter that is part of the problem definition.116

The problem is to sequence the vertices V so that dv ∈ {1, . . . , |V |} is position of vertex v117

with the objective to maximize118

∑
(u,v)∈E

f(|du − dv|) · w(u, v)119

The first thing to notice is that the fact that we could have defined the problem on an120

undirected graph since the contribution of an edge (u, v) to the objective only depends on its121

weight and the distance between its two endpoints, and is independent of whether it is a122

forward or a backward jump. Indeed, we can reduce the undirected case to the directed case123

and vice versa: Given an undirected graph, we can orient the edges arbitrarily; while given a124

directed graph we can combine pairs of anti-parallel edges into a single edge by adding up125

their weight.126

In order to simplify our exposition, from now on we assume the input graph is undirected.127

Right away, this allows us to relate Ext-TSP to Max TSP and Min Bandwidth, which128

ISAAC 2021

64:4 On the Extended TSP Problem

node in C
node in V \ C
dangling node

C

Figure 1 Dangling nodes of a root connected component C.

in turn yields the following hardness results. Finally, for the sake of succinctness, we extend129

the edge weight function to subsets of edges; namely, w(S) =
∑

e∈S w(e) for S ⊆ E.130

▶ Theorem 1. The Ext-TSP problem exhibits the following hardness:131

1. it is APX-hard, even when k = 1,132

2. does not admit an exact no(k) time algorithm unless the ETH fails, even in trees.133

Proof. For the first part, we use the relation between Ext-TSP and Max TSP, which is134

known to be APX-hard [23]. Recall that the objective of the latter problem is to maximize135 ∑
(u,v)∈E:|du−dv|=1 w(u,v) given an undirected graph. We can reduce an instance of Max136

TSP to an undirected instance of Ext-TSP with k = 1 where f(1) = 1 and f(2) = 0.137

Therefore, Ext-TSP is APX-hard even when k = 1.138

For the second part, we use the relation to Min Bandwidth. Recall that the objective139

of the latter problem is to minimize max(u,v)∈E |du − dv|, the optimal value of this objective140

is called the bandwidth of the graph. Given an instance G with bandwidth b, consider the141

Ext-TSP instance where f(i) = 1 for 0 ≤ i ≤ k and f(k + 1) = 0; if k = b then the objective142

of this instance must be w(E) as there exists a sequencing where the endpoints of every143

edge are within at most k of one another. It follows that, if we could have an no(k) time144

algorithm for Ext-TSP that implies an no(b) time algorithms, which does not exist even for145

very simple trees unless the ETH fails [5]. ◀146

3 Exact Algorithms147

In this section we complement the hardness from the previous section by developing an exact148

algorithm for trees whose running time is polynomial when k = O(1).149

▶ Theorem 2. There is an nO(k) time algorithm for solving Ext-TSP optimally on trees.150

Proof. Let T be the input tree. Consider an optimal solution opt, and let O be the set of151

realized edges, that is, the subset of edges whose endpoints are at distance at most k in opt.152

Without loss of generality we assume that each connected component of O is laid out in a153

contiguous stretch in the optimal sequencing. Using this simple insight, we use dynamic154

programming (DP) to build a solution for the connected component C that has the root155

of the tree, and solve separately the subtree rooted at nodes that are not in C but that156

have a parent in C; we call such nodes dangling nodes of C (see Figure 1). Without loss of157

generality, we assume that |C| ≥ k. If C happens to be smaller, we can guess the optimal158

sequencing for C (there are only nk−1 choices), solve separately the subproblems rooted at159

dangling nodes of C, and keep the best solution.160

Our algorithm is based on a subtle DP formulation. Each DP state represents succinctly161

a partial solution for a subtree of T , and it is defined by a tuple (z, σ, R), where162

z ∈ V is the root of the subtree of T we are trying to solve,163

J. Mestre, S. Pupyrev, and S. W. Umboh 64:5

t t
node in σ
node in Tz \ σ
entry port of t
reachable from an entry port
realized edge in R

Figure 2 Two example showing the entry ports of a node t ∈ Tz \ σ. On the left, all entry ports
of t are open, while on the right all entry ports of t are closed.

