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Abstract
As the COVID-19 pandemic reshapes our social landscape,

its lessons have far-reaching implications on how online ser-
vice providers manage their infrastructure to mitigate risks.
This paper presents Facebook’s risk-driven backbone man-
agement strategy to ensure high service performance through-
out the COVID-19 pandemic. We describe Risk Simulation
System (RSS), a production system that identifies possible
failures and quantifies their potential severity with a set of
metrics for network risk. With a year-long risk measurement
from RSS we show that our backbone resiliently withstood
the COVID-19 stress test, achieving high service availabil-
ity and low route dilation while efficiently handling traffic
surges. We also share our operational practices to mitigate
risk throughout the pandemic.

Our findings give insights to further improve risk-driven
network management. We argue for incorporating short-term
failure statistics in modeling failures. Common failure pre-
diction models based on long-term modeling achieve stable
output at the cost of assigning low significance to unique
short-term events of extreme importance such as COVID-19.
Furthermore, we advocate augmenting network management
techniques with non-networking signals. We support this by
identifying and analyzing the correlation between network
traffic and human mobility.

1 Introduction

COVID-19 fundamentally reshaped societal norms and hu-
man interactions by forcing most social activities to move
online. The global network infrastructure was subjected to an
unprecedented stress test as work, entertainment and educa-
tion all had to be conducted via digital connections [37]. Over
the past year, the networking community aimed to answer
two fundamental questions about the impact of COVID-19 on
different network environments [7,15,28]. First, how well has
the current network infrastructure withstood the COVID-19
stress test? Second, how should the network infrastructure

evolve to support a post-pandemic era likely to be perma-
nently remodeled by the social distancing experience?

This paper supplements the recent COVID-19-centric re-
search by sharing Facebook’s experience emerging from the
risk-driven backbone management strategy. Our work has two
unique angles: the focus on the backbone network of a global
online service provider and the use of network risk to quantify
the robustness of the network infrastructure under adverse
conditions. This study enriches previous observations made
in different network environments, including the Internet [15],
edge networks [7], and mobile networks [28]. Furthermore,
it is a significant departure from prior work which uses only
traffic measurement to quantify the impact of social events on
the network infrastructure.

Our risk-driven backbone management is based on the fact
that failures and disasters happen frequently and the backbone
network should be equipped with sufficient protection capac-
ity to mitigate the effects. Particularly, Facebook’s backbone
connects hundreds of Point-of-Presence (PoP) sites and tens
of Data Center (DC) regions. At this scale, failures such as
fiber cuts, router misconfigurations, and power outages hap-
pen on a daily basis [20], causing traffic congestion, packet
loss, and latency increase which, in turn, negatively impact the
network’s availability and service-level agreements [8,21,27].
Network risk is an effective means to capture the impacts of
potential failures in the network, before they actually occur,
which is critical for identifying operational pain-points for
long-term deployment planning, mid-term capacity augmen-
tation, and short-term health monitoring.

This paper describes our Risk Simulation System (RSS),
which performs comprehensive “what-if” analyses of network
risk through traffic simulations under plausible failure sce-
narios. RSS has been in production for years. We introduce
RSS in detail, showing key design decisions and engineer-
ing efforts to optimize the system over time. Specifically, we
propose a set of risk metrics (demand loss, availability, la-
tency stretch) to quantify impacts of potential failures from
different aspects. Further, we introduce a high-fidelity failure
model based on failure records from different data sources
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Figure 1: User-facing (DC-to-PoP) traffic traversing the global backbone.

and failure types. To scale our system, we provide different
simulation granularities that trade failure count for simula-
tion accuracy. Moreover, we discuss several techniques to
accelerate computation such as system parallelization, rout-
ing simplification, and reduction of failure scenarios.

We conduct a year-long analysis of network risk using RSS,
and in what follows, we share our operational experience of
keeping risk at bay during the COVID-19 pandemic. Our risk
analysis demonstrates our backbone network remained robust
under the COVID-19 traffic surges. Although risk increased
with traffic, even the most heavily affected class of service
still achieved four 9s of availability and its flows only expe-
rienced 2.12% longer paths on average. We further discuss
capacity enhancement and quality of service downgrade as
two effective measures to reduce network risk.

Finally, we use case studies to show unusual network con-
ditions caused by social distancing have challenged funda-
mental assumptions of the traditional network design, and we
share our insights on future directions of risk-driven back-
bone management. We observe a large variation of optical
and IP-layer failures triggered by changes of human activities.
We thus suggest failure modeling to be more responsive to
short-term failure statistics and discuss the tradeoff between
model stability and agility for accurate failure predictions.
We also identify the limitation of standard network manage-
ment that only considers in-network signals and is blind to
social impacts to the network. We find a negative correlation
between traffic volume and population mobility rate during
social distancing, and use it as an example to show oppor-
tunities for improving network management with external
non-networking signals.

Our risk metrics, failure model and risk simulation ap-
proach generalize beyond the initially envisioned backbone
network scenario and are readily applicable to other network
environments. We believe that risk-driven network manage-
ment has the potential to become the standard approach to dis-
aster prevention, monitoring and recovery. Towards this goal,
we hope that our experience can inspire future solutions and
spur broader adoption of risk-driven network management.
This work does not raise any ethical issues. We preserved user
privacy and anonymity throughout this study.

Phase Start date End date # Days
Pre-COVID (P0) 11/4/2019 3/15/2020 133
Shelter-in-Place (P1) 3/16/2020 5/3/2020 49
Re-opening (P2) 5/4/2020 2/28/2021 301

Table 1: Measurement phases in this paper.

2 Traffic Surges During COVID-19

Recent news reports and measurement studies suggest sig-
nificant traffic surges globally during the COVID-19 pan-
demic [7, 10, 15, 24, 28]. As a major social media platform,
Facebook witnessed higher user engagement under social dis-
tancing. In this section, we measure Facebook’s user-facing
traffic to motivate the need for a risk-driven backbone man-
agement system.

Throughout the paper, we categorize our measurement pe-
riod into three time phases (P0 to P2) listed in Table 1. The
first phase, Pre-COVID (P0), is our baseline to capture the
state of the network before the global shut-down due to the
pandemic. The second phase, Shelter-in-Place (P1), marks
the period when the US and European countries started to
introduce extreme COVID-19 regulations, such as border clo-
sures, flight reductions, and school closures. The third phase,
Re-opening (P2), represents the slow re-opening phase when
strict shut-down orders were relaxed [2].

