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Abstract— Soft fluidic actuators are increasingly being used
for wearable haptic devices due to their high energy density and
low encumbrance. These actuators are typically controlled using
constant fluidic pressure control (CFPC), where the actuator
pressure is switched between a high pressure source and
atmospheric pressure using a fluidic valve. However, this type
of control has several limitations for soft actuators including
limited dynamic range, slow actuator response, low pressure
control resolution and unnatural haptic interaction. In this
paper, we present a novel control strategy for soft fluidic
actuators, called constant fluidic mass control (CFMC), where
the mass of fluid introduced into the actuator is kept constant
during actuation, rather than the pressure as in CFPC. Our
experimental results show that compared to CFPC, CFMC
results in a larger dynamic range of actuator output forces,
faster actuator response time to reach a desired target pressure,
and higher resolution of pressure control, which makes it
particularly useful for wearable haptics. In addition, CFMC
enables analog pressure control and we present a neural-
network-based supervised learning algorithm for accurate pres-
sure control of soft actuators. Results show that our algorithm
can predict actuator pressure with an accuracy of 99% and can
be generalized to different soft TPU-fabric fluidic actuators.

I. INTRODUCTION

Soft actuators are increasingly becoming popular in the
field of robotics and wearable haptics because of their bet-
ter contact compliance and lower weight and encumbrance
than their rigid counterparts. Different energy sources have
been explored in literature to power these soft actuators,
including fluidic actuation [1], electrostatic actuation [2],
electromagnetic actuation [3], and thermal actuation [4]. Due
to their high energy density and low encumbrance, soft
fluidic actuators are widely used for wearable devices [1],
[5]–[7]. Primarily constant fluidic pressure control (CFPC)
has been explored in the literature to control these soft
actuators [1], [8]–[11]. This control approach uses a simple
actuation structure (one discrete valve per actuator) and a
binary (on-off) control mechanism, which allows the actuator
pressure to track the fluidic source pressure under a dynamic
load. However, as a result, CFPC has several limitations:
(1) Limited dynamic range: Dynamic range of the force
offered by a soft actuator is limited and governed by only
its operational pressure, since the actuator pressure can
only switch between source and atmospheric pressures. (2)
Slow actuator response: Inflation and deflation response time
of a soft actuator is determined by the source pressure
and cannot be independently modulated. (3) Low pressure
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control resolution: Only binary control of actuator pressure
is achievable with this type of control. (4) Unnatural haptic
interaction: Only active or exogenous control of actuator
pressure is possible and it is not inherently tied to how the
user interacts with the actuator, which leads to unnatural
haptic interaction.

To address these limitations, we propose constant fluidic
mass control (CFMC), where a constant mass of fluid is
trapped inside the actuator. As the user interacts with the
actuator, any change in actuator pressure due to this interac-
tion further contributes to improving the haptic interaction.
Unlike previous work in the literature for soft hand control
[12], which uses pressure sensors and first-principles models
to estimate the fluidic mass, we regulate the fluidic mass by
accurately controlling the timing of the valves and trap it
inside the actuator.

Analog pressure control using CFMC requires a reliable
model of the overall fluidic system including the actua-
tor. Some researchers have developed first-principles based
theoretical models to predict actuator behavior [13]–[17].
However, these models could only approximate the actuator
behavior for a limited set of inputs and cannot reliably
capture all the nonlinearities in the fluidic system and are
therefore difficult to generalize for different soft actuators.

In this work, we present a novel control approach (CFMC)
of fluidic actuators for wearable haptics. Our approach allows
for larger dynamic range, faster response time, and analog
pressure control of soft actuators and also results in more
natural haptic interaction. We implement a fluidic system
to demonstrate the CFMC approach, and use this system to
conduct experiments with soft actuators. Furthermore, we
propose a neural-network-based supervised learning algo-
rithm to enable analog pressure control of soft actuators
using CFMC that can be generalized to new actuators.
Our experiments comparing CFMC with CFPC approach
demonstrate that CFMC can increase the dynamic range
of soft actuators, reduce their response time to achieve a
desired pressure, and enable analog pressure control, thereby
providing more natural haptic feedback.