σ is a sequence of exactly k nodes in Tz, the subtree of T rooted at z,164

R is the set of edges incident on σ that have already been realized.165

It is worth noting that although the structure of the DP states builds on that used in the166

algorithm of Saxe [26] for Min Bandwidth, the fact that we do not necessarily realize all167

edges means we need new ideas and a more involved DP formulation to solve Ext-TSP.168

Our high level goal is to build an edge weighted graph H over these tuples plus two169

dummy source and sink nodes s and t such that every optimal solution to the Ext-TSP170

problem on the subtree Tz induces an s-t path whose weight equals the value of this solution;171

and conversely, every s-t path induces an Ext-TSP solution of Tz whose value equals the172

weight of the path. Thus, once the graph is defined and the equivalence established, solving173

Ext-TSP amounts to a shortest path computation in H.174

To provide some motivation and intuition on the definitions that will follow, consider an175

optimal solution of Tz realizing a subset of edges O, where C is the connected component176

of (Tz, O) that contains the root z, and let τ be the optimal sequence for C. Note that τ177

realizes O[C], and by our earlier assumption |τ | ≥ k. For each j ∈ {1, . . . , |C| − k + 1} we let178

σj be the subsequence of τ from j to j + k − 1 and we let Rj be the subset of edges realized179

by the first j + k − 1 positions of τ that have at least one endpoint in σj . Then the path180

induced by τ in H will be181

s → (z, σ1, R1) → (z, σ2, R2) → · · · → (z, σ|C|−k+1, R|C|−k+1) → t182

The weight of the first edge s → (z, σ1, R1) will be defined as the contribution of σ1 to183

the objective, that is the total discounted (according to σ1) weight of edges R1. The weight184

of the last edge (z, σ|C|−k+1, R|C|−k+1) → t will be defined as the value of the subproblems185

defined by dangling nodes of σ|C|−k+1 not spanned by R|C|−k+1. Finally, the weight of an186

edge (z, σj , Rj) → (z, σj+1, Rj+1) will be defined as the value of the subproblem defined by187

dangling nodes of σj \ σj+1 not spanned by Rj+1 plus the discounted weight of Rj+1 \ Rj .188

Since we do not double count any contributions, the weight of the path adds up to the value189

of the optimal solution for Tz.190

Our goal is to impose some restrictions on the vertices and edges in H so that every s-t191

path induces a solution of equal value in Tz. To that end we will define the notion of valid192

tuples and valid edges, but before we do that, we must introduce a few more concepts.193

Given a tuple (z, σ, R) we say that a node u ∈ σ is an entry port for a node t ∈ Tz \ σ if194

the unique path P from t to u in T does not go through any other vertex in σ; furthermore,195

we say that u is a closed entry port of t if the edge in P out of u is in R, otherwise, we say u196

is an open entry port of t. Finally, we say that t ∈ Tz \ σ is reachable if all the entry ports of197

t are open. See Figure 2 for an example illustrating these definitions.198

A tuple (z, σ, R) is valid if for every t ∈ Tz \ σ the entry ports u ∈ σ for t are either all199

closed or all open. Indeed if (z, σ, R) was part of the path induced by some τ then either t200

comes before σ in τ , in which case t subtree spanned between the entry ports of t must have201

ISAAC 2021

64:6 On the Extended TSP Problem

been already realized; or t comes after σ in τ , in which case said subtree will be realized202

later on. Thus, we can focus only on valid tuples. We define a graph H over the valid tuples203

where we put a directed edge (z, σ, R) → (z, σ′, R′) if:204

σ′ is obtained from σ by appending a reachable node (reachable with respect to the first205

tuple) v to σ and removing the first node u in σ,206

R′ equals R minus edges in R that are incident on u but not on any other node in σ, plus207

edges from v to σ,208

(u, parent(u)) ∈ R ∪ R′,209

for each child c of u such that (c, u) /∈ R ∪ R′, u is the unique (open) entry port of c210

(defined with respect to the first tuple) and v /∈ Tc; we call such c, a dangling child of u.211

Furthermore, we define the weight of such an edge to be the discounted weight of newly212

realized edges (namely, R′ \ R) plus the total value of the optimal solutions for subtrees213

defined by dangling children of u. Note that the R′ \ R must connect v to other nodes in σ,214

so we have all the information needed to discount their weight.215

Finally, we connect s to each tuple (z, σ, R) where R is the set of edges with both216

endpoints in σ and the weight of the edge is the discounted (w.r.t. σ) weight of R; and217

we connect each tuple (z, σ, R) to t if the only reachable nodes adjacent to σ are dangling218

children and we set the weight of the edge to be the total value of the subproblems defined219

by those dangling children.220

Given a path P in H we define τ to be the induced solution by taking the σ of the first221

tuple in the path, and then extending the ordering by appending the new node of the σ in222

the next tuple and so on. Similarly, we can define the inverse operation: Given a sequencing223