Significant traffic increase. Figure 1 plots the traffic vol-
ume from our Data Center (DC) regions to Point-of-Presence
(PoP) sites in four geographical regions. The traffic volume
is normalized against average traffic during the pre-COVID
phase (P0). The figure shows a significant traffic surge start-
ing mid-March 2020 in all regions, matching the timeline of
global social distancing. In particular, we measure a traffic
surge of 86% in Asia, 78% in Europe, 65% in North America,
and 70% in South America in the P1 phase.

Beyond the New Year traffic spike. Traffic volume spikes
are not unusual. Today’s service providers consider well-
known flash-crowd events, such as Cyber Monday, in their
traffic modeling [45] and network operation planning [49].
However, as Figure 1 depicts, the COVID-19 traffic increase
has two unique differences. First, the traffic peak during phase
P1 was substantially higher than that of New Year’s Eve (31



December 2019). The peak volume was 1.62× the 2020 New
Year’s Eve in Asia, 1.65× in Europe, 1.68× in North America,
and 1.61× in South America. Second, flash-crowd events are
usually short-lived, but the traffic surges remained high for
several weeks during the pandemic.

The above observations highlight the challenges posed by
social distancing on large-scale network operations. Under
high traffic load, operators need to answer a natural question:
“is my network at risk?” This question motivates us to quantify
network risk and use it as a guiding signal to drive network
management.

3 Risk-Driven Backbone Management
Satisfying Service Level Objectives (SLOs) is the ultimate
goal of network management. Risk analysis is an indispens-
able and effective means to guarantee SLO compliance under
different failure scenarios. In this section, we dive into the
details of RSS, our risk-driven backbone management frame-
work. We begin with the description of Facebook’s traffic
classification and routing schemes (§3.1), followed by our
definition of risk metrics that align with SLO requirements of
different service classes (§3.2). Next, we describe our failure
modeling technique (§3.3). Finally, we present the design and
implementation of RSS, our risk simulation system (§3.4).

3.1 Traffic Classification and Routing

Quality of Service (QoS). Facebook classifies the backbone
traffic into four service classes. In this paper, we refer to them
as QoS classes 1 to 4, where class 1 is the highest priority.
Different classes of service use different queue assignments
and routing policies. Flows with higher priorities have greater
availability guarantees and can tolerate more failures com-
pared to those in lower priority classes. This is often realized
by over-provisioning extensive backup paths for redundancy.
QoS class 1 contains essential network control traffic includ-
ing network signaling and routing protocol messages to man-
age our network gear; class 2 is for critical services including
most of our user-facing traffic; class 3 is our default class for
most internal applications; and class 4 is for heavy, bulk data
transfers. To reduce operational costs, we constantly look for
opportunities to move traffic into class 4.
Routing. Our backbone uses a centralized network controller
to make routing and Traffic Engineering (TE) decisions [22].
The centralized controller implements different traffic allo-
cation algorithms for different QoS classes. To minimize the
latency experienced by flows in QoS classes 1 and 2, we use
a Constrained Shortest Path First (CSPF) approach that provi-
sions TE tunnels for these flows up to the physical capacity of
the network links. Flows are assigned to paths with the small-
est round trip latencies. The bandwidth for QoS class 2 is
allocated after class 1, and we reserve headroom on each link
for potential traffic bursts for these two classes. QoS classes

Algorithm 1 Compute risk metrics for QoS class q
1: procedure CALCULATE DEMAND LOSS, AVAILABILITY AND LATENCY

STRETCH FOR QOS CLASS q UNDER FAILURE SCENARIOS S
. Input: S: set of considered failure scenarios
. Input: T : set of Traffic Engineering tunnels on the IP topology G
. Input: Fq = { f}: set of flows in QoS class q
. Input: d f : bandwidth demand of flow f
. Output: V q: QoS class q’s availability
. Output: Lq

f = {< Ls,q
f ,s.probability >}: for flow f , a distribution of

latency stretch Ls,q
f per failure scenario and its failure probability

. Output: Xq: QoS class q’s demand loss
2: Initialize flow f ’s availability V q

f = 1,∀q, f
3: Initialize flow f ’s demand loss in scenario s: X s,q

f = 0,∀q, f
. Iterate on all failure scenarios in S

4: for all s ∈ S do
. TE bandwidth allocation bs,q

f and per-tunnel split ratio as,q
f ,t

5: {bs,q
f },{a

s,q
f ,t}= TrafficEngineering(G,T,Fq,s)

6: for all f ∈ Fq do
. Flow f ’s bandwidth-weighted latency

7: l = (∑t∈Tf t.rtt×as,q
f ,t)/(∑t∈Tf as,q

f ,t)
. Flow f ’s latency stretch

8: Ls,q
f = l/mint∈Tf t.rtt

9: Lq
f .append(<Ls,q

f , s.probability>)
10: if bs,q

f < d f then
. Flow f ’s demand loss

11: X s,q
f = X s,q

f +(d f −bs,q
f )

. Flow f ’s availability reduction
12: V q

f =V q
f − s.probability

13: V q = min f∈Fq (V q
f )

14: Xq = maxs∈S(∑ f∈Fq X s,q
f )

15: return V q, Lq
f , Xq

3 and 4 use a combination of K-Shortest Paths (KSP) and
Multi-Commodity Flow (MCF) algorithms with the objective
of minimizing the maximum link utilization in the network.
We pre-assign TE tunnels for traffic flows between each router
pair, then rely on a Linear Program (LP) to load-balance the
traffic over all tunnels. Lower priority traffic uses the band-
width left by higher priority traffic on each link. When failures
bring certain links down, traffic is automatically re-distributed
across remaining tunnels until the next TE execution where a
new optimal traffic allocation is calculated.