II. METHODS

Fig. 1 shows the fluidic implementation of CFPC and
CFMC. The fundamental difference between these two im-
plementations is that in CFPC the actuator pressure can only
exist in either the source or atmospheric pressure (ATM)
state, whereas in CFMC the actuator can be disconnected
from both the source and the atmosphere and therefore, hold
a state different from both the source and the atmosphere.



CFPC uses a three-way valve such that the actuator is either
connected to a compressed air source or ATM/vacuum by
modulating this valve (Fig. 1(a)). CFMC, on the other hand,
employs two three-way valves–a supply valve to control
the intake of the pressurized air and an exhaust valve to
control the exhaust to the ATM (Fig. 1(b)). CFMC then
modulates the fluidic mass inside the actuator by changing
the on/off time of the two valves based on the fluidic source
pressure and initial actuator pressure. CFMC can also be
implemented using two two-way valves. A three-way valve
implementation is chosen here because those valves were
readily available.

(a)

(b)

Fig. 1. Physical setup used for the alternate control methods used with
pneumatic actuators. (a) CFPC valve arrangement; and, (b) CFMC valve
arrangement.

A. CFMC Overview

Fig. 2 shows the principle illustration of how CFMC is
particularly useful in haptics. The initial pressure and volume
of the soft bladder are denoted as P0 and V0, respectively. As
a finger interacts with the bladder, the pressure and volume
of the bladder becomes P1 and V1, respectively. Assuming
that the system follows an ideal gas law under isothermal
condition, which for a closed system implies:

P0 × V0 = P1 × V1 (1)

P0 × V0 = (P0 +∆P )× (V1 +∆V ) (2)

Assuming ∆P ×∆V ≈ 0, Eq. 2 is simplified to:

∆P = −∆V × P0/V0 (3)

In CFPC, the bladder volume decreases to V1 as the finger
interacts with it. As the pressure starts to increase as a result
of this interaction (Eq. 3), the fluidic path of the actuator
remains open to the constant pressure fluidic source, resulting
in the actuator pressure remaining constant (P0) at the source
pressure.

In CFMC, as the finger interacts with the bladder, the
bladder volume decreases, which results in an increase in air
pressure (Eq. 3). However, since the air is trapped inside the
actuator and the fluidic path from the actuator to the regulator
is blocked, the increase in pressure is directly proportional

to the reduction in volume and inversely proportional to the
initial actuator volume. When we ignore the difference of
contact area between CFPC and CFMC, the difference of
interaction force between CFPC and CFMC will depend on
the difference of the corresponding actuator pressure. Thus,
the dynamic range of forces achievable using CFMC is also
larger than CFPC.

Another advantage of CFMC is that it provides the ability
to reduce the inflation time of the actuator by allowing
for source pressures higher than the operational pressure
of the actuator. On the other hand, in CFPC the source
pressure is determined by the operational pressure of the
actuator. Furthermore, unlike CFPC that only enables binary
control of actuator pressure, CFMC allows for more precise
analog pressure control of soft actuators. However, since
the capacitance of soft actuators is typically nonlinear and
there are many other nonlinearities in the fluidic system
that are hard to capture using a first-principles model in a
generalized manner, we use a neural-network-based super-
vised learning algorithm to achieve analog pressure control
using CFMC. For example, quadratic relationship between
pressure differential and flow for a pneumatic capacitor
with compressible fluid, contribution of actuator material
nonlinear force-displacement behavior to fluidic capacitance,
distributed resistance and capacitance of fluidic tubing and
flow choking at high pressure differential are some of the
non-linearities present in pneumatic systems [15].

(a) (b)

Fig. 2. Principle illustration of CFMC. (a) Initial actuator state. P0 and
V0 are the initial pressure and volume of the soft bladder respectively; and,
(b) Actuator state during interaction with finger. P1 and V1 are the pressure
and volume of the bladder, after a finger interacts with the bladder.