τ realizing a connected component of nodes that have the root of the tree, then we can define224

a sequence of tuples such that the sequence of tuples induces τ .225

▷ Claim 3. Let P be a path out of s in H inducing some ordering τ . Then τ realizes exactly226

the union of all the R-sets in P .227

The claim is easy to prove by induction on the length of the sequence. If the sequence228

has only one tuple (z, σ, R), then τ = σ and R is the set of edges realized by σ, so the claim229

follows. Otherwise, if the last two tuples are (z, σ, R) and (z, σ′, R′) and v is the last node230

in τ then R′ \ R is the set of edges realized by τ incident on v and we can use induction to231

account for the rest.232

In order to prove the correctness of our dynamic programming formulation, we need to233

argue that every solution τ to the original problem induces a path of equivalent cost, and234

vice-verse.235

▷ Claim 4. Let τ be the sequence of nodes in the connected component C of edges realized236

by the optimal solution opt having z. The sequence of tuples induced by τ forms a valid s-t237

path whose weight equals238 ∑
(u,v)∈T [C]

f(|du − dv|)w(u, v) +
∑
u/∈C

parent(u)∈C

opt[Tu],239

where du is the position of u in τ .240

If the sequence is a path, then by Claim 3, τ realizes precisely the union of the R-sets in241

the sequence, and the weight of the path is precisely as stated in the claim. It only remains242

to show that the sequence is indeed a path. Consider two consecutive tuples (z, σ, R) and243

(z, σ′, R′) along the sequence. Our goal is to show that there is an edge connecting them.244

J. Mestre, S. Pupyrev, and S. W. Umboh 64:7

The first two conditions of a valid edge definition hold by definition of the induced sequence245

of tuples. For the third condition, note that (u, parent(u)) must be realized by τ and so246

parent(u) must occur within k positions of u so the edge must appear in R ∪ R′ and the247

condition holds. For the fourth condition, if we let c be a child of u such that (c, u) /∈ R ∪ R′,248

we note that τ cannot realize this edge after σ′, so it must be the case that v /∈ T [c] (otherwise249

v would be disconnected from the root in C) and that c is dangling child of u (otherwise c250

has a descendant in σ that would be disconnected from the root in C).251

▷ Claim 5. For a given s-t path in H, let τ be the ordering induced by the path. Then the252

set of edges realized by τ forms a connected component C that contains the root and the253

weight of the path equals254 ∑
(u,v)∈T [C]

f(|du − dv|)w(u, v) +
∑
u/∈C

parent(u)∈C

opt[Tu],255

where du is the position of u in τ .256

By Claim 3, τ realizes precisely the union of the R-sets in the sequence. For every v ∈ τ257

other than z, we argue that (v, parent(v)) is realized by τ . Indeed, let (z, σ, R) be the last258

tuple such that v ∈ σ. If (z, σ, R) is not the last tuple, by the third existence condition on the259

edge to the next tuple guarantees that (u, parent(u)) is realized. If (z, σ, R) is the last tuple,260

by the existence condition on the edge to t, all reachable nodes adjacent to σ are dangling,261

in particular parent(u) is not reachable. Therefore, since (v, parent(v)) is realized for all v,262

using induction we get that v must be connected all the way to the root with realized edges.263

Therefore the vertices in τ form a connected subtree containing the root z, and the set of264

realized edges is precisely this subtree.265

All this effort would be for naught, unless we could represent H succinctly. Recall that266

every node in H is a tuple (z, σ, R); clearly, there are only n choices for z and only nk choices267

for σ; furthermore, for an edge to be in R, since σ is a contiguous chunk of size k, they268

can only realize edges with connection to the previous k nodes, thus, we can represent R269

succinctly by listing those additional k nodes. Overall, there are n2k+1 edges in H; we can270

list the outgoing neighboring tuples in O(n) time per tuple2. Therefore, we can run Dijkstra271

in O(n2k+2) time and identify the connected component of z. Since this has to be done for272

every node in T , we gain an extra factor of n for a running time of O(n2k+3). ◀273

4 Approximation Algorithms for special graph classes274

In this section, we shows that we can get very good approximations for special graph classes275

that go beyond trees.276

▶ Theorem 6. There is an nO(kt
ϵ) time (1 + ϵ)-approximation for Ext-TSP in graphs with277

a tree decomposition of tree-width t.278

Proof. Let T be the tree decomposition of our input graph G and let h = ⌈1/ϵ⌉. To simplify279

the presentation of our algorithm we define an auxiliary problem, where the goal is to280

partition the vertex set into clusters of size at most hk and order each part separately, the281

Ext-TSP objective is computed for each part and summed up. If we let opt be the value of282

