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Abstract

In this paper, we describe our end-to-end
multilingual speech translation system sub-
mitted to the IWSLT 2021 evaluation cam-
paign on the Multilingual Speech Translation
shared task. Our system is built by leverag-
ing transfer learning across modalities, tasks
and languages. First, we leverage general-
purpose multilingual modules pretrained with
large amounts of unlabelled and labelled data.
We further enable knowledge transfer from
the text task to the speech task by training
two tasks jointly. Finally, our multilingual
model is finetuned on speech translation task-
specific data to achieve the best translation
results. Experimental results show our sys-
tem outperforms the reported systems, includ-
ing both end-to-end and cascaded based ap-
proaches, by a large margin. In some trans-
lation directions, our speech translation results
evaluated on the public Multilingual TEDx test
set are even comparable with the ones from
a strong text-to-text translation system, which
uses the oracle speech transcripts as input.

1 Introduction

Multilingual speech translation (Inaguma et al.,
2019) enables translation from audio to text in
multiple language directions with a single model.
Similar to multilingual text translation, it is sam-
ple efficient as the model supports more languages.
Furthermore, multilingual speech models can facil-
itate positive transfer across languages by learning
a common representation space from speech inputs,
typically either raw audio or filterbank features.

In this paper, we provide a description of our
submission to the first multilingual speech trans-
lation task at IWSLT 2021. The task evaluates

*Yun Tang and Hongyu Gong have equal contribution to
this work.

speech translations from Spanish (es), French (fr),
Portuguese (pt) and Italian (it) into English (en)
and Spanish (es). Among them, three translation
directions (it-en, it-es and pt-es) are considered
zero-shot with respect to the constrained track. In
addition, participants are encouraged to submit
transcriptions for the relevant languages.

Our team, FAIR Speech Translation (FST), par-
ticipated in the unconstrained track, where we sub-
mitted one primary system and four contrastive
systems. We are interested in exploring the effec-
tiveness of building a general-purpose multilingual
multi-modality model. We leverage large amounts
of data, including unlabelled and labelled data from
different modalities, to alleviate the data scarcity
issue. We build the multilingual model to perform
speech translation and speech recognition tasks for
all evaluation directions. Our model leverages self-
supervised pretraining on both the encoder and the
decoder. The model is further improved by knowl-
edge transferring from the text-to-text translation
task to the speech-to-text translation task under the
multitask learning framework. Finally, we finetune
the model on parallel speech translation corpora
as well as weakly aligned speech translation data
through data mining to achieve the best result.

In section 2, we described data sources and our
method for speech translation data mining. Models
and training methods are then described in sec-
tion 3. Finally, we present the results for the pri-
mary and contrastive systems in section 4.

2 Data

Provided by the IWSLT 2021 shared task, the multi-
lingual TEDx dataset collected from TED talks pro-
vides speech translations in 13 directions (Salesky
et al., 2021). We focus on the seven competition
directions in the shared task: es-en, fr-en, pt-en,
it-en, fr-es, pt-es and it-es.



Table 1: Audio Length in Hours of TEDx, CoVoST, EuroParl and Mined Data

es-en fr-en it-en pt-en fr-es pt-es it-es
TEDx 163.7 119.9 - 134.2 85.5 - -

CoVoST 113.0 264.1 10.3 44.1 - - -
EuroParl 20.7 31.0 35.5 14.6 20.0 9.5 20.6

Common Voice (mined data) 52.7 39.6 12.8 9.6 18.7 4.4 6.6
MLS (mined data) 23.9 64.7 2.3 - 42.7 1.3 3.4

2.1 Public data

Besides TEDx dataset provided by the shared task,
we also include two other public datasets, CoVoST
and EuroParl, which provides parallel audio-text
samples in some of the test directions of TEDx.

• CoVoST (Wang et al., 2020). As a large
scale dataset for multilingual speech transla-
tion, CoVoST contains translations from 11
languages to English. We use its data in 5
language directions 2.

• EuroParl (Iranzo-Sánchez et al., 2020). Col-
lected from debates in European Parliment,
EuroParl provides speech-to-text translations
in 6 European languages. Its data in 11 lan-
guage directions 3 is used in model training.