3.2 Risk Metrics

This paper defines a set of key metrics to quantify a network’s
risk to potential failures. These risk metrics satisfy two re-
quirements. First, they capture different aspects of failure
events by quantifying the network’s response from multiple
dimensions. Second, since QoS classes have different levels of
tolerance to failures, our risk metrics relate to QoS classes and
reflect their SLO guarantees. As a result, we use the following
metrics for each QoS class q:

(1) Demand Loss (Xq): For a failure scenario s, the demand
loss is the total amount of lost traffic by all flows in q caused
by s. The overall demand loss of QoS class q is the maximum,
or worst-case, demand loss across all the considered failure
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Figure 2: An example with two flows (green and red arrows)
from the same QoS class q under three failure scenarios. Risk
metrics computed by Algorithm 1 are as follows: worst-case
demand loss (Xq) = 0.3 Tbps, worst-case availability (V q)
= 99.81%, flow 1’s latency stretch (Lq

1) = {<1.5, 99.81%>,
<1.67, 0.18%>, <2.33, 0.11%>}, and flow 2’s latency stretch
(Lq

2) = {<1.5, 99.81%>, <2, 0.18%>, <1.5, 0.11%>}.

scenarios s ∈ S.
(2) Availability (V q): The percentage of time that a flow’s

demand is completely satisfied (100% admitted) across all
failure scenarios reflects the availability of that flow. Similar
to demand loss, we compute our availability metric as the
lowest availability among all flows in QoS class q.

(3) Latency Stretch (Lq
f ): For a failure scenario s, the la-

tency stretch Ls,q
f of flow f in QoS class q is the ratio of the

average tunnel latency (weighted by the tunnel bandwidth as-
signments) divided by the shortest TE tunnel latency without
failure. We use Round-Trip Time (RTT) as a proxy for tunnel
latency but other metrics such as hop-count and fiber length
can also be used. The overall latency stretch Lq

f across all
failure scenarios is a distribution, represented as the latency
stretch Ls,q

f of each failure scenario associated with its time
probability of occurrence.

Algorithm 1 describes how these metrics are calculated
by RSS in detail. We first initialize each flow’s availability
and demand loss to 1 and 0, respectively (lines 2-3). For all
considered failure scenarios s ∈ S, we execute the Traffic
Engineering (TE) formulation to find the per-flow satisfied
bandwidth bs,q

f and the per-tunnel traffic allocations as,q
f ,t for

each flow (line 5). Then, we calculate the three risk metrics
using the outputs of TE. Flow f ’s latency stretch is calculated
as the bandwidth-weighted latency l divided by the minimum
latency across all tunnels (lines 7-8). Flow f ’s demand loss
is captured by the difference between satisfied bandwidth
bs,q

f and flow’s demand d f (line 11). If the demand is not
fully satisfied, availability is reduced by the probability of the
failure scenario s (line 12). Finally, we select the availability
of QoS class q to be the worst availability experienced by all
flows f ∈ Fq (line 13), and demand loss to be the maximum
loss across all scenarios s ∈ S (line 14).

Figure 2 shows an example of the risk metrics computed
by Algorithm 1 for two flows from the same QoS class under

three failure scenarios. The healthy state is shown in Fig-
ure 2(a) and labeled as scenario 1. Figure 2(b) illustrates sce-
nario 2 where flows 1 and 2 experience 0.1 Tbps and 0.2 Tbps
of demand loss, respectively. Hence, the total loss for this QoS
class adds up to 0.3 Tbps. In scenario 3, shown in Figure 2(c),
only flow 1 loses 0.1 Tbps traffic, so the total loss is 0.1 Tbps.
The demand loss for this QoS class is thus 0.3 Tbps — the
highest loss across all scenarios. To obtain the availability for
this QoS class, we first compute the availability of each flow.
The demand of flow 1 is fully satisfied in only the no-failure
case (scenario 1). As a result, its availability is computed as
the probability (fraction of time) that the network is healthy:
1− 10 hours

1 year + 10 hours −
20 hours

3 years + 20 hours = 99.81%. The demand
of flow 2 is fully satisfied in scenarios 1 and 3, hence its
availability is 1− 20 hours

3 years + 20 hours = 99.92%. The availabil-
ity of this QoS class is the lowest availability across both
flows, which is 99.81%. To simplify the calculation of latency
stretch in this example, we assume the latency of each link to
be 1. Because the shortest tunnel latencies for both flows are 1,
their bandwidth-weighted latency stretches in the healthy state
(scenario 1) are both 1.5, as shown in Figure 2(a). In scenario
2 (Figure 2(b)) the latency stretch values for flows 1 and 2 are
0.2×1+0.1×3

0.2+0.1 = 1.67 and 0.1×2+0.3×2
0.1+0.3 = 2, respectively. Simi-

larly, in scenario 3 (Figure 2(c)) the latency stretch values for
flow 1 and 2 are 0.2×2+0.1×3

0.2+0.1 = 2.333 and 0.3×1+0.3×2
0.3+0.3 = 1.5,

respectively. We then associate each failure scenario’s proba-
bility to the corresponding latency stretch value to construct
the latency stretch distributions.

3.3 Failure Modeling

High-fidelity failure modeling is important for network plan-
ning to meet SLOs. Hence, modeling failure scenarios is an
essential component in calculating the risk metrics that we
defined in the previous section. The goal of failure modeling
is to estimate the likelihood of a failure scenario as well as
the duration of the failure event. In this section, we explain
Facebook’s production failure model.

3.3.1 Characterizing Failure Events

We use two main variables to characterize failure events in
our backbone:

(i) Time Between Failures (TBF) represents the duration
between the recovery and the occurrence of two consecu-
tive failures. This metric captures how reliable a network
component (such as switch, linecard, or a fiber path) is. For
most components in our backbone network, TBF tends to be
thousands or even tens of thousands of hours.

(ii) Time To Repair (TTR) measures how long each fail-
ure event lasts. This metric depends on the efficiency of the
network operation. Some failures (e.g., subsea fiber cuts) are
more difficult to repair than others (e.g., switch failures).

Our experience indicates that fiber-related failures in our



backbone are the most devastating failure scenarios in terms
of capacity loss and time to repair. As a result, our primary
focus to model failures is on fiber-related issues.

Each fiber i under each failure scenario j is represented with
a tuple (T BFi, j,T T Ri, j). We use historical data analysis to es-
timate the values in each tuple. However, modeling every fiber
in the backbone individually adds excessive complexity and
will overwhelm the system. We need an intelligent clustering
method to model fibers with similar features together. More-
over, we cannot completely rely on empirical observations.
For instance, newly deployed fibers do not have historical fail-
ure data. As a result, we model T BFi, j and T T Ri, j based on
known features such as the length of the fiber and its supplier.
The next section describes how we address these challenges.