B. Artificial Neural Network Control

To enable analog pressure control using CFMC, a neural-
network-based algorithm was designed to predict the air
pressure of the actuator, which is based on a method pre-
viously used to solve the inverse statics of non-constant
curvature soft manipulators [18]. Fig. 3 shows the archi-
tecture of the feed-forward neural network and we used
backpropagation to learn the weights of the network. To
decrease the computation time and avoid potential overfitting
issues, only one hidden layer was used in this algorithm.
Since the air pressure of the actuator is modeled as a
function of air source pressure, initial actuator pressure, and
pressurizing/depressurizing time, the input layer has three
corresponding neurons and a bias node. The neuron in the
output layer is the final pressure of the actuator.



Five-fold cross-validation was used to train and evalu-
ate the neural network algorithm. Two nonlinear activation
functions (sigmoid function and hyperbolic tangent function)
were tested in the preliminary experiments, in which the
hyperbolic tangent function showed a faster convergence than
the sigmoid function and therefore, we chose hyperbolic
tangent function as the activation function for the final im-
plementation. The other parameters in the algorithm are the
learning rate and two early-stopping criterions (the minimum
sum of squared error and the maximum number of epochs).
The learning rate and the minimum sum of squared error
were chosen as 0.05 and 0.01, respectively. The number of
neurons in the hidden layer and the maximum number of
epochs were also optimized.

Fig. 3. Architecture of the feed-forward neural network with backpropa-
gation for the constant fluidic mass control.

III. EXPERIMENTS

We conducted two experiments using the same experi-
mental setup to compare CFMC with CFPC. Experiment
1 compared the dynamic range of the actuator pressure
between CFMC and CFPC, and the reaction force generated
by the actuator during interaction. Experiment 2 investigated
inflation/deflation response time and analog pressure con-
trol of a soft actuator based on a learned neural network
model using CFMC. Two customized soft-fluidic-actuators
with different capacitances were used for these experiments
(Fig. 6), which represents a wide range of capacitances
we would see in most haptics applications. These actuators
were prototyped by heat sealing Nylon-backed TPU-fabric
(Heat Sealable Coated Nylon Taffeta, Seattle Fabrics Inc.)
to develop inflatable bladders. For the smaller actuator, a
soft EPDM rubber tubing was also heat sealed during the
fabric heat sealing process. For the larger actuator, a Nylon
tubing was screwed on to a vented flat head screw to
achieve an airtight connection. The soft actuator with a small
capacitance (Fig. 6(a)) was used for experiments 1 and 2, and
the larger capacitance soft actuator (Fig. 6(b)) was used to
examine the generalization of our control approach.

A. Experiment Setup
The experiment setup (Fig. 4) consists of pneumatic and

electric control as shown in the blue and red blocks, respec-
tively.

The compressed air passes through a pneumatic filter
(F03-02-000, Wilkerson Corporation) before being controlled
by the valves (X-Valve, Parker-Hannifin Corporation). The
valves modulate the pneumatic flow, which can either pres-
surize the soft actuator from the compressed air source, or
depressurize the actuator to the ATM. The air source pressure
for both CFMC and CFPC was adjusted by a pressure
regulator (ControlAir Inc., 700-BD). Two three-way discrete
valves were used to execute the CFMC, in which three
different operations were carried out by turning on or off the
two valves (Fig. 5): pressurization of the actuator, trapping
the compressed air inside the actuator, and depressurization
of the actuator. For the CFPC, we kept the pneumatic flow
to the actuator connected to the compressed air source by
turning on the primary valve and turning off the secondary
valve (Fig. 5(a)).

Additionally, three pressure sensors (SSC-
MANN060PG2A3, Honeywell International Inc.) were
integrated into the setup to measure the pressure of the air
source (between the blocks of “Air Filter” and “Valves’
in Fig. 4), the actuator (between the blocks of “Valves”
and “Actuators” in Fig. 4), and the depressurized outlet
(between the blocks of “Valves” and “ATM” in Fig. 4). The
microcontroller (PIC32, Microchip Technology Inc.) sent
control signals to the valve driver based on the commands
from PC and data from pressure sensors. The electric control
loop was executed at 10 kHz, and pressure data from the
three sensors was sampled at 10 kHz.

Fig. 4. Diagram of the experiment setup.