2.2 Mined data

We also mined additional speech-to-text data from
unlabeled corpora. The audio corpora used in our
experiments include Common Voice and Multilin-
gual LibriSpeech (MLS).

• Common Voice (Ardila et al., 2020). It is a
massive collection of multilingual audios and
their transcriptions in 29 languages.

• MLS (Pratap et al., 2020). It is a speech cor-
pus collected from audiobooks of LibriVox in
8 languages.

The text corpus used for mining is CCNet, which
serves as the source of target translations (Wenzek
et al., 2020). Collected from snapshots of Com-
monCrawl dataset, CCNet provides a large-scale
and high-quality monolingual datasets.

Since the audio corpora provide transcripts for
audios, we could align source audios with target
translations by finding the alignments between

2{es, fr, it, pt, ru}-en
3es-{en, fr, it, pt}, fr-{en, es, pt}, it-{en, es}, pt-{en, es},

ru-en

source transcripts and target texts. LASER align-
ment is applied for the crosslingual text alignment
(Artetxe and Schwenk, 2019). It generates sen-
tence embeddings with a pre-trained multilingual
text encoder (Schwenk and Douze, 2017), and use
them to measure the semantic similarity between
sentences.

Table 1 summarizes the statistics of the data used
in our experiments. It reports the total length of au-
dios in TEDx, CoVost and EuroParl datasets. More-
over, we include the statistics of mined speech from
Common Voice and MLS. The mined data has an
equivalent size to TEDx dataset in training direc-
tions. It also provides a good amount of speech
data in zero-shot directions including it-en, pt-es
and it-es.

2.3 Text Data

We use additional text data to train mBART model,
which later is used to initialize our speech-to-text
model. mBART model is first trained with mono-
lingual text data from five languages4 using self-
supervised training. Then they are finetuned with
parallel text data from seven evaluation directions
as a multilingual text-to-text translation model.
The monolingual text data comes from the CC100
dataset (Conneau et al., 2020b) and the parallel
text data are downloaded from OPUS (Tiedemann,
2012). 5

3 Methods

Our evaluation system is based on an encoder de-
coder model with the state-of-the-art Transformer
architecture. The submitted model is developed

4Five languages include en,es,fr,it and pt.
5The following datasets are used: CommonCrawl, OPUS-

Books v1, CAPES v1, DGT v2019, ECB v1, ELRA-W0138
v1, ELRA-W0201 v1, ELRC 2682 v1, EMEA v3, EUbook-
shop v2, EuroPat v1, Europarl v8, GlobalVoices v2018q4,
JRC-Acquis v3.0, JW300 v1b, Multi ParaCrawl v7.1, Mul-
tiUN v1, News-Commentary v14, QED v2.0a, SciELO v1,
TED2013 v1.1, TED2020 v1, Tanzil v1, Tatoeba v2020-11-
09, TildeMODEL v2018,UNPC v1.0, and UN v20090831,
Wikipedia v1.0.



→ en → es
es fr pt it fr pt it Ave.

MT (M2M-100) (Salesky et al., 2021) 34.0 40.9 38.7 34.6 42.4 45.8 44.2 40.1
Cascaded System (Salesky et al., 2021) 21.5 25.3 22.3 21.9 26.9 26.3 28.4 24.7
Multilingual E2E (Salesky et al., 2021) 12.3 12.0 12.0 10.7 13.6 13.7 13.1 12.5

ST Baseline 27.8 32.4 26.6 20.6 35.0 28.7 28.3 28.5
XLSR-IPA 32.1 36.8 35.1 30.0 38.3 38.5 37.5 35.5
XLSR-SPM 33.2 37.8 35.0 29.3 39.5 36.7 35.3 35.3
VP100K-IPA 31.6 37.1 35.3 29.3 38.2 37.9 37.1 35.2

Ensemble (3 models) 34.0 38.7 37.2 30.9 39.7 40.4 38.6 37.1

Table 2: Main results on the public test set from the Multilingual TEDx Corpus (Salesky et al., 2021).

with a transfer learning approach (Li et al., 2020),
including three ingredients: single-modality mod-
ules pretrained from self-supervised learning, mul-
titask joint training, and task-specific fine-tuning.
The pretrained modules make use of a large amount
of unlabeled data, joint training focuses on transfer-
ring knowledge from a relatively simple text-to-text
task to a speech-to-text task, and the model is fine-
tuned on speech-to-text translation task to boost
in-task performance.

