
1

Unsupervised Generation of Free-Form and
Parameterized Avatars

Adam Polyak, Yaniv Taigman, and Lior Wolf, Member, IEEE

Abstract—We study two problems involving the task of mapping images between different domains. The first problem, transfers an
image in one domain to an analog image in another domain. The second problem, extends the previous one by mapping an input
image to a tied pair, consisting of a vector of parameters and an image that is created using a graphical engine from this vector of
parameters. Similar to the first problem, the mapping’s objective is to have the output image as similar as possible to the input image. In
both cases, no supervision is given during training in the form of matching inputs and outputs.
We compare the two unsupervised learning problems to the problem of unsupervised domain adaptation, define generalization bounds
that are based on discrepancy, and employ a GAN to implement network solutions that correspond to these bounds. Experimentally,
our methods are shown to solve the problem of automatically creating avatars.

Index Terms—Deep Learning, Domain Adaptation, Neural Network, Cross-Domain Transfer, Analysis by Synthesis, Domain Transfer
Network, Tied Output Synthesis.

F

1 INTRODUCTION1

T He artist Hanoch Piven creates caricatures by arranging
household items and scrap material in a frame and pho-

tographing the result, see Fig. 1. In this work, we ask ”how can a
computer create such images?”

Given a training set consisting of Piven’s images, Generative
Adversarial Networks (GANs) can be used to create images that
are visually similar to the training set. However, this is not enough.
The generated image needs to preserve the identity of the input
image. The mapper can, in principle, permute the identities and
return an output image of Bob given an input image of Alice’s
face, with no effect on the GAN loss.

The Domain Transfer Network we present solves this, by
utilizing a perceptual function f to learn a mapping G : X → Y
such that f(x) ∼ f(G(x)), where G is the GAN generative
function, X is the source domain and Y is the target domain.

The architecture of the Domain Transfer Network includes the
function G, which is a composition of the input function f and a
learned function g. A compound loss that integrates multiple terms
is used. One term is a GAN term that encourages the creation of
samples that are indistinguishable from the training samples of
the target domain. The second loss term enforces the perceptual
similarity for every x in the source domain training set. The third
loss term is a regularizer that encourages G to be the identity
mapping for all x ∈ Y .

• A. Polyak is with the School of Computer Science, Tel Aviv University, Tel
Aviv 69978, Israel and Facebook AI Research. This work was carried out
in partial fulfillment of the requirements for his Ph.D. degree.
E-mail: adampolyak@fb.com

• L. Wolf is with the School of Computer Science, Tel Aviv University, Tel
Aviv 69978, Israel and Facebook AI Research.
E-mail: wolf@fb.com

• Y. Taigman is with Facebook AI Research.
E-mail: taigman@fb.com

Manuscript received January 15, 2018; revised May 22, 2018.
1. This manuscript is based on previously published contributions [32], [37].

(a) (b)

Fig. 1. (a) Formal portrait of Albert Einstein. (b) A caricature by Hanoch
Piven.

Fig. 2. From the image on the top left, our method computes the
parameters of the face caricature below it, which can be rendered at
multiple views and with varying expressions by the computer graphics
engine.

As we show, when applied to the problem of avatar creation,
e.g., using a computer graphics emoji-generating API, this free-
form solution produces highly identifiable and appealing images.
However, these images are easily distinguishable (by humans)
from avatars created by the computer graphics engine. Indeed,

2

common sense tells us that for any reasonably sized training set,
the generated images would be easily recognized by humans as
being synthetic. We, therefore, ask a second question: ”How do
you incorporate this knowledge into the generation process?”.

Assume that the virtual or the physical world in which the
training images of the target domain were generated, is captured
by an available engine e, which, given a vector of parameters u
produces an image e(u). In the case of the physical world, where
Piven operates, e provides us with the ability to generate an image
from the domain of Pivenesque images. Piven, of course, does
not create random face images. He creates caricatures of famous
people, preserving the identity information in the original image.

In the case of the virtual world, this process is analogous
to generating computer avatars, based on the user’s appearance,
using a graphical engine. In order to allow the avatars to be easily
manipulated, each avatar is represented by a set of “switches”
(parameters) that select, for example, the shape of the nose, the
color of the eyes and the style of hair, all from a predefined
set of options created by artists. The visual appearance of the
avatar adheres to a set of constraints, which are governed by a
computer graphics engine that renders an image based on the set
of parameters. Moreover, once this set is determined, the avatar
can be rendered in many variations (Fig. 2).

Therefore, we present the problem of Tied Output Synthesis
(TOS), which is learning to map an input image to two tied
outputs: a vector in some parameter space and the image generated
by this vector. While it is sufficient to recover just the vector
of parameters and then generate the image, a non-intuitive result
of our work is that it is preferable to recover the analog image
first. In any case, the mapping between the input image and either
of the outputs should be learned in an unsupervised way, due
to the difficulty of obtaining supervised samples that map input
images to parameterized representations. In avatar creation, it is
time consuming for humans to select the parameters that represent
a user, even after considerable training. The selected parameters
are also not guaranteed to be the optimal depiction of that user.
Therefore, using unsupervised methods is both more practical and
holds the potential to lead to more accurate results.

The presented solution, Tied Output Synthesis Network, solves
the problem presented above by augmenting the Domain Transfer
Network with additional constraints. Given a domain, X , an
engine e and a function f , we would like to learn a generative
function G, such that f is invariant under G and that for all sam-
ples x ∈ X , there exists a configuration u such that G(x) = e(u).
Other than the functions f and e, the training data is unsupervised
and consists of a set of samples from the source domain X and a
second set from the target domain of e.

In addition to the practical motivation, humans can learn to
create parameterized analogies without using matching samples.
Understanding possible computational processes is, therefore, a
novel AI objective. In addition to posing new computer vision and
AI problems, we also place the TOS problem in the mathematical
context of other domain shift problems. By doing so, we derive
an appropriate generalization bound and develop an algorithm that
matches the terms of the generalization bound.

2 BACKGROUND

Generative Adversarial Networks GAN [10] methods train a
generator network G that synthesizes samples from a target distri-
bution, given noise vectors, by jointly training a second network

d. G is trained jointly with a discriminator network d, which
distinguishes between samples generated by G and a training set
from the target distribution. The goal of G is to create samples
that are classified by d as real samples. The specific generative
architecture we employ is based on the architecture of [29]. Since
the image we create is based on an input and not on random noise,
our method is related to Conditional GANs, which employ GANs
in order to generate samples from a specific class [25] and the
work of [30] which generates images based on a text.

