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Abstract
We propose a fully convolutional sequence-to-sequence en-
coder architecture with a simple and efficient decoder. Our
model improves WER on LibriSpeech while being an order of
magnitude more efficient than a strong RNN baseline. Key to
our approach is a time-depth separable convolution block which
dramatically reduces the number of parameters in the model
while keeping the receptive field large. We also give a sta-
ble and efficient beam search inference procedure which allows
us to effectively integrate a language model. Coupled with a
convolutional language model, our time-depth separable convo-
lution architecture improves by more than 22% relative WER
over the best previously reported sequence-to-sequence results
on the noisy LibriSpeech test set.
Index Terms: speech recognition, sequence-to-sequence, neu-
ral networks

1. Introduction
Sequence-to-sequence models with attention have been used for
speech recognition [1] since their inception in machine transla-
tion [2, 3, 4]. These models have yielded state-of-the-art re-
sults in some settings [5], however; approaches such as CRF
style end-to-end models [6, 7] and more traditional HMM based
models [8] are often superior.

While sequence-to-sequence models sometimes generalize
well in speech recognition, they often come with a big hit to effi-
ciency. The encoder typically consists of several layers of large
bidirectional LSTMs [9, 10]. The decoder also uses a num-
ber of inefficient and sequential techniques. Efficiency is useful
for fast training and evaluation times and is critical to the mas-
sive scale used in the semi-supervised and weakly supervised
regimes [11, 12].

In this work we develop a highly efficient sequence-to-
sequence model which gives state-of-the-art results for non
speaker adapted models on both LibriSpeech test sets [13]. Key
to our approach is a fully convolutional encoder with a time-
depth separable (TDS) block structure. Our TDS convolution
improves in WER over an RNN baseline and due to the paral-
lel nature of the computation is much more efficient. We also
discard slow and sequential techniques previously thought to be
important to the accuracy of these models. These include neural
content attention, location based attention, and scheduled sam-
pling. In turn, we give more efficient alternatives.

Also key to our approach is a highly efficient and stable
beam search inference procedure. Unlike previous work [14],
accuracy does not degrade with very large beam sizes. This
enables us to better leverage the constraint of a convolutional
language model which gives substantial improvements in WER
over a simple n-gram baseline.
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Figure 1: The TDS convolution model architecture. (a) The full
architecture including sub-blocks of the TDS convolution layer
which are (b) a 2D convolution over time followed by (c) a fully
connected block.

2. Model
We consider an input utterance X = [X1, . . . , XT ] and an out-
put transcription Y = [y1, . . . , yU ]. Our sequence-to-sequence
model has an encoder-decoder architecture [2, 3, 4]. The en-
coder maps X into a key-value hidden representation:[

K
V

]
= encode(X) (1)

where K = [K1, . . . ,KT ] are the keys and V = [V1 . . . , VT ]
are the values. The decoder maps the query vectors generated
from previous output tokens and the key-value pairs into sum-
mary vectors with its attention mechanism and decodes them
into a sequence of predictions. The decoder is given by

Qu = g(yu−1, Qu−1) (2)
Su = attend(Qu,K, V ) (3)

P (yu | X, y<u) = h(Su, Qu). (4)

Here g(·) is an RNN which encodes the previous token and
query vector Qu−1 to produce the next query vector. The at-
tention mechanism, attend(·), produces a summary vector Su,
and h(·) computes a distribution over the output tokens.

2.1. Encoder: Time-Depth Separable Convolutions

Our proposed time-depth separable (TDS) convolution block
(see Figure 1) partially decouples the aggregation over time
from the mixing over channels. This allows us to increase the
receptive field of the model with a negligible increase in the
number of parameters. In preliminary experiments we find that
the TDS convolution block generalizes much better than other



deep convolutional architectures [6, 15] and needs fewer pa-
rameters. Another benefit of our block structure is it can be
implemented efficiently using a standard 2D convolution.