3.1 Modality Dependent Pretraining
Our model leverages large amounts of unlabelled
data from different modalities through two pre-
trained models: a wav2vec 2.0 (Baevski et al.,
2020) and a multilingual BART (mBART) (Liu
et al., 2020).
wav2vec 2.0 is a simple and powerful framework
to learn high quality speech representation from un-
labelled audio data. Given the raw input audio sam-
ples, the model learns both latent representations
and context representations through a contrastive
task to distinguish true latent from distractors. Two
multilingual wav2vec 2.0 models are explored dur-
ing our development. One (“XLSR-53”) is trained
on 56K-hour speech in 53 languages (Conneau
et al., 2020a), and another (“VP-100K”) is trained
on 100K-hour speech in 23 languages (Wang et al.,
2021). The pretrained wav2vec 2.0 models are
used to initialize the speech encoder in the jointly
trained model of the next stage.

As will be discussed in our experiments, the two
encoders are strong in different language directions.
We ensemble models with XLSR-53 encoder and
VP-100K encoder respectively to achieve the best
performance.
mBART is a sequence-to-sequence generative pre-
training scheme, specifically a denoising autoen-

coder (DAE) to predict the original text from its
noisy version such as random span masking and
order permutation (Liu et al., 2020). The model
is pretrained with monolingual data and finetuned
with parallel data as described in subsection 2.3.
The encoder and decoder in mBART model are
used to initialize the encoder and decoder in the
joint trained model of the second stage.

Previous study (Tang et al., 2021b) shows that it
makes the knowledge transfer from the text-to-text
task to speech-to-text task easier by representing
the input text as its pronunciation form, i.e., the
phoneme sequence. We also investigate represent-
ing the input text as its pronunciation forms rather
than sentencepiece tokens during our development.
We choose International Phonetic Alphabet (IPA)
as input text representation since it can be shared
across different languages. espeak6 is used to con-
vert the text word into IPA phonemes.

3.2 Multitask Joint Training

In the second stage, we choose to optimize the
speech-to-text translation model along with a text-
to-text translation model. Two encoders are used
to process text input and speech input respectively.
The speech encoder is with the large wav2vec 2.0
configuration. The feature extractor and the bottom
12 transformer layers in the context extractor are
initialized with the corresponding parameters from
the pretrained wav2vec 2.0 model in subsection 3.1.
The top 12 transformer layers in the speech encoder
are shared with the text encoder. They are initial-
ized with the pretrained mBART encoder (Tang
et al., 2021a). An adaptor (Li et al., 2020), which
consists of 3 1-D convolution layers with stride 2 to
achieve 8x down-sampling of speech encoder out-

6http://espeak.sourceforge.net/index.html



BLEU
→ en → es WER

es fr pt it fr pt it es fr it pt
ST Baseline 34.1 28.4 19.8 20.0 29.3 25.3 25.8 18.6 25.7 33.2 44.5
XLSR-IPA 40.4 36.4 29.0 28.4 34.4 34.4 34.6 13.0 21.8 21.8 29.9

Ensemble (3 models) 42.2 38.7 31.0 29.4 36.5 38.2 37.3 11.2 18.7 19.6 27.4

Table 3: Main results on the blind test set from the Multilingual TEDx Corpus.

Data → en → es
Ave.

ASR Public Mined es fr pt it fr pt it
M0 7 7 7 22.3 26.7 21.7 5.9 28.2 23.6 8.4 19.5
M1 3 7 7 24.2 29.1 26.3 18.1 31.7 28.9 27.3 26.5
M2 3 3 7 25.2 30.8 26.9 19.2 32.5 29.4 28.1 27.4

M3 (ST Baseline) 3 3 3 27.8 32.4 26.6 20.6 35.0 28.7 28.3 28.5

Table 4: Ablation studies of training data (Public: CoVoST and EuroParl, Mined: mined data from Common Voice,
MLS and CCMatrix, ASR: ASR data in mTEDx). The results are BLEU scores on TEDx test set. The models
considered here are built upon pretrained XLSR-53 encoder and mbart decoder, and they do not have joint training.
The speeach translation data from mTEDx is used by all models.

puts, is placed between the last non-shared speech
encoder layer and the first shared speech text en-
coder layer. The decoder is shared by two tasks and
initialized with the pretrained mBART decoder.