The recent work by [4], has shown promising results for
learning to map embeddings to their pre-images, given input-target
pairs. They also employ a GAN, as well as additional losses in
the feature- and the pixel-space. Their method is able to invert
the mid-level activations of AlexNet and reconstruct the input
image. By contrast, in our Domain Transfer Network, we solve the
problem of unsupervised domain transfer and apply the loss terms
in different domains: pixel loss in the target domain, and feature
loss in the source domain. Compared to our second method, which
solves the Tied Output Synthesis problem, their method does not
generate configurations.

The CoGAN method [20], like our Tied Output Synthesis
method, generates a pair of tied outputs. However, this method
generates the two outputs based on a random vector and not on an
input image. More importantly, the two outputs are assumed to be
similar and their generators (and GAN discriminators) share many
of the layers. In our case, the two outputs are related in a different
way: a vector of parameters and the resulting image. The solutions
are also vastly different. CoGAN can solve the problem of free-
form domain transfer. However, in [41], CoGAN was shown to
fail in the task of cross domain image transfer.

A recent work, which studied the learning of 3D structure from
images in an unsupervised manner, shares some of the computa-
tional characteristics with our problem [13]. The most similar ap-
plication to our parameterized problem, involves a parametrization
of a 3D computer graphics object with 162 vertices, each moving
along a line, a black-box camera projecting from 3D to 2D and
a set of 2D images without the corresponding 3D configuration.
The system then learns to map 2D images to the set of vertices.
This setting shares with us the existence of a fixed mapping from
the vector of parameters to the image. In our case, this mapping
is given as a neural network that will be termed e, in their case,
it is given as a black box, which, as discussed in Sec. 7, is a
solvable challenge. A more significant difference is that in their
case, the images generated by the fixed mapping are in the same
domain as the input, while in our case it is from a different domain.
The method employed in [13] completely differs from ours and is
based on sequential generative models [11].
Image synthesis with CNNs The supervised network of [5]
receives as input a one-hot encoding of the desired model, as
well as view parameters and a 3D transformation and generates
the desired view of a 3D object as both an RGB image and
a foreground/background map. DC-IGN [16] performs a similar
task with less direct supervision. The proposed framework learns
an encoder-decoder network, in which the representation at the
middle bottleneck is disentangled by controlling the training of
individual neurons and structuring the minibatches to explore
different aspects of the view and illumination. The training set
of this method is stratified but not necessarily fully labeled and
is used to disentangle the image representation in an encoder-
decoder framework. Pix2pix [12] maps an image to another
domain. Pix2pix is fully supervised and requires pairs of matching

3

samples from the two domains. The method trains a GAN to
distinguish between a “real” pair (source image, matching target
image) and “fake”(source image, generated image) pairs. As
mentioned, in many applications, the collection of these samples
is both unpractical and hard to do accurately.
Style transfer In these methods [9], [14], [34], new images are
synthesized by minimizing the content loss with respect to one
input sample and the style loss with respect to one or more input
samples. The content loss is typically the encoding of the image
by a network training for an image categorization task, similar to
our work. The style loss compares the statistics of the activations
in various layers of the neural network. While style transfer was
initially obtained by a slow optimization process [9], the emphasis
was recently put on feed-forward methods [14], [34].

There are many links between style transfer and our work:
both are unsupervised and generate a sample under f constancy,
given an input sample. However, our work is much more general
in its scope and does not rely on a predefined family of perceptual
losses. Our domain transfer method can be used in order to
perform style transfer, but not the other way around, since the style
transfer methods cannot capture semantics. Another key difference
is that the current style transfer methods are aimed at replicating
the style of one or several images, while our work considers a
distribution in the target space. In many applications, there is an
abundance of unlabeled data in the target domain, which can be
modeled accurately in an unsupervised manner. Finally, the Tied
Output Synthesis problem that we solve differs, because the image
we generate must adhere to specific constraints.

Given the impressive results of style transfer work, in par-
ticular for face images, one might get the false impression that
emoji are just a different style of drawing faces. By way of
analogy, this claim is similar to stating that a Siamese cat is a
Labrador Retriever in a different style. Emoji differ from facial
photographs in both content and style. Style transfer can create
visually appealing face images. However, the properties of the
target domain are compromised.

Similarly, the work that has been done to automatically gen-
erate sketches from images, e.g., [17], [35], [39], does not apply
to our methods, since it typically trains in a supervised manner
that requires correspondences between sketches and photographs.
The literature of face sketches also does not produce a parameter
vector in a semantic configuration space.
Unsupervised image translation A recent line of work [15], [38],
[41], applies cycle-constraint to map images between two domains
from an unpaired dataset. This is done by learning two generative
functions G : X → Y and F : Y → X to minimize a three term
loss: (a) GAN loss term for function G, (b) GAN loss term for
function F and (c) a cycle constancy loss requiring F (G(x)) ≈ x
and G(F (y)) ≈ y for all x ∈ X , y ∈ Y . The methods above
also employ GANs on input to generate images, instead of noise.
These methods differ from our work, since they do not constrain
the learned mapping with a perceptual function f . As a result,
the mapping can be viewed as style-transfer e.g. applying the
texture of the source domain on the target domain. For example,
cats are not dogs in another style. However, the mapping in [41]
generates cats with a dog texture. Our methods are able to utilize
the additional supervision given by the pretrained function f , as
is demonstrated in our experiments, which compare the results
obtained with CycleGAN [41] and our Domain Transfer Network.
Distances between distributions In unsupervised learning, where
one cannot match between an input sample and its output,

many methods rely on measuring distances between distributions.
Specifically, GANs were recently shown [8] to implement the
theoretical notion of discrepancies.

Definition 1 (Discrepancy distance). Let C be a class of func-
tions from A to B and let ` : B × B → R+ be a loss
function over B. The discrepancy distance discC between two
distributions D1 and D2 over A is defined as discC(D1, D2) =

supc1,c2∈C

∣∣∣RD1
[c1, c2] − RD2

[c1, c2]
∣∣∣, where RD[c1, c2] =

Ex∼D [`(c1(x), c2(x))].

Unsupervised Domain Adaptation The work done by [1], [3],
[24] addresses the following problem: given a labeled training set
in Xs × Y , for some target space Y , and an unlabeled set of
samples from domain Xt, learn a function h : Xt → Y .

The most successful recent work employs a GAN inspired
solution, which uses a technique called gradient reversal that
was introduced by Ganin et al. [8]. In this method, a learned
discriminator is employed in order to learn an intermediate feature
representation that is invariant to the source domain. Classification
done on top of this representation is expected to be less sensitive
to the shift in the domains.

Like our work, Unsupervised Domain Adaptation is a domain
shift problem. Our work differs, since it focuses on generating
aligned samples in the target domain, rather than labeling it. In
Sec. 3, we thoroughly discuss the relation between our work and
domain adaptation.