The block starts with a layer of 2D convolution which oper-
ates over an input of shape T ×w×c and produces an output of
the same shape, where T is the number of time-steps, w is the
input width and c is the number of input (and output) channels.
Each layer has c kernels of size k×1×cwhich are applied over
all c channels of the T × w input. The total number of param-
eters in this layer is kc2 which can be made small by keeping c
small. We follow the convolution with a ReLU non-linearity.

We then view the output of the convolution as T × 1× wc
and apply a fully-connected layer over the wc dimension. The
fully-connected layer is a sequence of two 1 × 1 convolutions
(i.e. linear layers) with a ReLU in between. We add residual
connections [10, 16] and layer normalization [17] after the con-
volution and the fully connected layer. The layer normalization
is over all dimensions for a given example including time.

The TDS architecture consists of M groups of N TDS
blocks (Figure 1). Prior to each group there is a sub-sampling
layer with a stride of 2. We also increase the the number of
output channels at each sub-sampling layer since we compress
the information in time. For simplicity these layers do not have
residual connections and are only followed by a ReLU and layer
normalization.

2.2. Efficient Decoder

The decoder is sequential in nature since to compute the next
output requires the previous prediction. However, at training
time we use teacher forcing–the previous ground truth is used in
place of the previous prediction. This allows us to compute all
output frames simultaneously. As a result, we implement Eq. 2
by unrolling the computation and making a single call to an ef-
ficient CuDNN [18] implementation, which is much faster than
calling U separate kernels. We do not use input feeding [19] as
we find that we can achieve good WERs without it.

We use an inner-product key-value attention which can be
implemented much more efficiently than a neural attention. Pre-
liminary experiments show that we can discard the sequential
dependency introduced in location-based attention [1] without
hurting performance. During training, after computing all the
query vectors Q, we can compute all the summary vectors S in
Eq. 3 in parallel as

S = V · softmax
(

1√
d
K>Q

)
. (5)

We scale the inner products by the inverse square root of their
hidden dimension d. This improves convergence and helps the
model learn an alignment. However, we do not see a consistent
improvement in generalization [20].

2.2.1. Random Sampling

Scheduled sampling [21] limits exposure bias and is commonly
used to bring the training conditions closer to the testing con-
ditions. However, it introduces a sequential dependency in the
decoder, since it sometimes uses the previous prediction at the
next time-step.

Instead, we propose random sampling, where the previous
prediction is replaced with a randomly sampled token [22]. First
we decide with probability Prs to sample a given input token. If
we sample, then we choose a new token from a uniform distri-
bution. This allows us to vectorize the implementation as fol-
lows:

1. Sample U random numbers cj uniformly from [0, 1].

2. Set R = [r1, . . . , rU ] where rj = I(cj > Prs) and Prs is
the sampling probability.

3. Sample a vector Z of U tokens. We use a uniform dis-
tribution over the output tokens not including end-of-
sentence (EOS).

4. Construct Ŷ = R ◦ Z + (1−R) ◦ Y .

With all the optimizations described above, the decoder ac-
counts for less than 10% of the total iteration time.

2.3. Soft Window Pre-training

We propose a simple soft attention window pre-training scheme
to enable the training of very deep convolutional encoders.
Compared to prior work [23], our approach is simple to im-
plement, results in negligible additional computational expense,
and needs little tuning.

We encourage the model to align the output at uniform in-
tervals along the input by penalizing attention values which are
too far from the desired locations. LetW be a T×U matrix with
entries Wij = (i− T

U
j)2. The matrix W encodes the (squared)

distance between the i-th input and the j-th output assuming the
outputs are spaced at uniform intervals along the input – hence
the scaling factor T/U . We apply W to the attention as follows

S = V · softmax
(

1√
d
K>Q− 1

2σ2
W

)
. (6)

The term σ is a hyper-parameter which dampens the effect of
W . The application of W is equivalent to multiplying the ex-
ponential terms in the softmax by a Gaussian shaped mask. In
that respect, σ is simply the standard deviation of the Gaussian.