3.3.2 Capturing Common Features and Data Sources

A naive approach to model failures is to use past failure events
to compute TBF and TTR from historical data. However, there
are practical challenges with this approach. First, rare fail-
ure events may not have enough historical data to faithfully
compute their TBF and TTR. Second, data can be noisy. In
particular, repair times are often recorded manually in our tick-
eting system, which may not be completely accurate. Third,
data sources may belong to different administrative domains.
For instance, leased fibers are operated by third-party ven-
dors and we may not have access to the complete failure data.
To address these challenges, we use a combination of com-
mon features and several data sources to model the failure
characteristics of each fiber as accurately as possible.

Common Features. Each fiber is different, but there are com-
mon features that we can use to characterize a fiber without
having its exact TBF and TTR. Below are the failure features
we use in our system.

• Fiber length: Longer paths are more likely to experience
fiber cuts due to greater surface area.

• Vendor: Fibers from certain vendors are more reliable than
others, depending on their physical characteristics, opera-
tion quality, and contractual obligations to us.

• Operational ownership: Some fibers are purchased from
the builder directly, while others may be leased or bought
from indirect parties. We expect that without direct access
to the fibers, subcontracted fibers have longer repair times.

• Install type: Subsea fibers are known to have longer repair
time due to the difficulty in accessing the fiber or limited
supply of maintenance ships. Similarly, aerial fibers are ex-
pected to have higher failure rates compared to buried fibers
because the fiber is exposed to disasters and accidents.

• Geographical region: Failure rates can be higher in certain
areas with frequent natural disasters, e.g., hurricanes. Re-
pair times vary based on the weather condition, and can
grow because of catastrophic events.
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Figure 3: Distribution of time to repair for subsea fibers.

• Urban density: Fibers are more likely to be impacted in
urban settings due to more frequent human activities, and
hence accidental fiber cuts.

• Shared Risk Link Group (SRLG): Some fibers may fail
together due to shared conduit or geographical proximity.
An SRLG is considered as a single entity, hence, in our
risk simulation system, we consider each SRLG as a single
failure scenario.

Data sources. The impact of each feature can be analyzed us-
ing real-world data. We use three data sources for this purpose.
(i) Operational tickets: Our Network Operation Center (NOC)
maintains hundreds of incidents ticketed to our vendors. Each
ticket contains confirmed failure information such as failed
links, downtime, and failure root causes. We use this service
as a historical benchmark for availability. However, the data
is manually maintained, hence, the accuracy and coverage
are both limited. (ii) Continuous measurements: We moni-
tor counters from both IP-layer switches and optical-layer
transponders and ROADMs. IP counters are collected every
minute via the standard monitoring protocol SNMP. Optical
counters are collected every three minutes using our optical-
layer monitoring protocol TL1. To identify failures, we look
for the Loss of Signal (LOS) on the Optical Service Channel
(OSC) accompanied by the loss of IP links. (iii) Fiber lifetime:
The above data sources both report discrete failure incidents,
yet some fibers may not have failure events in recent years.
Thus, we use the fiber lifetime dataset from our fiber inventory
to compute the uptime of each fiber.

3.3.3 Failure Modeling Framework

We develop a failure modeling framework to best utilize the
above data for estimating the failure model parameters. In
particular, we take a two-step process.

1. Clustering. We start with a list of fibers and
their failure characteristics from the data sources de-
scribed in the previous section. Each record contains <
f1, f2, . . . , fk,T BFt ,T T Rt ,T BFd ,T T Rd >, where fk is the kth

element in the feature set, T BFt and T T Rt are the TBF and
TTR values from the tickets, and T BFd and T T Rd are those
from the continuous measurements. We then use a Bayesian
clustering algorithm to identify groups of fibers that share



MTTR MTBF
Subsea fibers vs. non-subsea fibers 90× 36×
Leased fibers vs. non-leased fibers 1× 0.4×
Fibers in the most different region
vs. fibers in other regions

2× 5×

Table 2: MTTR and MTBF of different fiber categories.

similar failure characteristics. The output of this step is a set
of clusters (C1, . . . ,Cg), where each Ci contains a set of fibers.

2. Bayesian Hierarchical Model. Next, for each cluster, we
use an exponential hierarchical model to fit the distribution of
TBF and TTR separately. We find the mean TBF (MTBF) and
mean TTR (MTTR) from both fitted curves and use them in
RSS (§3.4). The accuracy of this model is evaluated in §4.1.

Operational observations. In the following, we summarize
some of our empirical measurement results that have provided
inspirations for our failure modeling.

Subsea TTR follows arbitrary distribution. Figure 3 shows
the TTR distributions of three subsea fibers from our empiri-
cal failure data source. Each subsea fiber has a unique TTR
distribution, due to its physical properties such as the length
and placement under the ocean that determines the accessi-
bility for repair endeavors. This observation deviates from a
common technique to use a simple exponential distribution
for TTR in two major ways. First, unlike exponential distribu-
tion, there is a lower bound for the TTR. This lower bound
corresponds to the physical time constrains such as the time to
secure permits to enter the water and the sailing time. Second,
the distribution is multi-modal since each subsea fiber has
distinct parts with different failure profiles depending on the
depth under water.

Impact categories. We categorize three key factors that have
significant impacts on the failure model: whether a fiber is
subsea, leased, or belongs to a particular region. Table 2 shows
the relative impact of different fiber categories on MTTR and
MTBF. If a fiber is subsea, its MTTR is 90× longer than that
of non-subsea fibers, and its MTBF is 36× longer. This is
because subsea fibers are less frequently cut, but once they are
cut, they will take much longer to be repaired. Leased fibers
have similar MTTR as non-leased (Facebook-owned) fibers,
but are 2.5× more likely to fail in terms of MTBF. For the
region factor, we select the region with the largest difference
from the rest ones, and we observe a 5× difference in MTBF
and 2× difference in MTTR. These results show the drastic
differences between fiber types and indicate the importance
of clustering fibers into appropriate failure groups.

3.4 Risk Simulation System (RSS)
3.4.1 System Design

RSS performs periodic simulations (e.g., every 30 minutes)
to report the risk metrics defined in Section 3.2. Figure 4
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Figure 4: Risk Simulation System architecture.

depicts our risk simulation pipeline. For each simulation run,
the Backbone Snapshotter polls the backbone routers for the
latest IP topology and traffic demand. The Failure Generator
generates hypothetical failure scenarios to be simulated. The
Risk Simulator takes in such information to simulate routing
on the residual topology under different failures. To simplify
system implementation, we reuse the binary of our central-
ized Backbone Controller which computes the TE solution
using a global optimization formulation. Since routing sim-
ulations for different failure scenarios are independent, we
shard them onto a number of Risk Workers for parallelization.
The risk metrics are calculated from the worker instances and
displayed on a real-time risk dashboard. Risk values higher
than pre-defined thresholds will raise production alarms.