3 PROBLEM FORMULATION

Problems involving domain shift receive an increasing amount of
attention, since the field of machine learning moves its focus away
from the vanilla supervised learning scenarios to new combina-
tions of supervised, unsupervised and transfer learning. In this
section, we formulate the two computational problems that we
pose: (i) the free form “Cross Domain Transfer” problem, and
(2) the parameter-based “Tied Output Synthesis” problem. In this
section, these problems are put into a theoretical context. In the
following sections, we redefine the problems as concrete deep
learning problems. In order to maximize clarity, this section is
kept as independent as possible from the following ones, and the
reader may choose to skip the derivations and go directly to the
architecture, as presented in Sec. 4 and Sec. 5.

3.1 Related Problem: Unsupervised Domain Adapta-
tion
In the unsupervised domain adaptation problem [1], [3], [24],
the algorithm trains a hypothesis on a source domain and the
hypothesis is tested on a different target domain. The algorithm is
aided with a labeled dataset of the source domain and an unlabeled
dataset of the target domain. The conventional approach to dealing
with this problem is to learn a feature map that (i) enables accurate
classification in the source domain and (ii) captures meaningful
invariant relationships between the source and target domains.

LetX be the input space and Y be the output space. The source
domain is a distribution DS over X along with a function yS :
X → Y . Similarly, the target domain is specified by (DT , yT).
Given some loss function ` : Y × Y → R+ the goal is to fit a
hypothesis h from some hypothesis spaceH, which minimizes the
Target Generalization Risk, RDT

[h, yT]. Where a Generalization
Risk is defined as RD[h1, h2] = Ex∼D [`(h1(x), h2(x))].

4

Input X Output Y
1st {xi ∼ DT }
2nd {xj ∼ DS} {yS(xj)}

Input X Output Y
1st {xi ∼ D1}
2nd {y(xj)|xj ∼ D2}

Input X Out. Y1 Out. Y2
1st {xi ∼ D1}
2nd e(cj) {cj ∼ DY2}

(a) (b) (c)

Fig. 3. The domain shift configurations discussed in Sec. 3. (a) The unsupervised domain adaptation problem. The algorithm minimizes the risk in
a target domain using training samples {(xj ∼ DS , yS(xj))}mj=1 and {xi ∼ DT }ni=1. (b) The unsupervised domain transfer problem. In this case,
the algorithm learns a function G and is being tested on D1. The algorithm is aided with two datasets: {xi ∼ D1}mi=1 and {y(xj) ∼ Dy

2}nj=1. For
example, in the facial emoji application, D1 is the distribution of facial photos and D2 is the (unseen) distribution of faces from which the observed
emoji were generated. (c) The tied output synthesis problem, in which we are give a set of samples from one input domain {xi ∼ D1}, and matching
samples from two tied output domains: {(e(cj), cj)|cj ∼ DY2}.

X (samples) Y (labels)

f ◦DS

f ◦DT

h ◦DSDS

DT

Dy
S

disc

risk

gf

f

yS

(a)

X (face image) Y (emoji)

D2 Dy
2 h ◦Dy

2

D1 f ◦D1 h ◦D1 f ◦ h ◦D1 h ◦ h ◦D1

discdisc

y h

f g gf

risk (TID)

risk (f -constancy)

risk (h-const)

(b)

X (face image) Y1 (emoji) Y2 (parameter set)

D2 e ◦DY2
DY2

= y ◦D2

D1 f ◦D1 g ◦ f ◦D1 c ◦ g ◦ f ◦D1

e

f g c

y

(c)

Fig. 4. Illustrations of the domain shift scenarios depicted in Sec. 3. (a) Unsupervised domain adaptation. Each node contains a distribution. The
horizontal edges denote the mappings between the distributions and the learned function is h = g ◦ f . The vertical edges denote the discrepancy
between the the two distributions f ◦DS and f ◦DT and the risk between y and h on DS . (b) Domain Transfer Network (DTN). The learned function
is h = g ◦ f . The horizontal two-sided edges denote the TID and f -constancy risks that are used by the algorithm. The vertical two-sided edge
stands for the discrepancy between Dy

2 = y ◦ D2 and h ◦ D1. The dashed edges stand for the h-constancy risk that is required only in Thm. 1.
(c) Tied Output Synthesis. The unknown function y is learned by the approximation h = c ◦ g ◦ f . f and e are given. D1 is the distribution of input
images at test time. During training, we observe tied mappings (y(x), e(y(x))) for unknown samples x ∼ D2 as well as unlabeled samples from
the other distribution D1. The risks that are shared with DTN are omitted for clarity. Figure credit: (a) and (b) are borrowed from [7]

The distributions DS , DT and the target function yT : X →
Y are unknown to the learning algorithm. Instead, the learning
algorithm relies on a training set of labeled samples {(x, yS(x))},
where x is sampled from DS , as well as on an unlabeled training
set of samples x ∼ DT , see Fig. 3(a).

In the common solutions to this problem, following [23], each
hypothesis h ∈ H is decomposed into a feature map f and a
classifier g i.e. h = g ◦ f . The function f represents inputs from
x ∈ X as feature maps, so that the discrepancy distance (Def. 1)
between f ◦ DS and f ◦ DT is minimal. The classifier, g, maps
f(X) to Y . This is depicted in Fig. 4(a).

3.2 Problem I: Cross Domain Transfer
In the cross domain transfer problem, the task is to learn a
function that maps samples from the input domain X to the output
domain Y . In our work, we show a GAN based solution able
to convincingly transform face images into caricatures from a
specific domain.

The training data available to the learning algorithm in
the cross domain transfer problem is illustrated in Fig. 3(b)
and Fig. 4(b). The problem consists of two distributions, D1

and D2, and a target function, y. The algorithm has access
to the following two unsupervised datasets: {xi∼D1}mi=1 and
{y(xj)|xj∼D2}nj=1. The goal is to fit a function h = g ◦ f ∈ H
that optimizes infh∈HRD1

[h, y].

It is assumed that: (i) f is a fixed pre-trained feature map
and, therefore, H =

{
g ◦ f

∣∣g ∈ H2

}
for some hypothesis class

H2; and (ii) y is idempotent, i.e, y ◦ y ≡ y. For example, in our
methods, f is the DeepFace representation [33] and y maps face
images to emoji caricatures. In addition, applying y on an emoji
gives the same emoji. Note that in the setting of cross domain
transfer, D1 and D2 are the source and target distributions respec-
tively. However, the loss RD1

[h, y] is measured over D1, while in
domain adaptation, it is measured over the target distribution.

Recently [7], the cross domain transfer problem was analyzed
using the theoretical term of discrepancy. Denoting, for example,
y ◦D to be the distribution of the y mappings of samples x ∼ D,
then the following bound is obtained.