2 We do not attempt to optimize this running time.

ISAAC 2021

64:8 On the Extended TSP Problem

the optimal solution for the original problem, we claim that opt’, the value of the optimal283

solution for the auxiliary problem is not much lower; more precisely,284

opt′ ≥ h − 1
h

opt.285

To see this, suppose that opt lists the vertices in the order v1, v2, . . . , vn. We pick a random286

threshold α u.a.r. from {0, 1, . . . , k − 1}, and cluster vertices together so that for each j we287

have a cluster {vhkj+1+α, . . . , vhk(j+1)+α}, yielding a solution to the auxiliary problem. Note288

that the probability of an edge that is realized by opt must have endpoints that are at most289

k apart in the ordering, so there is only a 1/h chance of that edge not being present in opt′.290

Although this is a randomized construction, and it just shows that E[opt′] ≥ h−1
h opt, it is291

easy to see that there must exist a value of α that yields the desired bound3.292

Given a tree decomposition for G with treewidth t, and a bag B in the decomposition we293

denote with T [B] the subset of vertices in the original graph spanned by the sub-decomposition294

rooted at B. For each u ∈ B we define a collection orderings of subsets Su, such that for an295

ordering σ of a subset S ⊆ V of vertices to be in Su we require that:296

|S| ≤ hk,297

u ∈ S, and298

the subgraph
(
S, {(a, b) ∈ E[S] : |σ(a) − σ(b)| ≤ k}

)
is connected.299

We define a dynamic programming formulation for our auxiliary problem as follows. For300

each bag B in the decomposition and each |S|-tuple (σu : u ∈ B) where σu ∈ Su, we create301

a dynamic programming state A[B, (σu : u ∈ B)] that corresponds to the cost of the best302

solution for T [B] where each σu is the ordering of one of the clusters in the solution of the303

auxiliary problem. To keep the requirements feasible we ask that for any u, v ∈ B either304

σu = σv, or σu and σv do not share any vertices.305

We work with a nice tree decomposition with join, forget, and introduce nodes. To define306

the recurrence for A we consider each case.307

Join node: Here we have two children with the same bag as the node. We simply pass308

the tuple constraining the solution space to each child. To compute its value we add309

the value of the two children and subtract the contribution of edges inside of B to avoid310

double counting. Notice that the distance between the endpoints of E[B] is specified by311

(σu : u ∈ B) so we can compute the appropriate discount of these edges.312

Introduce node: Here we have a single child with a bag having one fewer element; call313

it u. We remove σu from the tuple and u from B. To compute its value we add the314

contribution of edges between u and other nodes in σu to the value of the child. Again,315

we can use σu to discount the weight of these edges accordingly.316

Forget node: Here we have a single child with a bag with one additional element, call it317

u. To compute its value we need to guess the σu in the optimal solution. If u happens to318

already be in the sequence σv of some v ∈ B then σu = σv. Otherwise, we must guess σu319

by picking hk vertices from T [B] \ ∪v∈Bσv and checking that σu ∈ Su. Going over all320

possible valid states for the child bag and keeping the state with highest value yields the321

value of the state of the parent bag.322

For the correctness, notice that there is no loss of information in the case of a introduce323

node. Let u be the node begin introduced. Either u is the only vertex in common between324

3 Note that the argument is non-constructive in the sense that given G it is not clear how to partition G
into clusters of size hk so that opt′ ≥ h−1

h opt. The argument only guaranteed the existence of such a
clustering.

J. Mestre, S. Pupyrev, and S. W. Umboh 64:9

B and σu, in which case u is the only vertex in T [B] by virtue of σu being connected in G,325

and so it is safe to forget σu together with u in the child node. Or, there exists another326

v ∈ B − u such that v ∈ σu, which case σv = σu and so the information about the constraints327

we imposed in u’s part are preserved further down the decomposition.328

For the correctness of the forget node case, note that the component that u belong to329

in the optimal solution is connected and that B acts like a separator from T [B] to the rest330

of the graph, so if u is not in the same component as any node in B, then it must be in a331

component with only nodes in T [B] \ ∪v∈Bσv.332

There are nhkt+1 states in the decomposition and each one is considered once by a state333

associated with the parent bag in the decomposition, so the overall work is linear on the334

number of the states. We can enumerate the states on the fly by paying another O(n) term335

per state so the total running time is nhkt+2.336

Now, setting h = 1 + 1/ϵ, the optimal solution found by DP is bound to be a 1 + ϵ337

approximation for the original problem in nO(kt
ϵ) as promised in the Theorem statement. ◀338