We use the window pre-training for the first few epochs and
then switch it off. This is sufficient to enable the model to learn
an alignment and converge. In general σ does not need to be
tuned when model hyper-parameters change unless the amount
of sub-sampling in the encoder changes.

2.4. Regularization

We use three additional forms of regularization to control over-
fitting and improve the generalization of the model.

1. Dropout: We apply dropout [24] after the non-linearity
and prior to layer normalization in each block of the en-
coder. We do not use any dropout in the decoder.

2. Label Smoothing: We use label smoothing [25] to re-
duce over-confidence in predictions. As in machine
translation [20], we find that label smoothing hurts the
loss on the dev set but improves WER.

3. Word Piece Sampling: We use word pieces [26] as
outputs following the Unigram Language Model ap-
proach [27]. During training, for each word we take the
most likely word piece representation with probability
1 − Pwp, or we uniformly sample over the top-ten most
likely alternatives with probability Pwp.

3. Beam Search Decoding
We use an open-vocabulary beam search decoder which opti-
mizes the following objective

logPs2s(Y | X) + α logPLM(Y ) + β|Y |. (7)

The term |Y | counts the number of tokens in Y , α is the LM
weight, and β is the token insertion term.



3.1. Stabilizing Beam Search

Sequence-to-sequence beam search decoders are known to be
unstable sometimes exhibiting worse performance with an in-
creasing beam size [14]. We use two techniques to stabilize the
beam search. This allows our model to extract more value from
the integration of an LM, since we can use a large beam size to
effectively search over the space of possible hypotheses.

1. Hard Attention Limit: We do not allow the beam
search to propose any hypotheses which attend more
than tmax frames away from the previous attention peak.

2. End-of-sentence (EOS) Threshold: In order to bias the
search away from short transcriptions, we only consider
EOS proposals when the score is greater than a specified
factor of the best candidate score

logPu(EOS | y<u) > γ · max
c 6=EOS

logPu(c | y<u). (8)

In practice we find that tmax and γ only need to be tuned
once for a given data set and can otherwise remain unchanged.

3.2. Efficiency

We use two heuristics to improve the beam search efficiency.

1. Beam Threshold: We prune hypotheses in the beam
with scores below a fixed range from the best hypothesis
so far [6].

2. Soft Selection Threshold: When proposing new candi-
date tokens to the current set of hypotheses in the beam,
we require that the proposed token score satisfies

logPu(y | y<u) > max
c

logPu(c | y<u)− η. (9)

Finally, we batch compute the updated set of probabilities
for every candidate in the beam, so only one forward pass is
required at each step. These techniques result in a fast decoding
time even with a deep convolutional LM and a large beam.

4. Experiments
We perform experiments on the full 960-hour LibriSpeech cor-
pus [13]. Our best encoder has three groups of TDS blocks: two
10-channel, three 14-channel and six 18-channel TDS blocks,
respectively, which yields a total sub-sampling factor of 8. Ker-
nel sizes are all 21×1. A final linear layer produces the 1024-
dimensional encoder output. The decoder is a one-layer GRU
with 512 hidden units. Weights are initialized from a uniform
distribution U(−

√
4/fin,

√
4/fin), where fin is the fan-in to

each unit.
Input features are 80-dimensional mel-scale filter banks

computed every 10-ms with a 25-ms window. We use 10k word
pieces computed from the SentencePiece toolkit [28] as the out-
put token set. All models are trained on 8 V100 GPUs with
a batch size of 16 per GPU. We use synchronous SGD with
a learning rate of 0.05, decayed by a factor of 0.5 every 40
epochs. We clip the gradient norm to 15. The model is pre-
trained for three epochs with the soft window and σ = 4. We
use 20% dropout, 5% label smoothing, 1% random sampling
and 1% word piece sampling.