(a) (b) (c)

Fig. 5. Valves operation for constant fluidic mass control. (a) Pressurization
of the actuator by turning the supply valve on and turning the exhaust valve
off; (b) Holding the fluidic mass inside the actuator when turning off both
the valves; and, (c) Depressurization of the actuator by turning the primary
valve off and turning the secondary valve on.

B. Experiment Protocol

1) Experiment 1: Dynamic Force Response: During the
experiment, an 8 mm diameter force sensor (CS8-10N,



SingleTact) was attached at the bottom of a flat acrylic block,
which was used to press on the actuator to measure the reac-
tion force offered by it (Fig. 7). The actuator was randomly
controlled using CFMC or CFPC and the participant wore
noise-canceling headphones playing a pink noise during the
experiment to remove any bias based on the valve clicking
sound for each type of control. The participant was presented
with a total of 20 random trials (10 CFMC and 10 CFPC). In
each trial, the participant was asked to keep the pressing force
on the actuator as vertical as possible. These sets of trials
were repeated three times. Each pressing took place after the
participant was notified by a LED indicating the fully inflated
actuator. Measurements from the three pressure sensors and
the force sensor were sampled for 5 seconds at 10 kHz.
The peak reaction force during the dynamic interaction was
defined as the average force over the 100 millisecond period
around the peak force during each pressing.

2) Experiment 2: Response Time and Analog Pressure
Control: In this experiment, the final actuator pressure
(Pactuator) is modeled as a function of air source pressure
(Psource), initial actuator pressure (Pinitial), and supply/ex-
haust valve on-time (texecution), as shown in Eq. 4, using
a neural network. While pressurizing the actuator, texecution
is the on-time of the supply valve and while depressurizing,
texecution is the on-time of the exhaust valve.

Pactuator = f(Psource, Pinitial, texecution) (4)

Eight levels of the air source pressure were chosen as:
3.2, 4.7, 5.8, 6.7, 7.4, 8.5, 9.1, and 10.8 psi. Fifteen lev-
els of pressurizing time (Ti) were chosen from 0 to 150
milliseconds with equidistant logarithmic intervals. Since
150 milliseconds was long enough for this actuator to be
pressurized to the air source pressure, the initial actuator
pressure was ranged from the atmosphere to the air source
pressure. The inflation/deflation time (Tp) also had 15 levels
from 3 milliseconds to 150 milliseconds with equidistant
logarithmic intervals.

Preliminary experiments showed that the final actuator
pressure was very consistent when the air source pressure,
the initial actuator pressure, and the inflation/deflation times
were fixed. Thus, the experiment with the same parameters
was executed once. There were 450 trials (15 ∗ 15 ∗ 2)
for each air source pressure in total (including pressurizing
and depressurizing experiments). In each trial, measurements
from the three pressure sensors were sampled at 10 kHz for
300 milliseconds, which was long enough for the actuator
to reach the source pressure from atmospheric pressures and
enter into a steady state.

Based on the neural network algorithm, three functions
were trained for the actuator with a small capacitance (Fig.
6(a)):

• Actuator pressure as a function of supply/exhaust valve
on-time only;

• Actuator pressure as a function of initial actuator pres-
sure, supply valve on-time, and air source pressure (only
for the pressurizing process);

• Actuator pressure as a function of initial actuator pres-
sure and supply valve on-time for a specific air source
pressure (10.8 psi) or exhaust valve on-time for a
specific depressurized outlet (ATM).

The first function was used to investigate the ability of
the neural network algorithm to learn the equivalent capac-
itance of the soft actuator. The second function studied the
comprehensive impacts of potential variables (initial actuator
pressure, supply valve on-time, and air source pressure) on
the actuator pressure. Finally, since the source pressure is
typically fixed and only modulate the initial actuator pressure
and the pressurizing/depressurizing time, a third function was
trained where the actuator pressure is a function of only the
initial actuator pressure and the pressurizing/depressurizing
time. In addition, the generalization of our approach was
evaluated by repeating the process with another actuator with
a much larger capacitance.

(a) (b)

Fig. 6. Two soft fluidic actuators used. (a) Small capacitance actuator
for experiments 1 and 2; and, (b) Large capacitance actuator for testing
generalization of approach.

Fig. 7. Experiment 2 setup for measuring dynamic force.