We can use this result to obtain a (1 + ϵ)-approximation for planar graphs.339

▶ Corollary 7. There is an nO(k
ϵ2) time (1 + ϵ)-approximation for Ext-TSP in planar340

graphs.341

Proof. Using Baker’s technique [2] we can find an ℓ-outerplanar subgraph G′ of the input342

graph G such that value of the optimal solution to the Ext-TSP in G′ is at least 1 − 2/ℓ343

the value of the optimal solution in G. Since the treewidth of G′ is no more than 3ℓ, we can344

use the algorithm from Theorem 6 get a 1 + ϵ′ approximation in G′ in nO(kℓ
ϵ′) time. Setting345

ϵ′ = ϵ/3 and ℓ = 6/ϵ, we get the desired result for any ϵ ≤ 1. ◀346

5 Approximation Algorithms for general graph347

5.1 Greedy348

Consider the following greedy algorithm: Start with an arbitrary vertex, and on each step349

append a vertex with the heaviest edge to the last-added vertex. That is, if u is the last-added350

vertex, then we append the vertex v maximizing w(u, v) where v ∈ V has not yet been added351

to the solution.352

▶ Lemma 8. Greedy is a 2k-approximation and this is tight. It can be implemented to run353

in O(m log n) time.354

Proof. Let O be the edges realized by the optimal solution and let u1, u2, . . . , un be the355

order computed by the greedy algorithm. Let d∗
u be the position of u in the optimal356

solution. Observe that the value of the greedy solution is at least
∑n−1

i=1 f(1)w(ui, ui+1) =357 ∑n−1
i=1 w(ui, ui+1) as f(1) = 1. We partition O as follows, for each ui we have a part358

Oi = {(ui, uj) ∈ O : j > i}. Using the fact that f is non-increasing and the definition of359

the greedy algorithm, f(|d∗
u − d∗

v|)w(u, v) ≤ w(u, v) ≤ w(ui, ui+1) for all (u, v) ∈ Oi, and360

|Oi| ≤ 2k. Thus, the value of the optimal solution is361

n−1∑
i=1

∑
(u,v)∈Oi

f(|du − dv|)w(u, v) ≤ 2k

n−1∑
i=1

w(ui, ui+1).362

Thus, greedy is a 2k-approximation.363

ISAAC 2021

64:10 On the Extended TSP Problem

. . .

2k

. . .

2k

. . .

2k

. . .

2k

. . .

ℓ

Figure 3 Tight instance for greedy. Optimal solution can realize 2kℓ edges while Greedy may
end up realizing only ℓ − 1 + k edges.

To show that the analysis is tight, consider the following instance with n = (2k + 1)ℓ364

consisting of ℓ 2k-stars with the centers of the stars connected with a path of length of length365

ℓ − 1. All edges have weight 1. The discount function f is such that f(i) = 1 when i ≤ k and366

f(i) = 0 when i > k. The optimal solution sequences one star after the other and achieves a367

total cost of 2kℓ. While the greedy solution may start at the center of the "left most star"368

and traverse the centers of all star and then add k pendant nodes, achieving a total cost of369

ℓ − 1 + k. By making ℓ large we get an approximation ratio that tends to 2k.370

For the implementation, we need to maintain a maximum priority queue with the nodes371

that are yet to be added to the greedy solution. The value associated with node u is the372

weight of the edge connecting u to the last node in the current partial greedy solution. When373

a new node is added to the greedy solution, this causes the priority of certain vertices to374

be updated (up for those incident on u or down for those incident on the second last-node375

of the partial solution, or either direction if incident on both nodes). The key observation376

is that each edge can cause the priority of a node to be changed twice (once when the first377

endpoint is added to the solution and again when that endpoint stops being the last node of378

the greedy solution). Therefore, the total number of priority updates is O(m), which using a379

simple binary heap yields the desired time. ◀380

5.2 Cycle cover based algorithm381

We can do slightly better if we use a maximum weight cycle cover as the basis for our solution.382

A similar approach has been used to design approximation algorithms for max-TSP [13].383

▶ Theorem 9. There is a polynomial time
(

1 + 1
k+1

)
k-approximation for Ext-TSP in384

general graphs.385

Proof. Let A be a maximum weight set of edges such that the degree of every node is at386

most 2. This problem is also known as maximum weight simple 2-matching and can be387

reduced to regular maximum weight matching [27, Ch. 30]. Note that A is a collection of388

paths and cycles in G. If there exists a cycle C in A, we break C by removing the lightest389

edge. This gives us a collection of paths A′. Sequencing each path gives a solution to the390