Calculation of the risk metrics requires failure probabili-
ties, which can be derived from MTBFs and MTTRs — the
mean values of the failures’ TBF and TTR distributions in
Section 3.3. For most failures, the TBF and TTR follow ex-
ponential distributions. However, the TTR for subsea fibers
is arbitrary and hard to model. As a result, we estimate their
metrics from our empirical failure observation in production.

Suppose a failure scenario includes n failed fibers
{ f1, f2, ..., fn}. For a particular fiber fi, the probability of be-
ing available is A( fi) =

MT BFi
MT BFi+MT T Ri

, and the probability
of being under failure is P( fi) = 1−A( fi). Therefore, the
probability of the entire failure scenario is P( f1, f2, ..., fn) =
Πn

i=1P( fi), and the available probability is A( f1, f2, ..., fn) =
1−Πn

i=1P( fi). Given the failure probability of each failure
scenario, the risk metrics can be calculated using Algorithm 1.

RSS supports three modes of operation. Mode 1 is for
fine-grained simulation of customized failures that are ex-
pected to happen in the near future. For example, it is part
of our decommission workflow where capacity is removed,
or migrated from one fiber to another, according to the back-
bone expansion plan. Before decommission tasks are carried
out, RSS is used to generate failure scenarios that reflect the
decommission plan. The risks associated with these scenar-
ios are then taken into account to ensure there is sufficient
protection capacity in the network. Mode 1 also serves for
risk monitoring and mitigation under natural disasters. For in-
stance, in response to a hurricane forecast, we simulate failure
scenarios relating to the hit regions and shift traffic as neces-



sary. Similarly, as COVID-19 goes on, we plan to simulate
failure scenarios for specific geological locations based on
the severity of the pandemic.

Mode 2 is fine-grained simulation of pre-defined failure sce-
narios for different QoS classes given their protection policies.
In production, the protection policies include four categories
of critical fiber failures: (1) single fiber failures, (2) SPOFs
where multiple SRLGs use fibers in the same conduit or have
the same geographical proximity, (3) dual subsea failures
where two subsea fiber paths fail simultaneously, and (4) dual
DC failures where two fiber paths from the same DC fail si-
multaneously. These four categories include over 6000 failure
scenarios in the Facebook backbone. As described in Sec-
tion 3.1, different QoS classes protect against different failure
categories. QoS classes 1 and 2 carry our critical services and
have full protection against all the above failure categories.
QoS class 3 (default class for our internal traffic) relaxes on
dual DC failures, because they account for over 50% of the
failure scenarios but are less likely than single fiber failures
and SPOFs and have less severe consequences compared to
dual subsea failures. QoS class 4 (background bulk data trans-
fers) is best-effort service without failure protection. We use
Mode 2 in RSS to validate the QoS performance and guide
network maintenance.

Mode 3 is coarse-grained simulation of a large number of
potential failures in the backbone, where the exact number
is determined by a cutoff threshold. The cutoff threshold can
be defined in different forms, such as by failure probability,
the number of concurrent failures, MTTR, or the protection
cost (in terms of the protection capacity, construction cost,
and maintenance work), under the intuition that we value
failures that are more likely to happen, take a longer time to
repair, or are affordable to protect against. We typically have
a quick scan of the network health considering millions of fail-
ure scenarios. This simulation mode must be coarse-grained
given the large number of failure scenarios. We bypass the
computation-heavy global TE optimization with efficient rout-
ing approximations, which will be discussed in Section 3.4.2.
This mode of operation offers a tradeoff between simulation
accuracy and runtime, and the choice depends on the number
of failure scenarios and how close to production the simula-
tion needs to be (e.g., replaying production situations in Mode
1 and 2 vs. a big picture of the network in Mode 3).

3.4.2 System Optimizations

RSS is implemented using around 18,000 lines of C++ code.
This system is highly optimized for fast execution time. Today,
it can finish a fine-grained simulation of one failure scenario
in an average of 250 seconds and a coarse-grained simulation
of a failure scenario in 0.1 second. Important performance
improvements attribute to the following optimizations.

Parallelization. Our risk simulation is highly parallelizable
by nature. Our first implementation was based on a two-layer

master-slave architecture where the failure scenarios were dis-
tributed across the slave nodes and the simulation results were
aggregated to the master. The master node was overwhelmed
with the aggregation load when we scaled to 50 slaves, hence
we added another layer in the middle to aggregate the inter-
mediate results generated by slaves and then transmit them to
the master. Today, we use tens of aggregators and hundreds
of slave nodes to optimize the execution time of RSS.

Routing simplification. Our fine-grained simulation emu-
lates the production backbone by executing the TE algorithm
when a failure happens. This process is computationally ex-
pensive, especially when we simulate a large number of failure
scenarios. Thus, for coarse-grained simulations, we simplify
the TE implementation with shortest-path routing of small
units of sub-flows. Specifically, we split each traffic flow in
the backbone demand matrix, usually hundreds of Gbps or
several Tbps big, into minimal sub-flows around 1 Gbps and
pack them one by one onto the shortest path until there is
no remaining capacity in the network. The result is close to
production TE when the sub-flows are sufficiently small.

Merge duplicate failures. Different fiber failures can result
in the same failure scenarios on the IP layer, which can be
effectively merged during risk simulation. For example, fail-
ures of different SRLGs may cause different fiber spans to
be down, but they create the same failure scenario for the IP
links over the fiber paths traversing any of these fiber spans.
Because the risk is ultimately simulated on the IP-layer net-
work, RSS translates the fiber failures into IP-layer failures
and merges duplicate failure scenarios. The failure proba-
bility of a merged failure scenario equals to the sum of the
probabilities of each individual failure event.