Theorem 1 (Domain transfer [7]). If ` satisfies the triangle

5

inequality2 and H2 (the hypothesis class of g) is a universal
Lipschitz hypothesis class3, then for all h = g ◦ f ∈ H,

RD1 [h, y] ≤Ry◦D2 [h, Id] +RD1 [f ◦ h, f]
+ discH(y ◦D2, h ◦D1) + λ

(1)

Here, λ = minh∈H {Ry◦D2
[h, Id] +RD1

[h, y]} and h∗ = g∗ ◦
f is the corresponding minimizer.

The theorem bounds the risk RD1
[h, y], i.e., the expected loss

(using `) between the mappings by the ground truth function y
and the mapping by the learned function h for samples x ∼ D1.
Lastly, the λ factor captures the complexity of the hypothesis class
H, which depends on the chosen architecture of the neural network
that instantiates g. A similar factor in the generalization bound of
the unsupervised domain adaptation problem is presented in [1].
Comparing to Unsupervised Domain Adaptation We note that
one can solve the cross domain transfer problem using domain
adaptation and vice versa. In both cases, the solution is indirect.
Solving domain adaptation using domain transfer can be done
via the following steps: (i) First, one would learn a feature map
function f using the samples {(xj , yS(xj))|xj ∼ DS}, (ii) The
pre-trained f will be used to apply the domain transfer algorithm
in order to obtain a mapping fromDS toDT (The function trained
this way would be more accurate on samples x ∼ DS than on
x ∼ DT . This asymmetry is shared with all experiments done
in this work) and (iii) Training samples from DS could then be
transferred to DT and used to learn an adapted classifier that is
suitable for the target domain.

In the other direction (solving domain transfer using a domain
adaptation algorithm), given the function f , one can invert f by
generating training samples {(f(x), x)|x ∼ D2} and learn the
function h = f−1 from f ◦ D2 to D2. Domain adaptation can
then be used in order to learn mapping g from f ◦D1 to D2, thus
achieving domain transfer. Based on the work by [40], we expect
that h, even in the target domain of emoji, will be hard to learn,
making this solution hypothetical at this point.

3.3 Problem II: Tied Output Synthesis

The second problem studied in this paper, is a third flavor of
domain shift, which can be seen as a mix of the two problems:
the unsupervised domain adaptation and the cross domain transfer
problem. Similar to the unsupervised domain transfer problem, we
are given a set of supervised labeled samples. The samples cj are
drawn i.i.d from the distribution DY2

in the space Y2 and are
given together with their mappings e(cj) ∈ Y1. In addition, and
similar to the cross domain transfer problem, we are given samples
xi ∈ X drawn i.i.d from another distribution D1. The goal is to
learn a mapping y : X → Y2 that satisfies the following condition
y ◦ e ◦ y = y. The hypothesis class contains functions h of the
form c ◦ g ◦ f for some known f for g ∈ H2 and for c ∈ H3.
f is a pre-learned function that maps the input sample in X to
some feature space, g maps from this feature space to the space

2. For all y1, y2, y3 ∈ Y it holds that `(y1, y3) ≤ `(y1, y2) + `(y2, y3).
This holds for the absolute loss, and can be relaxed to the square loss, where
it holds up to a multiplicative factor of 3.

3. A function c ∈ C is Lipschitz with respect to `, if there is a constant L >
0 such that: ∀a1, a2 ∈ A : `(c(a1), c(a2)) ≤ L · `(a1, a2). A hypothesis
class C is universal Lipschitz with respect to `, if all functions c ∈ C are
Lipschitz with some universal constant L > 0. This holds, for example, for
neural networks with leaky ReLU activations and weight matrices of bounded
norms, under the squared or absolute loss.

Y1, and c maps from this space to the space of parameters Y2, see
Fig. 3(c) and Fig. 4(c).

Our approach assumes that e is prelearned from the matching
samples (cj , e(cj)). However, c is learned together with g. This
makes sense, since while e is a feedforward transformation from
a set of parameters to an output, c requires the conversion of an
input of the form g(f(x)) where x ∼ D1, which is different from
the image of e for inputs in Y2. The theorem below describes our
solution. It assumes that DY2

= y ◦D2, for some distribution D2

of samples in X .

Theorem 2 (Tied output bound). If ` satisfies the triangle inequal-
ity and H2 is a universal Lipschitz hypothesis class with respect
to `, then for all h = c ◦ g ◦ f ∈ H,

RD1 [e ◦ h, e ◦ y] ≤RD1 [e ◦ h, g ◦ f] +Re◦y◦D2 [g ◦ f, Id]
+RD1 [f ◦ g ◦ f, f]
+ discH(e ◦ y ◦D2, g ◦ f ◦D1) + λ,

(2)

where λ = ming∈H2
{Re◦y◦D2

[g ◦ f, Id] +RD1
[g ◦ f, e ◦ y]}

and g∗ is the corresponding minimizer.

Proof. By the triangle inequality, we obtain:
RD1

[e ◦ h, e ◦ y] ≤ RD1
[e ◦ h, g ◦ f] +RD1

[g ◦ f, e ◦ y].
Applying Thm. 1 completes the proof:

RD1 [g ◦ f, e ◦ y] ≤Re◦y◦D2 [g ◦ f, Id] +RD1 [f ◦ g ◦ f, f]
+ discH(e ◦ y ◦D2, g ◦ f ◦D1) + λ

Thm. 2 presents a recursive connection between the tied
output synthesis problem and the cross domain transfer problem.
This relation can be generalized for tying even more outputs to
even more complex relations among parts of the training data.
The importance of having a generalization bound to guide our
solution stems from the plausibility of many other terms, such as
Re◦y◦D2 [e ◦ h, g ◦ f] or RD1 [f ◦ g ◦ f, f ◦ e ◦ h].
Comparing to Unsupervised Cross Domain Transfer The tied
output problem is a specific case of cross domain transfer with Y
of the latter being Y1×Y2 of the former. However, this view makes
no use of the network e. Comparing Thm. 1 and Thm. 2, there is an
additional term in the second bound:RD1

[e◦h, g◦f]. It expresses
the expected loss (over samples from D1) when comparing the
result of applying the full cycle of encoding by f , generating an
image by g, estimating the parameters in the space Y2 using c,
and synthesizing the image that corresponds to these parameters
using e, to the result of applying the subprocess that includes only
f and g.
Comparing to Unsupervised Domain Adaptation Consider the
domainX∪Y1 and learn the function e−1 from this domain to Y2,
using the samples {(e(cj), cj)|cj ∼ D2}, adapted to xi ∼ D1.
This is a domain adaptation problem withDS = e◦D2 andDT =
D1. Our experiments show that applying this reduction leads to
suboptimal results. This is expected, since this approach does not
make use of the prelearned feature map f . This feature map is
not to be confused with the feature network learned in [8], which
we denote by p. The latter is meant to eliminate the differences
between p ◦DS and p ◦DT . However, the prelearned f leads to
easily distinguishable f ◦DS and f ◦DT .