Two techniques (Tang et al., 2021a): cross atten-
tive regularization (CAR) and online knowledge
distillation (online KD), are employed to enhance
the knowledge transferring. Text input data comes
from the corresponding transcripts in the speech
translation dataset. Due to time limits, we don’t use
extra parallel text data to enhance the performance.

3.3 Speech only Finetuning
In the last stage, the model is fine-tuned in the
speech-to-text translation task with speech input
only. The text encoder is dropped and no text input
data is used.

4 Experiments

4.1 Experimental Setting
Both wav2vec 2.0 model and mBART model are
trained with the large configuration. There are 24
transformer layers in the wav2vec 2.0 model, and
12 transformer layers in both mBART encoder and
decoder. We build the mBART model with a target
vocabulary of 64,000 SentencePiece (Kudo and
Richardson, 2018) tokens, which are shared among
all 6 evaluation languages7. For the mBART model

7In our evaluation, the new mBART model achieves com-
parable results as the public available mBART model, which

with IPA phoneme input, the vocabulary size is 516
which includes phoneme variants with “ ” attached
to denote the word leading phoneme.

A language id symbol “〈LID〉” is used as the
initial token to predict the sentence. Speech recog-
nition task is treated as the same as the speech trans-
lation task but with the source speech language id
symbol.

The primary system results submitted are from
an ensemble system with three models. All three
models are trained with 3-stage optimization dis-
cussed in section 3 with different initialization mod-
els. The first one is initialized with “XLSR-53”
wav2vec model and IPA mBART model (“XLSR-
IPA”). Compared with the first model, the sec-
ond model chooses sentence piece mBART model
(“XLSR-SPM”) while the third one is initialized
with “VP-100K” wav2vec model (“VP100K-IPA”)
8.

We use 8 V100 GPUs for each model during
the jointly training and fine-tuning stages. It takes
approximate five days to jointly train the models
for 15 epochs and another two days for speech only
fine tuning. The last 5 checkpoints are averaged for
inference with beam size 5.

To provide a deep insight into the factors affect-

is with 250k vocabulary, but with much smaller memory foot-
print.

8We will release the training and evaluation recipe under
https://github.com/pytorch/fairseq/tree/master/examples/speech
text joint to text



Train → en → es
Ave.

JT FT es fr pt it fr pt it
M3 7 7 27.8 32.4 26.6 20.6 35.0 28.7 28.3 28.5
M4 3 7 32.3 36.6 33.8 28.4 38.3 35.9 35.7 34.4
M5 3 3 33.2 37.8 35.0 29.3 39.5 36.7 35.3 35.3

Table 5: Ablation studies of training approaches (JT: joint training of text and speech translation, FT: finetuning a
trained model on TEDx data in speech translation). The results are BLEU scores reported on TEDx test set. The
models considered here are built upon pretrained XLSR-SPM encoder and mbart decoder. They are trained with
the combination of TEDx including the ASR portion, public data as well as mined data.

Encoder
→ en → es

Ave.
es fr pt it fr pt it

M4 XLSR-SPM 32.3 36.6 33.8 28.4 38.3 35.9 35.7 34.4
M6 VP100K-SPM 30.5 35.6 33.7 28.5 36.9 36.9 36.2 34.0

Table 6: Ablation studies of different encoders. BLEU scores are reported on TEDx test set. Models are jointly
trained on all data, but they are not further finetuned on speech translation.

ing translation performance, we conduct ablation
studies on different model configurations.