Identify dominating failures. We further reduce the sim-
ulation time by only simulating failures with severe conse-
quences. We define dominating failures as the ones that con-
tain subsets of other failures. For example, the failure scenario
with fiber cuts { f1, f2} is a dominating failure of single fiber
failures f1 and f2 alone. Note that this simplification only
applies to the calculation of demand loss, which does not
rely on the probabilities of failure scenarios (the other two
risk metrics, latency stretch and availability, need to factor in
failure probability). This is because the failure probability of
a dominating failure is much smaller than the probabilities of
its subset failures. In production, we usually use this approach
for the Mode 1 simulation, where the demand loss of expected
failure events is a critical signal for network maintenance.

4 Evaluation

In our daily operation, we keep monitoring the health of the
backbone network with the risk metrics (Section 3.2) pro-
duced by RSS (Section 3.4). Here we report the risk mea-
surement results from November 2019 to September 2020



0.999996
0.999997
0.999998
0.999999

1

11/2019 01/2020 03/2020 05/2020 07/2020 09/2020

Av
ai

la
bi

lit
y

0.99985

0.9999

0.99995

1

11/2019 01/2020 03/2020 05/2020 07/2020 09/2020

Av
ai

la
bi

lit
y

0.99997

0.99998

0.99999

1

11/2019 01/2020 03/2020 05/2020 07/2020 09/2020

Av
ai

la
bi

lit
y

0.996

0.998

1

11/2019 01/2020 03/2020 05/2020 07/2020 09/2020

Av
ai

la
bi

lit
y

(a) QoS class 1

(d) QoS class 4

(b) QoS class 2

(c) QoS class 3

Figure 5: Availability over time for each QoS class.
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Figure 6: CDF of per-flow latency stretch for each QoS class.

and share our operational experience to survive the extreme
conditions under COVID-19.

4.1 Observations with RSS
An important input into RSS is production traffic. During
COVID-19, we observed an increase in network risk triggered
by significant traffic surges (Figure 1). However, most risk
metrics remained at a reasonable level, indicating that our
backbone was robust under the COVID-19 stress test.

High availability. As shown in Figure 5, different QoS
classes all achieved high availability over time, constantly
reaching the SLO goals. The traffic increase during social
distancing mostly related to the user traffic in QoS class 2,
causing its availability to drop sharply from around 0.99998 to
0.9999. QoS class 1 also experienced a minor availability re-
duction, as the traffic for highly critical user services increased
as well. The change was smoother compared to QoS class
2, because QoS class 1 also contains system control traffic
irrelevant to user behaviors. QoS classes 3 and 4 that mostly
comprise machine-to-machine computational traffic showed
no obvious decrease in availability. These results suggest that
availability is highly sensitive to traffic volume. On the pos-
itive side, our backbone infrastructure is over-provisioned,
making it robust against the unprecedented traffic surge.

Low latency stretch. From Figure 6, we see a minimal
change of latency stretch during the shelter-in-place period
(P1). Recall from Section 3.1 that QoS classes 1 and 2 use
CSPF routing. As shown in the figure, over 97% of the flows

in QoS classes 1 and 2 had a latency stretch of 1 throughout
the entire measurement period (P0 +P1 +P2), meaning they
went through the shortest paths. The latency stretch of QoS
class 2 was slightly higher than that of class 1, because the
bandwidth for QoS class 2 is allocated after class-1 flows
are fully accommodated. Similar to the availability results,
latency stretch degraded the most in QoS class 2 during the
shelter-in-place period (P1) due to the traffic increase. Yet,
the stretch still remained low regardless of the COVID-19
increase: it stops at 1.7 for most flows in QoS class 2, and at
1.4 for QoS class 1, though with a long tail not shown in the
figures. QoS classes 3 and 4 use a combination of KSP and
MCF routing, so they generally take longer paths. The mean
latency stretch for QoS class 3 was 1.71, and 2.53 for QoS
class 4. COVID-19 caused little increase of latency stretch for
these two traffic classes, which is consistent with the trend of
traffic growth and availability change.

Accurate failure modeling. We evaluate the accuracy of
our failure model (§3.3) by comparing the TTRs and TBFs of
observed fiber failures in North America against our model’s
predictions. As shown in Figure 7, our failure model is close
to the actual observed values. To quantify the difference be-
tween prediction and observation, we perform a Kolmogorov-
Smirnov (KS) test [1] on the null hypothesis that the measure-
ments and the model-generated samples are drawn from the
same distribution. We report the KS statistic and p-value in Ta-
ble 3. Both p-values are large, meaning the two distributions
match. Lastly, we directly compute the prediction accuracy,
as the difference between each observed and predicted value,
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KS stats p−value accuracy
TTR 0.05 0.25 94%
TBF 0.03 0.47 98%

Table 3: Kolmogorov-Smirnov (KS) test
statistics and accuracy of TTR and TBF
models.
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Figure 8: Normalized demand loss per QoS class.
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Figure 9: QoS class 2 down-
played into class 3&4.

divided by the observed value. Our model achieves 94% ac-
curacy for TTR and 98% accuracy for TBF prediction.

4.2 Risk Mitigation
Demand loss as a guide. Demand loss is a rigid risk metric,
which captures the highest traffic loss across all simulated
failure scenarios. It guides our operations for mitigating po-
tential risk. Figure 8 shows the demand loss for each QoS
class over time. For confidentiality reasons, we normalize
the numbers in each QoS class against the highest loss value.
We group different types of failures that we track into two
categories: single fiber failures and dual fiber failures. These
categories capture the major failures we protect against in
production. The figure shows that the demand loss increased
during the P1 phase for QoS classes 1 and 2. In particular,
the mean value of risk during the shelter-in-place phase (P1)
increased by 80% compared to the pre-COVID period (P0)
in QoS class 1, and by 3.6× in QoS class 2. QoS classes 3
and 4 did not have a significant change in their demand loss
values during the pandemic, and the loss increase in March
2020 was due to traffic migration between regions because
of an internal policy change. Note that dual failures, though
less common in practice, induce 2.14× higher loss on the
fabric than single failures, on average. This worst-case analy-
sis makes us operate the network conservatively, which was
especially beneficial during the pandemic period.

QoS downplay. Another key technique to save capacity
for the most critical traffic is to adjust the QoS assignment.
By default, all traffic from a service is assigned the same
QoS class. However, a service usually contains traffic from
both user requests and system metadata, whose importance
should be differentiated. This coarse-grained performance
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Figure 10: Backbone capacity measured per week.

isolation causes over-protection of unimportant traffic, and
the resulting capacity waste should be recycled for traffic
increase. We have developed an internal system that leverages
inference mechanisms to identify the true traffic priorities and
correct their QoS labeling. For example, we find that on-off
and periodic traffic patterns are common signals for machine-
created traffic, which can be downgraded to a lower class.
Figure 9 zooms into QoS classes 3 and 4 in Figure 8(c) and
shows the demand loss of the downplayed traffic. The loss
only appeares during the shelter-in-place phase (P1) as the
result of traffic shift to alleviate the stress from QoS class 2.