The unsupervised domain adaptation and the TOS problem be-
come more similar, if one identifies p with the conditional function
that applies g ◦ f to samples from X and the identity to samples
from Y1. In this case, the label predictor of [8] is identified with
our c and the discrepancy terms (i.e., the GANs) are applied to the
same pairs of distributions. However, the two solutions would still

6

differ, since (i) our solution minimizes RD1
[e ◦ h, g ◦ f], while

in unsupervised domain adaptation, the analog term is minimized
over DS = e ◦D2 and (ii) the additional non-discrepancy terms
would not have analogs in the domain adaptation bounds.

4 NETWORKS FOR FREE-FORM GENERATION

We next reformulate the problems as neural network challenges.
For clarity, this formulation is purposefully written to be indepen-
dent of the mathematical presentation above.

In the Domain Transfer problem (Sec. 3.2), we study the task
of projecting an image in one domain to an image in another
domain. Given a domain, X , and a function f , we would like to
learn a generative function G, such that f is invariant under G,
i.e., f ◦G = f . In network form, f maps an image to a fixed size
1-dimensional representation. f architecture is not constrained
by our method. Exact architectures used in our experiments are
provided in Sec. 6.1. The training data is unsupervised and consists
of a set of samples from the source domain X and a second set
from the target domain Y .

4.1 A baseline formulation
Given a set s of unlabeled samples in a source domain X sampled
i.i.d according to some distribution D1, a set of samples in the
target domain t ⊂ Y sampled i.i.d from distribution D2, a
function f from the domain X and a weight α, we wish to
learn a function G : X → Y that minimizes the combined risk
R = RGAN + αRCONST, which is comprised of

RGAN = max
d

Ex∼D1 log[1−d(G(x))]+Ex∼D2 log[d(x)], (3)

where d is a binary classification function from Y , d(x) the
probability of the class 1 it assigns for a sample x ∈ Y , and

RCONST = Ex∼D1
‖f(x)− f(G(x))‖2 (4)

The first term is the adversarial risk, which requires that
for every discriminative function d, the samples from the target
domain would be indistinguishable from the samples generated by
G for samples in the source domain.

The second term is the f -constancy term, which requires that
f is invariant under G. In practice, we have experimented with
multiple distance metrics, including Mean Squared Error (MSE)
and cosine distance, as well as other variants including metric
learning losses (hinge) and triplet losses. The performance is
mostly unchanged, and we report results using the simplest MSE
solution.

Similar to other GAN formulations, one can minimize the loss
associated with the risk R over G, while maximizing it over d,
where G and d are deep neural networks, and the expectations
in R are replaced by summations over the corresponding training
sets:

LGAN = max
d

∑
x∈s

log[1− d(G(x))] +
∑
x∈t

log[d(x)], (5)

LCONST =
∑
x∈s
‖f(x)− f(G(x))‖2 (6)

In our experiments, we show that this baseline does not
produce desirable results.

4.2 The domain transfer network

Domain transfer network (DTN) is a more elaborate architecture
that contains two high level modifications used to solve the cross
domain transfer problem. First, we employ f(x) as the baseline
representation to the function G. Second, we consider, during
training, the generated samples G(x) for x ∈ t.

The first change is stated as G = g ◦ f , for some learned
function g. By applying this, we focus the learning effort of G
on the aspects that are most relevant to RCONST. In addition, in
most applications, f is not as accurate on Y as it is on X . The
composed function, which is trained on samples from both X and
Y , adds layers on top of f , which adapt it.

The second change alters the form of LGAN, making it multi-
class, instead of binary. It also introduces a new term LTID that
requires G to be the identity matrix on samples from Y1. Taken
together and written in terms of training loss, we now have two
losses LD and LG = LGANG + αLCONST + βLTID + γLTV, for
some weights α, β, γ, where

LD = −
∑
x∈s

log d1(g(f(x)))−
∑
x∈t

log d2(g(f(x)))−
∑
x∈t

log d3(x)

(7)
LGANG = −

∑
x∈s

log d3(g(f(x)))−
∑
x∈t

log d3(g(f(x))) (8)

LTID =
∑
x∈t
‖x−G(x)‖2 (9)

and where d is a ternary classification function from the
domain Y1 to 1, 2, 3, and di(x) is the probability it assigns to
class i = 1, 2, 3 for an input sample x. LCONST is explained by
Eq. 6. During optimization, LG is minimized over g and LD is
minimized over d. See Fig. 5(b) for an illustration of our method.

Eq. 7 and 8 make sure that the generated analogy, i.e., the
output of G, is in the target space Y . Since d is ternary and can,
therefore, confuse classes in more than one way, this role, which
is captured by Eq. 3 in the baseline formulation, is split into two.
However, the two equations do not enforce any similarity between
the source sample x and the generated G(x). This is done by
Eq. 6 and 9: Eq. 6 enforces f -constancy for x ∈ X , while Eq. 9
enforces that for samples x ∈ Y , which are already in the target
space,G is the identity mapping. The latter is a desirable behavior,
e.g., for the cartooning task, given an input emoji, one would like
it to remain constant under the mapping of G. It can also be
seen as an autoencoder type of loss, applied only to samples from
Y . The experiments reported in Sec. 6 evaluate the contributions
of LCONST and LTID and reveal that at least one of these is
required, and that when employing only one loss, LCONST leads
to a better performance than LTID .

The last loss, LTV is an anisotropic total variation loss [22],
[31], which is added in order to slightly smooth the resulting im-
age. The loss is defined on the generated image z = [zij] = G(x)
as

LTV (z) =
∑
i,j

(
(zi,j+1 − zij)2 + (zi+1,j − zij)2

)B
2
, (10)

where we employ B = 1.
The Domain Transfer Network matches Thm. 1. The first term

in the R.H.S of Thm. 1, Ry◦D2 [h, Id], is the LTID part of the DTN
loss, which, for the cartooning task, states that emoji caricatures
are mapped to themselves. The second term RD1 [f ◦ h, f] corre-
sponds to the LCONST term of DTN, which states that the under

7

(a) (b)

(c)

Fig. 5. (a) The training constraints for unsupervised domain adap-
tation applied to the problem of recovering the avatar parameters
given an input image. The learned functions are p, l and d. grad.
revesal stands for the gradient reversal operation during back
propagation. The mapping e is assumed to be known a-priori and
is used only during inference time to generate an emoji from the
configurations. (b) The training constraints of the Domain Transfer
Network method. The learned functions are d and G = g ◦ f , for
a given f . The dashed lines denote loss terms. (c) The training
constraints of the Tied Output Synthesis Network. The learned
functions are c, d, and G = g ◦ f , for a given f . The mapping e
is assumed to be known a-priori. The dashed lines denote loss
terms.

f -constancy the input face image and the resulting caricature are
similar. The theorem shows that this constancy does not need to be
assumed and is a result of the idempotency of y and the structure
of h. The third term discH(y ◦D2, h ◦D1) is the GAN element
of the method, which compares generated caricatures (h ◦D1) to
the training dataset of the unlabeled emoji (y ◦D2).