4.2 Main Results

We summarize our main results at Table 2. The first
row presents results from a large text-to-text trans-
lation system (M2M-100) using oracle speech tran-
scripts (Salesky et al., 2021) as input. The second
two rows list best results from the cascaded sys-
tem and multilingual end to end system from litera-
ture (Salesky et al., 2021). The fourth row to eighth
row are results from our systems. The fourth row
presents our multilingual baseline, which is initial-
ized with pretrained wav2vec 2.0 model (“XLSR-
53”) for encoder and mBART model (“SPM”) for
decoder. The model is fine-tuned with Multilingual
TEDx data, public data and mined data listed in
section 2. No joint training is applied. “XLSR-
IPA”, “XLSR-SPM” and “VP100K-IPA” from row
5 to 8 are results from the 3 best systems we built.
Compared with the baseline in the third row, these
three systems have an extra step to co-train with
the text-to-text translation task.

It is clear that we create a very strong baseline
(row 4) with the help from the large amounts of
speech/text training data. In comparison to the
previous reported cascaded system (row 2) or mul-
tilingual end-to-end system (row 3), the results are
3.8 and 16.0 BLEU scores higher on average.

Row 5 to 8 provide evaluation results from our
3 best single models built with single-modality
based pre-training, multitask joint training and

task-specific fine-tuning. They are built with dif-
ferent pre-training data or input text representa-
tions. Compared with the baseline in row 4, another
6.7 ∼ 7.0 BLEU improvement are observed. IPA
phoneme based text representation gives slight gain
compared with text units separated with Sentence-
Piece model (“XLSR-IPA” v.s. “XLSR-SPM”),
which is smaller than we expected. We hypothesis
that it is due to the imperfect text to phoneme con-
version for different languages. The difference due
to different pre-training data is also small that there
are only 0.3 BLEU in average when the speech pre-
training is changed (“XLSR-IPA” v.s. “VP100K-
IPA”).

The ensemble of three models achieves the best
performance with a 1.6 BLEU improvement over
the best single model. It indicates those three mod-
els are complementary to each other, though they
give similar BLEU scores in our test. The results
are even close to the ones from the strong text-to-
text translation system (M2M-100 in row 1), which
takes speech transcript as translation input. Our
primary system achieves the same BLEU score as
the text-to-text translation system on translation
direction ”es-en” and the average BLEU score gap
from 7 directions is 3.0.

The corresponding blind test results are reported
in Table 3. Similar to our observation in Table 2,
the model trained with the 3-stage approach signifi-
cantly improves the translation accuracy compared
with the baseline. The ensemble system outper-
forms other systems in all speech translation direc-



tions as well as the speech recognition tasks.

4.3 Analysis

Data. Table 4 compares models trained with dif-
ferent sets of data. Additional data is shown to im-
prove the translation performance. In our multitask
training, we combine the text-to-text and speech-
to-text translation tasks together. We don’t include
ASR task as separated task, instead we treat ASR
task as a special translation direction. It shows ASR
data is helpful for speech translation, especially for
translation directions with small amount of speech
training data (“it-en” and “it-es”). On average, we
observe a significant gain of 7.0 BLEU from the
comparison between M0 and M1 .

When we continue adding public datasets includ-
ing CoVost and EuroParl to the training set, M2
has an average improvement of 0.9 BLEU over M1.
The mined data brings another 1.1 BLEU gain as
we compare M3 and M2.

Training. Different training approaches are
compared in Table 5. We observe significant gains
brought by joint training of text and speech transla-
tion. Compared against M3, M4 with joint training
demonstrates an improvement of 5.9 BLEU over
7 language directions. When the jointly trained
model is further finetuned with speech translation
data, an extra gain of 0.9 is achieved as we compare
M5 against M4.

Encoder. We compare XLSR-53 and VP-100K
encoder in Table 6. XLSR-53 is strong at encoding
audios in Spanish and French, achieving BLEU
gains of 1.8 and 1.0 in es-en and fr-en respectively.
VP100k encoder outperforms XLSR-53 in pt-es
and it-es directions with gains of 1.0 and 0.5 re-
spectively. This can be explained by the fact that
VP100K encoder is trained on more Portuguese
and Italian Speech.

5 Conclusion

In this work, we described our multilingual end-to-
end speech translation system submitted to IWSLT
2021. We leverage the large amount of training data
from different domains and modalities to improve
the speech translation performance. We adopt a
progressive approach to build the model with three
stages. Compared with our strong baseline, the
proposed system achieves 8.6 BLEU score im-
provement, which also outperforms other reported
systems, including both end-to-end and cascaded
based, by a large margin.
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