We train two word piece LMs on the 800M-word text-only
dataset. The first is a 4-gram trained with KenLM [29] and the
second is a convolutional LM (ConvLM) [30] using the same
model architecture and training strategy as [31]. We use a beam

Table 1: A comparison of the TDS conv model to other models
on the Librispeech Dev and Test sets.

Model Dev WER Test WER
clean other clean other

hybrid, speaker adapted
CAPIO (single) [33] + RNN 3.12 8.28 3.51 8.58
CAPIO (ensemble) [33] + RNN 2.68 7.56 3.19 7.64

CNN ASG [31] + ConvLM 3.16 10.05 3.44 11.24
RNN S2S [23] 4.87 14.37 4.87 15.39
RNN S2S [23] + 4-gram 4.79 14.31 4.82 15.30
RNN S2S [23] + LSTM 3.54 11.52 3.82 12.76

TDS conv 5.04 14.45 5.36 15.64
TDS conv + 4-gram 3.75 10.70 4.21 11.87
TDS conv + ConvLM 3.01 8.86 3.28 9.84

size of 80, set tmax = 30, γ = 1.5 and η = 10. The LM weight
and token insertion terms are cross-validated with each dev set
and LM combination. Our models and recipes are open-source
and available in the wav2letter++ framework [32].1

4.1. Results

Table 1 compares the TDS model with three other systems. The
CAPIO system is a hybrid HMM-DNN with speaker adapta-
tion [33]. The other two are end-to-end models, one using the
CRF-style ASG loss [31] and the other a sequence-to-sequence
model with an RNN encoder [23].

Our proposed model achieves a state-of-the-art for end-to-
end systems of 3.28 WER on test clean and 9.84 WER on test
other. Compared with the RNN-based encoder [23], the TDS
model improves WER by 14.1% on test clean and 22.9% on test
other with nearly a factor of 4 reduction in parameters (136M
vs. 37M). The TDS model benefits more from an external LM.
This could be due to (1) a better loss on the correct transcription
and (2) a more effective beam search.

4.2. Model Variations

Table 2 shows results from varying the number of TDS blocks,
the number of parameters, the word piece sampling probability
and the amount of random sampling. For each setting we train
three models and report the best and the average WER.

We reduce the number of parameters without changing the
receptive field by reducing the number of channels in each
group of TDS blocks from (10, 14, 18) to (10, 12, 14) or (10,
10, 10), resulting in 24.4M and 14.9M parameters, respectively.
The model is very sensitive to decreasing the number of param-
eters. We also examine the effect of varying the number of TDS
blocks in the last group. To keep the number of parameters and
the receptive field unchanged, for 9 TDS blocks we use (14, 16,
20) channels with k = 27, and for 12 TDS blocks we use (10,
16, 16) channels with k = 19. We show that a small amount of
word piece sampling is helpful. With a higher Pwp the model
sometimes converges poorly, likely due to the variability in the
targets. A small amount of random sampling is also helpful.
Finally, when we remove soft window pre-training, the model
takes much longer to converge and achieves a worse result. The
soft window clearly helps guide the attention early in training.

Figure 2 shows the effect of the receptive field on WER.

1https://github.com/facebookresearch/
wav2letter/tree/master/recipes/librispeech.

https://github.com/facebookresearch/wav2letter/tree/master/recipes/librispeech
https://github.com/facebookresearch/wav2letter/tree/master/recipes/librispeech


Table 2: The sensitivity of our model to architecture and regu-
larization hyper-parameters. The parameter N is the number
of TDS blocks, Pwp is the word piece sampling rate, and Prs is
the random sampling rate. Missing entries correspond to the
value in the first row. We report the lowest WER over three runs
along with the mean in parentheses using a beam size of 1 and
no LM.