5 NETWORKS FOR PARAMETERIZED GENERATION

The Tied Output Synthesis problem presented in Sec. 3.3 extends
the Domain Transfer problem of Sec. 3.2. Given a domain, X , a
mapping e and a function f , we would like to learn a generative
function G, such that f is invariant under G, and that for all
samples x ∈ X , there exists a configuration u ∈ Y2 such that
G(x) = e(u). In comparison to the Domain Transfer problem,
the target domain of TOS (Y1) is constrained to be the image of a
mapping e.

A solution to the Domain Transfer problem cannot satisfy the
additional constraint imposed by Tied Output Synthesis, since
presenting it with a training set t of samples generated by e
is not a strong enough constraint. Furthermore, the real-world
avataring applications require the recovery of the configuration
u itself, which allows the synthesis of novel samples using an
extended engine e∗ that generates new poses, expressions in the
case of face images, etc. From the application point of view, the
tied output synthesis problem tackled here is considerably more
applicable than the domain transfer problem.

5.1 Applying Unsupervised Domain Adaptation

The Domain Adaptation architecture of [8] can be used to solve
the TOS challenge. The algorithm is given a training set s ⊂ X ,
and a paired training set (t1, t2) ⊂ Y1 × Y2.

Learning is done by training three networks p,l and d so that:
(a) e−1(t1) = t2 where e−1 = l ◦ p and (b) network d is unable
to determine the input domain of the sample x ∈ X ∪ Y1 based

on the representation p(x). In loss terms, condition (a) is met by
p and l minimizing:

Llabel =
∑
x∈t1

‖l(p(x))− t2‖2 (11)

and condition (b) is met by d minimizing and p maximizing:

Ldomain =
∑
x∈s

log[1− d(p(x))] +
∑
x∈t

log[d(p(x))], (12)

maximization is achieved by taking the reverse of the gradient
(multiply by -1) during back propagation of Ldomain. Fig. 5(a)
depicts the full architecture. In our experiments, we show the result
of this approach is not identifiable as our proposed solution.

5.2 The interplay between the trained networks
Before presenting our solution to the TOS problem, we present
a general description of the framework we use in the learning
process. The constraint of TOS, generating images in a tied
domain of image and configuration, requires the learned networks
to share a mutual signal during training to tie both domains.
Thus, the framework is presented in contrast to the adversarial
framework of GANs.

In a general view of GANs, assume a loss function `(G, d, x),
for some function d that receives inputs in the domain Y1. G,
which maps an input x to entities in Y1, minimizes the risk of
Eq. 3, which can be rewritten as: RGAN = maxd−Ex `(G, d, x).
This optimization is successful, if for every function d, the
expectation of `(G, d, x) is small for the learned G. It is done
by maximizing this expectation with respect to d, and minimizing
it with respect to G. The two learned networks d and G provide a
training signal to each other.

Two networks can also provide a mutual signal, by collaborat-
ing on a shared task. Consider the case in which G and a second
function c work hand-in-hand in order to minimize the expectation
of some other loss `(G, c, x). In this case, G “relies” on c and
minimizes the following expression:

Rc = min
c

Ex `(G, c, x). (13)

8

Algorithm 1 The TOS training algorithm.
1: Given the function e : Y2 → Y1, an embedding function f ,

and S ⊂ X , T ⊂ Y1 training sets.
2: Initialize networks c, g and d
3: while iter < numiters do
4: Sample mini-batches s ⊂ S, t ⊂ T
5: Compute feed-forward d(t), d(g(f(s)))
6: Update d by minimizing LGAN . Eq. 5
7: Update g by maximizing LGAN . Eq. 5
8: Update g by minimizing LCONST . Eq. 6
9: Update g by minimizing LTID . Eq. 9

10: Update g by minimizing LTV

11: Compute e(c(z)) by feed-forwarding z := g(f(s))
12: Update c and g by minimizing Lc . Eq. 15

This optimization succeeds, if there exists a function c for which,
post-learning, the expectation Ex `(G, c, x) is small.

In the problem of tied output synthesis, the function e maps
entities u in some configuration space Y2 to the target space Y1.
c maps samples from Y1 to the configuration space, essentially
inverting e. The suitable loss is:

`e(G, c, x) = ‖G(x)− e(c(G(x)))‖2. (14)

For such a problem, the optimal c is given by c∗(z) =
argminu ‖z − e(u)‖2. This implicit function is intractable to
compute, and c is learned instead as a deep neural network.

5.3 The TOS Network

The solution of the Tied Output Synthesis problem is given a
mapping e, perceptual function f , a training set s ⊂ X , and a
training set t ⊂ Y1. Similar to DTN, we define G to be composed
out of f and a second function g that maps from the output space
of f to Y1, i.e., G = g ◦ f . The e compliance term (Lc of Eq. 13
using `e of Eq. 14) becomes:

Lc =
∑
x∈s
‖g(f(x))− e(c(g(f(x))))‖2 (15)

The compliance term is added to the constraints of DTN
(Equations (6) to (10)) and results in two training losses, d
minimizes LD , and both g and c minimize

LG = Lc + αLGAN + βLCONST + γLTID + δLTV (16)

for some non-negative weights α, β, γ, δ. The method is illus-
trated in Fig. 5(c) and laid out in Alg. 1. Exact architectures are
provided in Sec. 6.1.

In the context of Thm. 2, the term Lc corresponds to the risk
term RD1

[e ◦ h, g ◦ f] in the theorem and compares samples
transformed by the mapping g ◦ f to the mapping of the same
samples to a configuration in Y2 using c ◦ g ◦ f and then to Y1
using e. The term LTID corresponds to the risk Re◦y◦D2

[g ◦f, Id],
which is the expected loss over the distribution from which t is
sampled, when comparing the samples in this training set to the
result of mapping these by g ◦ f . The discrepancy term discH(e ◦
y ◦D2, g ◦ f ◦D1) matches the LGAN term, which, as explained
above, measures a distance between two distributions, in this case,
e ◦ y ◦D2, which is the distribution from which the training set t
is taken, and the distribution of mappings by g ◦ f of the samples
s which are drawn from D1.

Fig. 6. Domain transfer from SVHN domain to MNIST domain. Input in
odd columns; output in even columns.