Proactive capacity enhancement. We deploy optical
wavelengths periodically to augment the capacity of our back-
bone. Figure 10 shows the weekly measurement of backbone
capacity over a year, normalized by the capacity value be-
fore P0. We observe an aggressive capacity increase starting
from the P1 phase compared to the pre-COVID times (P0).
This capacity increase is also visible in Figure 8, leading to a
significant drop in demand loss in April and May 2020. We
observe a continued capacity increase during the re-opening
phase (P2). Although social distancing during the COVID-19
pandemic paused most of our site work for deploying new
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Figure 11: Impact of COVID-19 on hourly active failure tickets.

Failure Mean # of tickets p−value for
category P0 P1 P2 P0 and P1
IP 80.56 80.28 121.4 0.44
Optical 7.67 3.72 14.0 � 0.001

Table 4: Statistical comparison on the
number of active tickets during our
measurement phases.

fibers, we had sufficient dark and under-provisioned fibers
from previous planning cycles. Our “plan ahead” strategy
gave us enough headroom for emergency capacity enhance-
ment, and our fully-automated optical management system
allowed us to provision wavelengths remotely.

5 Insights on RSS Improvement
Besides a stress test of our network infrastructure, COVID-19
and the resulting social distancing also created unusual sit-
uations beyond normal assumptions of network operations.
These edge cases have given the networking community a
unique opportunity to rethink fundamental design assump-
tions of networks. In this section, we share our recent progress
on failure modeling and traffic forecasting to shed light on
future evolution of risk simulations.

5.1 Responsive Failure Modeling
Our failure modeling (Section 3.3) uses years of failure mea-
surement data to ensure model accuracy and stability, and it
is accurate in the long run (Figure 7). However, prior studies
claimed network failures are often caused by human activi-
ties and network operations [19, 20, 29, 30, 38]. Indeed, we
confirm that the lack of human activities during the shelter-in-
place phase (P1) as well as the increase of network upgrade
and capacity augmentation activities during the re-opening
phase (P2) changed the failure characteristics. In response to
the change, we recalibrated our failure model to increase the
weight of failure statistics during the P0, P1 and P2 periods.

The recalibration relies on Facebook’s centralized failure
ticketing system, which automatically detects network fail-
ures and infers possible root causes. For this purpose, we
categorize failure tickets into two groups: (i) optical-layer
failures (e.g. fiber/amplifier/transponder issues) and (ii) IP-
layer failures (e.g. router/interface down). For each group, we
record the number of active failure tickets every hour and plot
the probability density function of each phase in Figure 11.
Our observations are as follows.

Optical-layer failures. Figure 11(a) compares the proba-
bility density function of hourly active optical-layer failure
ticket numbers among the pre-COVID (P0), shelter-in-place
(P1) and re-opening (P2) phases. The dashed lines in the fig-

ure represent the moving average of each phase. We observe
reduced optical-layer failures during P1 compared to P0. We
attribute this finding to the significant reduction in human
activities at our backbone facilities during global social dis-
tancing. For instance, limited construction work can lead to
fewer fiber cuts, and fewer human contractors on-site may
result in fewer accidental link flaps, as suggested in prior
work [19]. We observe more active optical failure tickets in
the re-opening phase (P2), as our network operation team was
actively augmenting the capacity of our backbone.
IP-layer failures. Figure 11(b) shows the probability density
function of hourly active IP-layer ticket numbers during the
P0, P1 and P2 phases. In contrast to optical-layer failures, we
find no significant changes in IP-layer failures between P0 and
P1, and the two distributions largely overlap with each other.
This is likely because IP-layer tickets, such as router/interface
hardware failures, are mostly mechanical issues and do not
correlate with human activity. However, similar to the optical-
layer failures, in the re-opening (P2) phase, the IP layer also
experienced more active failure tickets due to our aggressive
capacity provisioning operations. Moreover, since the pan-
demic continued to enforce limitations on our failure repair
staff, the P2 phase suffered from longer repair times.
Confirmation with statistical hypothesis test. The results
in Figure 11 suggest that optical and IP-layer failure distri-
butions behave differently during the P1 phase. To confirm
this observation, we apply a statistical hypothesis test on the
time-series distribution of active number of tickets between
the P0 and P1 timelines and set the null hypothesis to be: the
means of the distributions are the same. We apply Welch’s
t-test on the optical and IP-layer categories separately to val-
idate the null hypothesis. Table 4 reports the mean number
of active tickets and the corresponding p−values for each
category. Considering a p−value threshold of 0.01, the null
hypothesis cannot be rejected for IP-layer tickets, suggesting
the pandemic did not have a significant impact on the IP-layer
failures during P0 and P1. In contrast, the null hypothesis is
rejected for optical tickets suggesting that the average number
of active optical tickets changed in a statistically significant
manner. Note that we do not run hypothesis tests over P2
because its mean values in both the IP and optical layers
differ a lot from those of P0 and P1, which already indicates
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Figure 12: Traffic volume and mobility patterns in six US cities during the COVID-19 pandemic.

differences in the probability distributions.

Insights. These findings call for responsive failure modeling.
When special events cause failure characteristics to change,
the failure prediction model should be adjusted to rely more
on recent failure measurement points. However, the model
stability might be at stake with short-term data collection, and
the challenge lies in balancing stability and agility to have
an accurate model. The COVID-19 crisis required us to re-
spond quickly, and the fast development of the pandemic gave
us little time for drastic redesigns of the failure model. The
various failure generation modes in RSS make it adaptive to
different failure models. For instance, our customized failures
in Mode 1 are designed for failure scenarios of particular in-
terests that may deviate from the failure model. We leveraged
this feature to feed RSS with short-term failure statistics for
close monitoring of the network health during COVID-19.
The failure model is hard to change in Modes 2 and 3, hence,
we applied a scaling factor to the failure distributions to gen-
erate more failures. These false positives helped us operate
the network more cautiously during the pandemic. Moving
forward, we are working on more responsive failure modeling
with a sliding window that automatically assigns weights to
different measurement periods.