N
params

Pwp Prs
Dev Dev

(×106) Clean Other

11 36.5 1% 1% 5.04 (5.13) 14.45 (14.77)

24.4 5.36 (5.45) 15.16 (15.24)
14.9 5.95 (5.99) 16.25 (16.44)

9 5.18 (5.27) 15.34 (15.37)
12 5.10 (5.33) 14.99 (15.26)

0% 5.25 (5.32) 14.89 (15.00)
2% 5.04 (5.46) 14.88 (15.41)

0% 5.08 (5.24) 15.00 (15.21)
5% 5.11 (5.25) 14.65 (14.80)

No soft window pre-training 5.55 (5.58) 14.99 (15.30)
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Figure 2: The WER as a function of the receptive field. We vary
the kernel size, k ∈ {5, 9, 13, 17, 21}, otherwise every model
has ∼36.5 million parameters. We report the mean WER over
three runs using a beam size of 1 and no LM.

There is a sharp increase in WER when the size of the receptive
field drops below a threshold. Qualitative analysis shows that
the high WER is often due to catastrophic errors such as loop-
ing and skipping, a common problem for sequence-to-sequence
models [14]. We hypothesize that without a large receptive
field, the encoder keys do not have enough context to disam-
biguate queries from the decoder.

Figure 3 shows how WER changes with the size of the
beam. While most of the gain from including an external LM
comes even at a small beam size, we see consistent improve-
ments up to a beam size of 80, particularly on dev other.

4.3. Efficiency

We compare our model to a strong RNN baseline in terms of
training efficiency on LibriSpeech [23]. The RNN baseline
has an encoder with six bidirectional LSTMs and a decoder
with location-based attention. Both models have a total sub-
sampling factor of 8. Our best TDS architecture can complete
one full epoch over the LibriSpeech training set in 7 minutes.
This is more than 10× faster than our implementation of the
RNN baseline and more than 4× faster than the RNN baseline
encoder but with the efficient decoder described in Section 2.2.

Our beam search runs at an average rate of 0.57 and 0.93
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Figure 3: The WER as a function of beam size for both the 4-
gram and the convLM.

seconds-per-sample on dev clean and other with the 4-gram LM
and a beam size of 80. With the ConvLM, times increase to 0.73
and 1.20 seconds-per-sample at the same beam size.

5. Related Work
Our work builds on a large body of work aimed at improving
sequence-to-sequence models with attention for both speech
recognition [5, 14, 23] and other application domains. Fully
convolutional encoders have worked well in machine transla-
tion [15]. They have also given state-of-the-art results in speech
recognition [31] with more structured loss functions like the
AutoSegCriterion [6]. However, we are not aware of any com-
petitive results with fully convolutional encoders in sequence-
to-sequence models for speech recognition.

The high-level encoder architecture is similar to the Trans-
former model [20]; however, we consider convolutions instead
of self-attention. Our architecture is inspired by and quite re-
lated to the lightweight convolution [34]. An important idea
of that work and ours is the separation of the integration over
time from the mixing over channels which improves both accu-
racy and efficiency. Other than the application to speech, some
differences in our encoder architecture are (1) the time-depth
separable convolution can be implemented with a simple 2D
convolution and (2) our models do not use any normalization
over the time dimension of the kernels.

Depth-wise separable convolutions have been used to im-
prove the efficiency and accuracy of computer vision mod-
els [35, 36]. The first layer of the TDS block can be seen as
a grouped 1D convolution with cw channels, a group size of c,
and weights tied between groups. Grouped convolutions have
also been used in computer vision to improve efficiency for e.g.
model-parallel training [37] and classification accuracy [38].

6. Conclusion
We have shown that a fully convolutional encoder and a sim-
ple decoder can give superior results to a strong RNN baseline
while being an order of magnitude more efficient. Key to the
success of the convolutional encoder is a time-depth separable
block structure which allows the model to retain a large recep-
tive field. We also show how to integrate a strong convolutional
LM with a stable and scalable beam search procedure.
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