6 EXPERIMENTS

In the following section, we evaluate both the free-form Domain
Transfer Network and the parameter-based Tied Output Synthesis
methods. The Domain Transfer Network is evaluated in the digits
domain, where we transfer images from the Street View House
Number (SVHN) dataset [26] to the domain of the MNIST
dataset [18]. We perform an ablation study to investigate the
importance of Equations (6) to (10). Additionally, we show that
DTN can be used to perform domain adaptation.

The Tied Output Synthesis is evaluated on a toy problem of
inverting a polygon synthesizing engine. We use this toy-case
to illustrate the method and the contribution of incorporating e.
Finally, we evaluate both systems on the task of avatar generation
from a photograph for two different CG engines.

6.1 Architecture
The networks used in our experiments are inspired by DC-
GAN [29]. For our DTN experiments on the Digits datasets,
network f is a modification of the DCGAN discriminator to output
128D representation, instead of real/fake probability.

Network e is based on DCGAN’s generator architecture,
except for mapping a configuration vector, instead of noise, to an
RGB image. Since the online emoji rendering engine is additive
in nature and contains a finite number of options for each facial
feature (nose, eyes, hair, etc.), a network with enough capacity
mimics it without difficulty and in our experiments, we found
the DCGAN inspired architecture to be sufficient. The same
architecture of network e was used for both the simple Polygons
dataset and for the Face Emoji dataset. Since polygons are simpler,
it is likely that a simpler architecture will suffice. However, we
preferred using the same architecture.

Network c is based on DCGAN’s discriminator and it predicts
the configuration vector (instead of real/fake probability), given an
RGB image. The detailed architectures are given in Tab. 1.

6.2 Digits
For working with digits, we employ the training split of SVHN,
which contains 531,131 images for two purposes: learning the
function f and as an unsupervised training set s for the domain
transfer method. The evaluation is done on the test split of SVHN,

9

TABLE 1
Architectures of networks used in experiments of Sec. 6. The digits dataset was used to evaluate the DTN method and, therefore, does not employ

networks e and c. The synthetic Polygons dataset did not use f-constancy therefore does not include network f .

Digits Face Emoji Polygons

f
Four 4× 4 convolutional layers
with 64-128-256-128 filters, followed by max pooling.
All layers employ ReLU activation.

DeepFace [33] —

d

Four 4× 4 convolutional layers
with 64-128-256-1 filters.
All layers, except last one, employ batch normalization,
and a leaky ReLU with leakiness coefficient of 0.2.
All the layers use a stride of 2 and padding of 1,
except the last one, which does not use stride or padding.

Six 4× 4 convolutional layers
with 64-128-256-512-512-3 filters.
All layers, except last one, employ batch normalization,
and a leaky ReLU with leakiness coefficient of 0.2.
All the layers use a stride of 2 and padding of 1,
except the last one, which does not use stride or padding.

Same as FaceEmoji

g

Four 4× 4 upscaling convolutional layers
with 64-128-256-1 filters.
All layers employ batch normalization, and ReLU activation,
except the last layer, which employs Tanh activation.
All the layers use a stride of 2 and padding of 1,
except the first one, which does not use stride or padding.

Nine convolutional layers.
All layers employ batch normalization, and ReLU activation
except last one which employs Tanh activation.
The odd layers perform upscaling 4× 4 convolutions
with 512-256-128-64-3 filters.
The even layers perform 1× 1 convolutions [19].
The odd layers use a stride of 2 and padding of 1,
except the first one, which does not use stride or padding.

Same as FaceEmoji without
the 1× 1 convolutional layers
i.e., five convolutional layers
with 512-256-128-64-3 filters

c —

Five convolutional layers
with 64-128-256-512-813 filters.
All layers employ batch normalization, and ReLU activation,
except the last layer, which employs Tanh activation.

Same as FaceEmoji

e —

Five 4× 4 upscaling convolutional layers
with 512-256-128-64-3 filters.
All layers employ batch normalization and ReLU activation.
The last layer employs Tanh activation.
All the layers use a stride of 2 and padding of 1,
except the first one, which does not use stride or padding.

Same as FaceEmoji

comprised of 26,032 images. The error on the test split is 4.95%.
Even though this accuracy is far from the best reported results, it
seems to be sufficient for the purpose of domain transfer. Within
the DTN, f maps a 32× 32 RGB image to the activations of the
last convolutional layer of size 128 × 1 × 1 (post a 4 × 4 max
pooling and before the ReLU). In order to apply f on MNIST
images, we replicate the grayscale image three times, obtaining a
monochromatic RGB image.

The set t contains the test set of the MNIST dataset. For
supporting quantitative evaluation, we have trained a classifier
on the train set of the MNIST dataset, consisting of the same
architecture as f . The accuracy of this classifier on the test
set approaches perfect performance at 99.4% accuracy, and is,
therefore, trustworthy as an evaluation metric. In comparison, the
network f achieves 76.08% accuracy on t.

Network g, maps SVHN-trained f ’s 128D representations to
32 × 32 grayscale images. In the digit experiments, the results
were obtained with the tradeoff hyperparamemters α = β = 15.
We did not observe a need to add a smoothness term and the
weight of LTV was set to γ = 0.

Despite not being very accurate on both domains (and also
considerably worse than the SVHN state of the art), we were able
to achieve visually appealing domain transfer, as shown in Fig. 6.

In order to provide a quantitative evaluation, we have em-
ployed the MNIST network on the set of samples G(sTEST) =
{G(x)|x ∈ sTEST }, using the true SVHN labels of the test set.
We first compare to the baseline method of Sec. 4.1, where the
generative function, which works directly with samples in X ,
is composed out of a few additional layers at the bottom of G.
The results, shown in Tab. 2, demonstrate that DTN has a clear
advantage over the baseline method. In addition, the contribution
of each one of the terms in the loss function is shown in the
table. The regularization term LTID seems less crucial than the

TABLE 2
Accuracy of the MNIST classifier on the sampled transferred by our

DTN method from SHVN to MNIST.

Method Accuracy

Baseline method (Sec. 4.1) 13.71%
CycleGAN [41] 26.1%
DistanceGAN [2] 26.8%
DTN 90.66%
DTN w/0 LTID 88.40%
DTN w/0 LCONST 74.55%
DTN G does not contain f 36.90%
DTN w/0 LD and LGANG 34.70%
DTN w/0 LCONST & LTID 5.28%
Original SHVN image 40.06%

constancy term. However, at least one of them is required in
order to obtain good performance. The GAN constraints are also
important. Finally, the inclusion of f within the generator function
G has a dramatic influence on the results.

Also shown are the results of experiments which evaluate the
performance of DistanceGAN [2] and CycleGAN [41] on the task
of domain transfer, by transferring the test set of SVHN to MNSIT
space and using the MNIST network as the classifier. The results
demonstrate the advantage of DTN over mapping methods, which
do not employ the perceptual function f during the learning.