Ext-TSP problem with value at least w(A′).391

Now, given a solution to the Ext-TSP problem with value opt, we claim that we can392

construct a solution to the degree bounded problem that has value at least opt/k. To393

see this, note that the weight of the edges whose endpoints are at distance exactly i for394

i = 1, . . . , k is a candidate solution for A. It follows then that w(A) ≥ opt/k.395

This is because the edges that are counted towards the objective in Ext-TSP have396

maximum degree 2k and that solution can be scaled down by a factor of k to get a fractional397

solution to an exact LP formulation of the degree bounded problem. Thus, we get that398

w(A) ≥ opt/k.399

J. Mestre, S. Pupyrev, and S. W. Umboh 64:11

Let alg be the value of the solution found by our algorithm. Consider a cycle C in A400

with length ℓ = |C|. Let e be the edge in C with minimum weight. Therefore, C contributes401

at least w(C) − w(e) + f(ℓ − 1)w(e) to alg. Since w(e) ≤ w(C)/ℓ, we can further simplify402

the previous expression to403

w(C)
(

1 − 1 − f(ℓ − 1)
ℓ

)
404

Now if each cycle C in A had length at least ℓ > k + 1, the weight of C ∩ A′ would be at405

least w(C)
(

1 − 1
k+2

)
. Let alg be the cost of the solution found by our algorithm. Then406

alg ≥ w(A′) ≥ k + 1
k + 2w(A) ≥ k + 1

(k + 2)k opt,407

which matches the approximation factor of k + 1 promised in the theorem statement.408

Unfortunately, cycles can be as small as ℓ = 3, which depending on f could yield a worse409

approximation factor, so we need a different approach to our analysis.410

Let ℓ∗ be the number in [3, 4, . . . , k + 2] maximizing 1−f(ℓ∗−1)
ℓ . Using the same reasoning411

as above, we see that412

alg ≥ w(A)
(

1 − 1 − f(ℓ∗ − 1)
ℓ∗

)
.413

The first thing to note is that if ℓ∗ = k + 2 then the above analysis yield the desired414

approximation, so from now one assume ℓ∗ < k + 2 and 1−f(ℓ∗−1)
ℓ∗ > 1

k+2 , or equivalently,415

that416

1 − ℓ∗

k + 2 > f(ℓ∗ − 1).417

Consider the edges realized by the optimal solution and split them into X and Y . The418

first set, X, are the edges whose endpoints are at distance at most ℓ∗ − 2 from each other; the419

second set, Y , are the edges whose endpoints are at distance between ℓ∗ − 1 and k. Notice420

that421

opt ≤ w(X) + f(ℓ∗ − 1)w(Y),422

since all edges in Y are discounted at least f(ℓ∗ − 1), and that423

w(A) ≥ max
{

w(X)
ℓ∗ − 2 ,

w(Y)
k − ℓ∗ − 2

}
,424

since we can use the same scaling argument on X or Y but using a smaller scaling factor425

since the vertices in those edges sets have smaller degrees; namely, 2ℓ∗ − 2 and 2(k − ℓ∗ − 1)426

respectively. Putting the above two inequalities together we get427

opt ≤ (ℓ∗ − 2)w(A) + f(ℓ∗ − 1)(k − ℓ∗ − 2)w(A)428

≤ (ℓ∗ − 2) + f(ℓ∗ − 1)(k − ℓ∗ − 2)(
1 − 1−f(ℓ∗−1)

ℓ∗

) alg.429

430

Think of the above upper bound on the approximation ratio opt/alg as a function of431

f(ℓ∗ − 1). We want to find the value 0 ≤ f(ℓ∗ − 1) ≤ 1 − ℓ∗/(k + 2) that yields the worst432

bound on the approximation ratio. The upper bound is the ratio of two linear functions of433

f(ℓ∗ − 1) and is thus maximized when either f(ℓ∗ − 1) = 0 or f(ℓ∗ − 1) = 1 − ℓ∗/(k + 2). If434

f(ℓ∗ − 1) = 0, the ratio simplifies to ℓ∗−2
1−1/ℓ∗ , which in turn is maximized at ℓ∗ = k + 2 and435

yields a ratio of k + k
k+1 , as desired. Finally, if f(ℓ∗ − 1) = 1 − ℓ∗/(k + 2), we again get the436

same approximation ratio. ◀437

ISAAC 2021

64:12 On the Extended TSP Problem

5.3 Local search algorithm438

So far all the algorithms we have presented in this section have polynomial running times439

that are independent of k. If we are willing to have algorithms that run in nO(k) we can get440