IV. RESULTS

A. Experiment 1: Larger Dynamic Range

When an actuator is pressurized, in CFPC the air is
contained between a closed valve and a pressure regulator,
whereas in CFMC the air is instead contained between two
closed valves. In both setups, as you press the actuator the
pressure increases occur based on Eq. 3. With CFPC, the
regulator releases this additional pressure, but due to the slow
mechanical response of the pressure regulator, some variation
in pressure in the CFPC is observed in Fig. 8. For CFMC,
however, becaused the air is contained between two closed
valves, this additional pressure cannot escape (shown in Fig.
8) which results in a higher reaction force on the finger as a
result, as shown in Fig. 9. The dynamic pressure range using



CFMC is 43% (3.2 psi, red curves in Fig. 8) as opposed to
only 4% (0.3 psi, blue curves in Fig. 8) with CFPC.

Fig. 9 shows a box plot of the reaction force corresponding
to the 30 force peaks for each control method (3 pressings for
each trial; 10 trials each of CFMC and CFPC). The red line
indicates the average over the 30 peaks, which shows that the
reaction force on the actuator using CFMC (around 5.7 N) is
around 1 N higher than that using the CFPC (around 4.7 N),
equivalent to an approximate 21% increase. It is consistent
with the calculation of the reaction force (0.22MPa ∗ π ∗
(0.008/2m)2 = 1.1N ) applied to the sensor contact area
(8 mm diameter round area) due to the pressure difference
(3.5psi ≈ 0.22MPa) in Fig. 8.

Fig. 8. Comparison of dynamic pressure range between constant fluidic
mass control (CFMC) and constant fluidic pressure control (CFPC). The air
source pressure is 7.5 psi.

Fig. 9. Comparison of the range of peak reaction force range during
dynamic interaction between constant fluidic mass control (CFMC) and
constant fluidic pressure control (CFPC).

B. Experiment 2: Faster Response Time

A sample set of actuator inflation and deflation times from
Experiment 2 are shown in Figs. 10 and 11, respectively.
We see sharp decreases/increases (shown in the red dashed
circles) in the actuator pressure, both during inflation and
deflation, when the valve is turned off. The authors hypothe-
size that this is because the air in the blocked channel of the

primary valve is mixed with the air in the actuator during
the operation switch from (a) to (b) (or from (c) to (b) in
the depressurizing trials) in Fig. 5.

Four key variables were considered when comparing the
performance between CFMC and CFPC: the air source
pressure, the initial actuator pressure, the supply/exhaust
valve on-time, and the final actuator pressure. The air source
pressure and the initial actuator pressure were measured by
the corresponding pressure sensor before each trial. The
supply/exhaust valve on-time is from the commander. The
final actuator pressure is calculated by averaging the actuator
pressure from 200 milliseconds to 300 milliseconds in Figs.
10 and 11.

Fig. 10. Actuator pressure measurements during the pressurizing trials
when the air source pressure is 10.8 psi and initial actuator pressure is
ATM. The colored curves represent the trials with 15 different pressurizing
times. The red dashed circle shows a sharp decrease in the actuator pressure
when the valve is turned off.

Fig. 11. Actuator pressure measurements during the depressurizing
trials when the initial actuator pressure is 10.8 psi and the depressurized
outlet is ATM. The colored curves represent the trials with 15 different
depressurizing times. The red dashed circle shows a sharp increase in the
actuator pressure when the valve is turned off.

Experimental results using 3.2, 4.7, 5.8, and 7.4 psi as the
air source pressure in Experiment 1 were arbitrarily chosen
to compare the response time between CFMC and CFPC,
and this comparison is shown in Fig. 12. For the CFPC, the
response time is the time taken by the actuator pressure to
rise from ATM to 90% of the air source pressure (namely the



target pressure: 2.9, 4.2, 5.2, and 6.7 psi). For the CFMC, the
response time is the pressurizing time from the commander
when the final actuator pressure was equal to the target
pressure. If all the final actuator pressures in Experiment 1
are not exactly equal to the target pressure, the pressurizing
time is calculated by using the difference method on two
adjacent times. Compared with CFPC, CFMC has a faster
response time as increasing the air source pressure, even
though the switches between valve operations, introduce
fluctuations to the actuator pressure and the corresponding
time delay.
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Fig. 12. Comparison of response time between constant fluidic mass control
(CFMC) and constant fluidic pressure control (CFPC). Each dot represents
the CFPC measurement; each curve represents the CFMC measurements.
The dot and curve with the same color have the same target of the actuator
pressure.