5.2 Traffic Prediction with External Signals

The risk observations we report throughout this paper use
current production traffic as input, yet RSS can also take
in projected traffic to forecast future risk. At Facebook, we
perform demand forecasting every quarter to predict the traffic
volume in the next 6 months to one year. Our prediction used

to be accurate, but the traffic grew beyond the predicted upper
bound since the pandemic started. At the peak, we saw a 26%
difference between actual and predicted upper-bound traffic.

In our operational experience, we have seen rich examples
of how external non-networking signals can be leveraged to
aid network management. For instance, it is common prac-
tice to strengthen the guard on PoP or DC regions that have
received hurricane warnings, and we keep a close watch on
traffic blackholing in areas with frequent armed conflicts. In
this section we demonstrate that human mobility metrics can
also be used to better predict the traffic volume.

To demonstrate this finding, we use population mobility
data from the SafeGraph [5,41] database built from 20 million
mobile devices. As an approximation of mobility, we sum the
total number of trips that take place in a geographical region
based on aggregated cellphone GPS data, and normalize it
by the population of the trip origin. We consider six major
US cities and plot the variations of traffic and mobility over
time in Figure 12. Interesting findings imply opportunities and
challenges in our proposal of mobility-aided traffic prediction.

Negative correlation between traffic and mobility. Fig-
ure 12 shows the traffic volume and mobility rate normalized
to their corresponding averages during the P0 phase. While
there is a fair amount of overlap between traffic and mobility
in P0 across the cities, we observe a strong negative correla-
tion between traffic and mobility since the start of P1. We see
the general trend that when mobility drops, traffic increases;
and as mobility increases slowly, traffic falls as well. The spo-
radic spikes of mobility and traffic also match well, forming
zigzags in opposite directions. The gap between the traffic
and mobility curves closes down in the P2 phase when the



cities started to re-open and social distancing reduced.
Variations across cities. Each city shows some uniqueness
despite the same trend. Chicago, Dallas, Los Angeles, and
Miami have similar patterns that network traffic gradually
decreased while mobility continued to increase after the pan-
demic peak in mid-Mach 2020. In Chicago, traffic increased
by 99% and mobility rate decreased by 36% during the shelter-
in-place phase (P1) compared to the P0 phase baseline. Dallas,
Los Angeles, and Miami had around a 40-70% traffic increase
and a 35% mobility drop. Roughly, the drop in mobility rate
corresponds to different levels of traffic reduction across cities.
For example, in Miami and Los Angeles the traffic volume
almost returned back to normal in the P2 phase, while Chicago
still showed a 25% average traffic increase, and Dallas had
around 10% average traffic increase. On the other hand, New
York City and Seattle have contrasting patterns, with both an
uptake in traffic and a downtake in mobility appearing since
November 2020. For Seattle, we also observe ups and downs
in traffic volume, with occasional spikes up to 74%.
Insights. An intrinsic limitation of traditional network man-
agement is the complete reliance on in-network signals. It
fails to track social influences on the network infrastructure,
which has been proven to be heavily underestimated during
COVID-19. Our mobility case study shows the potential ben-
efit of embracing offline signals from the outside world. On
occurrences of social events, we can make mobility the main
signal for traffic prediction. As Figure 12 shows, traffic peaks
can be inferred from the steep drops in mobility rate. How-
ever, it is challenging to estimate the traffic volume when it
recovers, as mobility rate does not show significant changes
in that case. We may need other signals to understand user
behaviors better. Fortunately, though, risk management cares
about worst-case scenarios. Thus, an accurate prediction of
the peak traffic is already a big win for risk prevention.

6 Related Work
Risk-aware network management. There have been recent
proposals to apply risk to capacity planning [4, 6] and traffic
engineering [8, 12, 31, 46]. The definition of risk is differ-
ent across proposals, including probabilistic models of fail-
ures [6, 8], revenue shortfall [31], early signs of failures (e.g.,
hardware abnormality and performance degradation) [46],
user-specified undesirable events and their associated prob-
abilities [12], and the likelihood of losing customer traffic
during planned network changes [4]. In this paper, we de-
scribe Facebook’s definition of risk as a set of SLO-related
metrics that quantify the impacts of potential failures. We are
also the first to apply risk simulation to backbone manage-
ment and to develop a production system.
Internet under COVID-19. There are reports on the impacts
of COVID-19 on the Internet [10,13,17,24,32,33], as well as
measurement studies on the PoP traffic [7], mobile traffic [28],
Internet traffic [15], and cybercrime [47] during the pandemic.

We share similar observations on the traffic increase, but we
present a comprehensive study on the impact of COVID-19
from the perspective of risk management.
Backbone failures. Prior work on understanding backbone
failures includes statistical modeling [3, 9, 42] and real-world
measurements on both the optical layer [18, 19, 38, 43] and
the IP layer [11, 14, 23, 25, 26, 29, 30, 35]. Our failure analy-
sis confirms the observation in previous papers that a good
proportion of failures are human-related [19, 20, 29, 30, 38].
Traffic classification with QoS. QoS can provide differen-
tiated performance for different categories of traffic [16, 48].
There have been rich discussions on traffic classification meth-
ods in the prior work [36, 39, 40, 44]. In recent years, with the
development of SDN, traffic classification can be deployed
with centralized control on a private enterprise network [34].
Facebook follows these discussions and categorizes the back-
bone traffic into four classes of QoS. To maximize user sat-
isfaction while considering network risks, our traffic classi-
fication scheme can dynamically adjust traffic flows’ QoS
categories so as to prioritize critical traffic flows and guaran-
tee service level objectives.

7 Conclusion
This paper introduces RSS, a risk simulation system deployed
at Facebook. We present our risk analysis with RSS during
the COVID-19 pandemic period and beyond. Motivated by
the surge of traffic volume, we define risk metrics to quantify
the impact of COVID-19 and show our strategies to mitigate
the risk. We keep the network running at low risk levels dur-
ing this challenging time and propose that having responsive
failure modeling and using external signals such as human mo-
bility can help understand the social impacts on the network
to further improve network management. Our experience and
insights are useful for managing large-scale backbones in the
post-pandemic world, where we are likely to face an ever-
growing demand for online services. We hope that our experi-
ence can inspire and guide practitioners towards embracing
risk-driven network management and ultimately making it
a key strategy for ensuring high availability of networked
services.
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