arbitrarily good approximations.441

Our local search algorithm is parameterized by an integer value ℓ ≥ k. The algorithm442

maintains a solution τ and performs local search moves where some subset of ℓ nodes are443

taken out of τ and sequenced optimally and attached to the end of the solution. At each444

step we perform the best such move and we stop once there is no move that improves the445

solution.446

▶ Lemma 10. A local optimal solution is a 2 + 2
ℓ/k−1 approximation for the Ext-TSP in447

general graphs.448

Proof. We will use the following notation throughout this proof: For a given solution τ and449

a permutation σ of ℓ elements, let τ − σ the permutation of n − k elements that we get by450

removing the nodes in σ from τ . Also, let τ |σ be the permutation obtained by concatenating451

σ to τ −σ. Finally, let wσ(τ) be the discounted weight of edges realized by τ that are incident452

on vertices in σ, and w(τ) be the discounted weight of all edges realized by τ , i.e. the value453

of τ .454

Assume that τ is locally optimal; namely, that no local move can improve its value:455

w(τ) ≥ w(τ |σ) ∀σ : |σ| = ℓ.456

Notice that w(τ) ≤ w(τ − σ) + wσ(τ) and that w(τ |σ) ≥ w(τ − σ) + w(σ). Therefore, a457

weaker necessary condition for being locally optimal is that458

wσ(τ) ≥ w(σ) ∀σ : |σ| = ℓ.459

Let us build a a collection for n + ℓ sub-sequences of the optimal solution by sliding a460

window of size ℓ over opt. Call the resulting collection S. Adding up the above inequality461

for all σ ∈ S we get462 ∑
σ∈S

wσ(τ) ≥
∑
σ∈S

w(σ)463

Notice that every edge realized by τ can appear in at most 2ℓ terms in the left-hand side464

of the above inequality (this is because every endpoint appears in at most ℓ permutations),465

while every edge realized by opt must appear in at least ℓ − k terms in the right-hand side466

of the above inequality. These observation imply the following relation between τ and opt467

2ℓw(τ) ≥ (ℓ − k)w(opt),468

which in turn finish off the proof of the lemma. ◀469

Of course, the issue with the above algorithm is that it is not clear how to compute a470

locally optimal solution. However, we can use the standard technique of only making a move471

if it improves the value of the objective by at least δ/nw(opt). This guarantees that we do472

not perform more than n/δ and degrades the approximation ratio by no more than 2δ. This473

yields an algorithm that runs in O(nℓ+1/δ) time.474

J. Mestre, S. Pupyrev, and S. W. Umboh 64:13

6 Conclusions and open problems475

Our results can be generalized slightly. For example, one can get similar results for discount476

functions f that are non-symmetric (i.e., f(u, v) ̸= f(v, u)), or when the block sizes are477

non-uniform. There are, however, some interesting questions that remain unanswered:478

1. Is there a polynomial-time O(1)-approximation, independent of k?479

2. Is there an exact O(f(k, t)nO(k)) time algorithm where t is the treewidth of the instance?480

On the other hand, there are a few things that we can rule out. Note that we cannot481

expect (1 + ϵ)-approximations even in nO(k) time since that would contradict APX-hardness482

of Max TSP, and we cannot expect to get exact algorithms for bounded treewidth instances483

in no(k) time either due to Min Bandwidth hardness.484

Acknowledgments485

We would like to thank Vahid Liaghat for fruitful discussions on the Ext-TSP problem.486

References487

1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized488

paging algorithms. Theor. Comput. Sci., 234(1-2):203–218, 2000.489

2 Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs.490

Journal of the ACM, 41(1):153–180, 1994.491

3 Moses Charikar, Mohammad Taghi Hajiaghayi, Howard J. Karloff, and Satish Rao. l2
2

492

spreading metrics for vertex ordering problems. Algorithmica, 56(4):577–604, 2010.493

4 Zhi-Zhong Chen, Yuusuke Okamoto, and Lusheng Wang. Improved deterministic approxima-494

tion algorithms for max TSP. Inf. Process. Lett., 95(2):333–342, 2005.495

5 Markus Sortland Dregi and Daniel Lokshtanov. Parameterized complexity of bandwidth on496

trees. In International Colloquium on Automata, Languages, and Programming, pages 405–416.497

Springer, 2014.498

6 Chandan K. Dubey, Uriel Feige, and Walter Unger. Hardness results for approximating the499

bandwidth. J. Comput. Syst. Sci., 77(1):62–90, 2011.500

7 Szymon Dudycz, Jan Marcinkowski, Katarzyna E. Paluch, and Bartosz Rybicki. A 4/5 -501

approximation algorithm for the maximum traveling salesman problem. In Proc of 19th502