C. Experiment 2: Analog Pressure Control

For the CFPC, the actuator pressure is consistent with the
air source pressure, although small fluctuations in pressure
were observed under load. However, the CFMC can modulate
actuator pressure continuously by adjusting the supply/ex-
haust valve on-time, based on the given initial actuator
pressure and the air source pressure (Fig. 13).

Fig. 13. Actuator pressure as a function of initial actuator pressure (namely
start pressure) and pressurizing time (namely inflation time).

D. Feed-forward Neural Network: Parameter Selection

1) Number of Neurons in the Hidden Layer: Fig. 14
shows the relation between the number of neurons in the hid-
den layer and the training/testing error. The error continues
to decrease as the number of neurons were increased from 3
to 33 and increases sharply after the number of neurons were
increased to 35. This suggests that beyond 33 neurons the
model has become complex enough with too many unknowns
to be reasonably fit with the dataset we collected. While
considering the computation cost and the error trend, a total
of 10 neurons is the optimal value for our application.

2) Maximum Number of Epochs: Fig. 15 shows the rela-
tion between the number of epochs and the sum of squared
error for the training set. Based on the required precision and
time cost of the training process, we chose the maximum
number of epochs to be one million.

Fig. 14. The relation between the number of neurons in the hidden layer
and the training/testing error.

Fig. 15. The relation between the number of epochs and the sum of squared
error. Each curve represents one cross-validation.

E. Feed-forward Neural Network: Performance

1) Actuator Pressure as a Function of Pressurizing/De-
pressurizing Time: The air source pressure and the depres-
surized outlet was chosen as 10.8 psi and ATM, respectively.
The experimental measurements are almost overlapping the
model predictions, indicating a good ability in predicting the



(a) (b) (c) (d)

Fig. 16. Relation between experiment measurements and Neural network predictions for the actuators under four different conditions. Each colored dataset
represents one cross-validation. Figs. (a) and (b) are reuslts from the actuator with a small capacitance in Fig. 6(a). Figs. (c) and (d) are reuslts from the
actuator with a large capacitance in Fig. 6(b). (a) when the air source pressure, the initial actuator pressure, and the pressurizing time are input variables;
(b) when the initial actuator pressure and the depressurizing time are the input variables; (c) when the air source pressure, the initial actuator pressure, and
the pressurizing time are input variables; and, (d) when the initial actuator pressure and the depressurizing time are the input variables.

actuator pressure during the pressurizing and depressurizing
processes (error: 0.11% +/- 0.81%; error: 0.19% +/- 1.02%).

2) Actuator Pressure as a Function of Air Source Pres-
sure, Initial Actuator Pressure, and Pressurizing Time: The
cross-validation results from neural network model predic-
tions based on the air source pressure, the initial actuator
pressure, and the pressurizing time are shown in Fig. 16(a).
The results show that the neural network algorithm can
predict the actuator pressure precisely under different air
source pressures, initial actuator pressures, and pressurizing
time (error in Fig. 16(a): 0.84% +/- 1.41%; error in Fig.
16(b): 0.93% +/- 1.76%).

3) Actuator Pressure as a Function of Initial Actuator
Pressure, and Pressurizing/Depressurizing Time: Since the
function above is in four-dimensional space, it is difficult
to visualize the results using a single plot. To show the
comparison between the experiment measurements and the
model predictions, the neural network algorithms in this
function are represented as 3D surfaces for the pressurizing
and depressurizing process, respectively (error: 0.62% +/-
1.17%; error: 0.94% +/- 1.24%). Based on this algorithm,
we could achieve the analog control of the actuator pressure
with high precision.

F. Neural Network Approach: Generalization

Figs. 16(c) and 16(d) shows that our approach has a
good ability to predict the actuator pressure even though the
capacitance of the soft actuator changes significantly during
the pressurizing process. Additionally, these two figures also
confirm that the actuator-specific learned neural network can
precisely control the actuator pressure and our approach can
be easily generalized.