International Conference on Integer Programming and Combinatorial Optimization, volume503

10328, pages 173–185, 2017.504

8 Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation505

algorithms via spreading metrics. J. ACM, 47(4):585–616, 2000.506

9 Uriel Feige. Approximating the bandwidth via volume respecting embeddings. J. Comput.507

Syst. Sci., 60(3):510–539, 2000.508

10 Uriel Feige and James R. Lee. An improved approximation ratio for the minimum linear509

arrangement problem. Inf. Process. Lett., 101(1):26–29, 2007.510

11 Uriel Feige and Kunal Talwar. Approximating the bandwidth of caterpillars. Algorithmica,511

55(1):190–204, 2009.512

12 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and513

Neal E. Young. Competitive paging algorithms. J. Algorithms, 12(4):685–699, 1991.514

13 Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of ap-515

proximations for finding a maximum weight hamiltonian circuit. Oper. Res., 27(4):799–809,516

1979.517

14 Anupam Gupta. Improved bandwidth approximation for trees and chordal graphs. J. Algo-518

rithms, 40(1):24–36, 2001.519

ISAAC 2021

64:14 On the Extended TSP Problem

15 Refael Hassin and Shlomi Rubinstein. An approximation algorithm for the maximum traveling520

salesman problem. Inf. Process. Lett., 67(3):125–130, 1998.521

16 Refael Hassin and Shlomi Rubinstein. Better approximations for max TSP. Inf. Process. Lett.,522

75(4):181–186, 2000.523

17 Facebook Inc. Binary optimization and layout tool, 2020. URL: https://github.com/524

facebookincubator/BOLT.525

18 S. Rao Kosaraju, James K. Park, and Clifford Stein. Long tours and short superstrings526

(preliminary version). In 35th Annual Symposium on Foundations of Computer Science, Santa527

Fe, New Mexico, USA, 20-22 November 1994, pages 166–177. IEEE Computer Society, 1994.528

19 Lyle A. McGeoch and Daniel Dominic Sleator. A strongly competitive randomized paging529

algorithm. Algorithmica, 6(6):816–825, 1991.530

20 Andy Newell and Sergey Pupyrev. Improved basic block reordering. IEEE Transactions in531

Computers, 69(12):1784–1794, 2020.532

21 Katarzyna E. Paluch, Marcin Mucha, and Aleksander Madry. A 7/9 - approximation algorithm533

for the maximum traveling salesman problem. In Proc of 12th International Workshop on534

Approximation, Randomization, and Combinatorial Optimization, volume 5687, pages 298–311,535

2009.536

22 Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. Bolt: A practical binary537

optimizer for data centers and beyond. In Proceedings of the 2019 IEEE/ACM International538

Symposium on Code Generation and Optimization, page 2–14, 2019.539

23 Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with540

distances one and two. Math. Oper. Res., 18(1):1–11, 1993.541

24 Karl Pettis and Robert C Hansen. Profile guided code positioning. In Proc. of the 11th ACM542

Conference on Programming Language Design and Implementation, pages 16–27, 1990.543

25 Satish Rao and Andréa W. Richa. New approximation techniques for some linear ordering544

problems. SIAM J. Comput., 34(2):388–404, 2004.545

26 James B Saxe. Dynamic-programming algorithms for recognizing small-bandwidth graphs in546

polynomial time. SIAM Journal on Algebraic Discrete Methods, 1(4):363–369, 1980.547

27 Alexander Schrijver. Combinatorial Optimization. Springer-Verlag, 2003.548

28 A. I. Serdyukov. An algorithm with an estimate for the traveling salesman problem of maximum549

(in russian). Upravlyaemye Sistemy, 25:80–86, 1984.550

29 Yossi Shiloach. A minimum linear arrangement algorithm for undirected trees. SIAM J.551

Comput., 8(1):15–32, 1979.552

30 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list update and553

paging rules. Commun. ACM, 28(2):202–208, 1985.554

31 Neal E. Young. Online paging and caching. In Encyclopedia of Algorithms, pages 1457–1461.555

Springer, 2016.556

https://github.com/facebookincubator/BOLT
https://github.com/facebookincubator/BOLT
https://github.com/facebookincubator/BOLT

	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Problem definition and hardness
	3 Exact Algorithms
	4 Approximation Algorithms for special graph classes
	5 Approximation Algorithms for general graph
	5.1 Greedy
	5.2 Cycle cover based algorithm
	5.3 Local search algorithm

	6 Conclusions and open problems