V. DISCUSSION

Our approach offers the following advantages and ad-
dresses the limitations of CFPC control:

1) Larger dynamic range: Since CFMC approach traps
a constant mass of air inside the actuator, any interaction
with the actuator, which reduces the actuator volume, results
in increase in actuator pressure. This increase in pressure
results in an increase in actuator impedance and therefore,

increases the range of forces that the actuator can render
during a haptic interaction.

2) Faster actuator response: In CFMC, a much higher
source pressure can be used than what the actuator can handle
by modulating the time for which the valve is turned on. By
using a source pressure much higher than required, a much
faster actuator inflation response is achievable to reach the
same actuator pressure. A fast actuator deflation response is
also possible by using vacuum at the valve exhaust.

3) Analog pressure control: In CFMC, the on-time of
the valve determines the final pressure reached inside the
actuator. So, by modulating the on-time of the valve, the
actuator can be inflated to different pressures. An open-
loop control of pressure can be achieved by implementing a
pressure observer that uses a learned actuator-specific model.
More accurate closed-loop control of pressure can also be
achieved by deploying a soft pressure sensor within the
actuator.

4) Natural haptic interaction: The increase in impedance
of the actuator as the user interacts with it is important to
provide the illusion of object stiffness, which is non-existent
in CFPC. Furthermore, since this increase in impedance is
tied to when the user interacts with the actuator (reactive or
endogenous) rather than actuator pushing on the finger when
inflated (active or exogenous), this type of control feels more
natural than CFPC.

Although we demonstrated the accuracy of our neural
network approach in two different soft TPU-fabric actuators
which cover a wide range of capacitances we would see in
most haptics applications, we haven’t tested for all nonlinear-
ities possible in capacitance. More variables of the actuators
(such as bladder size, materials) and the fluidic system (such
as material and design parameters of the fluidic tubings) are
required to be considered in a comprehensive generalization
analysis. However, with our neural network architecture, we
should be able to capture more complex nonlinearities with
increasing complex networks. Furthermore, though use of
a neural network makes our approach more complex for
real-time robotic systems, there are numerous examples of
neural-network-based real-time robotic systems, and learned
controllers are increasingly being used to achieve more



sophisticated behavior in such systems [19]. Neural networks
are computationally expensive to train offline, but once the
model is trained the actual prediction based on the learned
model is fast and can be easily executed in a real-time
manner.

This study has demonstrated multiple advantages of
CFMC over CFPC, but these come at the cost of additional
control infrastructure. To precisely control the actuator air the
pressure control there is the need for additional equipment,
with the additional valve and pressure sensors, and a more
complex control strategy is required. In addition, since the
CFMC enables a larger dynamic range, this requires the soft
actuators to be designed to handle a larger range of pressures.

VI. CONCLUSION AND FUTURE WORK

In this work, we present a new control method for soft
fluidic actuators, CFMC, which uses an arrangement of
two valves to maintain a constant fluidic mass within the
actuator, that has potential advantages in wearable haptics.
Our analyses show that compared to CFPC, CFMC results
in a higher dynamic range of actuator output forces and
faster response time for inflation and deflation. In addi-
tion, we demonstrated an implementation of analog pressure
control based on CFMC using a learned neural-network-
based algorithm, which enabled us to accurately modulate
the actuator pressure. Furthermore, experiments showed that
our approach can be generalized to different soft TPU-fabric
fluidic actuators.

The external interaction force on the soft actuator is
a common scenario in wearable haptics applications, and
the different forces acting on the actuator can impact its
equivalent capacitance, thus reducing the accuracy of the
learned neural network model. In the future, we plan to
extend the proposed neural network model by introducing the
preload as a fourth input-variable, and explore architecture
of recurrent neural networks to include input-variables with
temporal dynamic behavior, such as users’ behavior of soft
actuators, in the control system. Furthermore, we plan to
explore CFMC-based analog pressure control for a wearable
haptic device. In addition, we plan to examine the impact
of CFMC in creating haptic sensation of stiffness and also
performance of closed-loop control.
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