As explained in Sec. 3.2, domain transfer can be used in order
to perform unsupervised domain adaptation. For this purpose, we
transformed the set s to the MNIST domain (as above), and using
the true labels of s, employed a simple nearest neighbor classifier
there. The choice of classifier was to emphasize the simplicity
of the approach; However, the constraints of the unsupervised
domain transfer problem would be respected for any classifier
trained on G(s). The results of this experiment are reported
in Tab. 3, which shows a clear advantage over the method of

10

TABLE 3
Domain adaptation from SVHN to MNIST

Method Accuracy

SA [6] 59.32%
DANN [8] 73.85%
DTN on SVHN transferring
the train split s 84.44%
DTN on SVHN transferring
the test split 79.72%

(a) (b) (c)

(d) (e) (f)

Fig. 7. A random subset of the digit ’3’ from SVHN, transferred to MNIST.
(a) The input images. (b) The results of our DTN. In all plots, the cases
keep their respective locations, and are sorted by the probability of ‘3’,
as inferred by the MNIST classifier on the results of our DTN. (c) The
obtained results, in which the digit 3 was not shown as part of the set
s unlabeled samples from SVNH. (d) The obtained results, in which the
digit 3 was not shown as part of the set t of unlabeled samples in MNIST.
(e) The digit 3 was not shown in both s and t. (f) The digit 3 was not
shown in s, t, and during the training of f .

DANN [8]. This is true both when transferring the samples of
the set s and when transferring the test set of SVHN, which is
much smaller and was not seen during the training of the DTN.

6.2.1 Unseen digits
Another set of experiments was performed in order to study the
ability of the domain transfer network to overcome the omission
of a class of samples. This type of ablation can occur in the source
or the target domain, or during the training of f and can help us
understand the importance of each of these inputs. The results are
shown visually in Fig. 7, and qualitatively in Tab. 4, based on the
accuracy of the MNIST classifier only on the transferred samples
from the test set of SVHN that belong to class ‘3’.

It is evident that not including the class in the source domain is
much less detrimental than eliminating it from the target domain.
This is the desirable behavior: never seeing any ‘3’-like shapes in
t, the generator should not generate such samples. The results are
better when not observing ‘3’ in both s, t than when not seeing it
only in t, since in the latter case, G learns to map source samples
of ‘3’ to target images of other classes.

6.3 Polygons
TOS is initially evaluated in a context that is independent of f
constancy. Given a set of images t ∈ Y1, and a mapping e from

TABLE 4
Comparison of recognition accuracy of the digit 3 as generated in

MNIST

Method Accuracy of ‘3’

DTN 94.67%
‘3’ was not shown in s 93.33%
‘3’ was not shown in t 40.13%
‘3’ was not shown in both s or t 60.02%
‘3’ was not shown in s, t, and during the training of f 4.52 %

(a)

(b)

(c)

Fig. 8. Toy problem. (a) Polygon images with three random parameters:
number of vertices, radius of enclosing circle and rotation. (b) GAN
generated images mimicking the class of polygon images. (c) G(x)
images created by TOS. The TOS is able to benefit from the synthesis
engine e and produces images that are noticeably more compliant than
the GAN.

some vector space to Y1, learn a mapping c and a generative
functionG that creates e-compliant random images in Y1 (Eq. 14).

We create binary 64 × 64 images of regular polygons by
sampling uniformly three parameters: the number of vertices (3-
6), the radius of the enclosing circle (15-30), and a rotation angle
in the range [−10, 10]. Some polygons are shown in Fig. 8(a).
10,000 training images were created and used in order to train a
CNN e that maps the three parameters to the output, with very
little loss (MSE of 0.1). The MNIST dataset does not contain
configuration u for each sample. Therefore, it is not suitable for
assessing the benefits of e supervision.

A training set t of a similar size is collected by sampling in
the same way. As a baseline method, we employ DCGAN [29],
in which the input x is a random vector in [−1, 1]100. The results
are shown in Fig. 8(b). While the generated images are similar to
the class of generated polygons, they are not from this class and
contain visible artifacts, such as curved edges.

A TOS network is then trained by minimizing Eq. 14 with
the additional GAN constraints. The optimization minimizes
Lc + αLGAN, for α = 1 (LCONST and LTID are irrelevant
to this experiment), and with the input distribution D1 of random
vectors sampled uniformly in the [−1, 1] hypercube in 100D. The
results, as depicted in Fig. 8(c), show that TOS, which enjoys
the additional supervision of e, produces results that better fit the
polygon class. See Sec. 6.1 for details on the architectures.

6.4 Face Emoji

The proposed TOS method is evaluated for the task of generating
specification-compliant emoji. In this task, we transfer an “in-
the-wild” facial photograph to a set of parameters that defines
an emoji. As the unlabeled training data of face images (domain
X), we use a set s of one million random images without identity

11

information. The face images were cropped and aligned into 152×
152 RGB images, as done in [33]. The set t consists of assorted
facial avatars (emoji) created by an online service (bitmoji.com).
The emoji images were processed by an automatic process that
detects, based on a set of heuristics, the center of the irises and
the tip of the nose. Based on these coordinates, the emoji were
centered and scaled into 152× 152 RGB images.

The emoji engine of the online service is mostly additive.
In order to train the TOS, we mimic it and have created a
neural network e that maps properties such as gender, length
of hair, shape of eyes, etc. into an output image. Network e
maps emoji parameterization into the matching 64 × 64 RGB
emoji. The parameterization is given as binary vectors in R813

for emojis; Avatar parameterization is in R354. While there are
dependencies among the various dimensions (an emoji cannot
have two hairstyles at once), the binary representation is chosen
for its simplicity and generality. e is trained in a fully supervised
way, using pairs of matching parameterization vectors and images
in a supervised manner.

The networks composing TOS are described in Sec. 6.1. Net-
work e is pretrained to support the TOS methods. As function f ,
we employ the representation layer of the DeepFace network [33].
This representation is 256-dimensional and was trained on a
labeled set of four million images that does not intersect the set s.
Network g maps DeepFace’s 256-dimensional representation [33]
into 64× 64 RGB emoji images.

TOS is compared to the DTN method, which does not
enforce the generated emoji to be specification-compliant. The
DTN employs the same architecture for networks f, d, g, albeit
different choice of hyperparameters α = 100, β = 1, γ = 0.05
which were selected via validation. Network d takes 152 × 152
RGB images (either natural or scaled-up emoji) and outputs
log-probabilities predicting if the image is fake or real. Finally,
network c of the TOS method maps a 64 × 64 emoji to a
parameterization vector with values in range [−1, 1]. We set
α = 0.01, β = 100, γ = 1, δ = 0.0005 as the tradeoff
hyperparameters, after eyeballing the results of the first epoch of
a very limited set of experiments.

For evaluation purposes only, we employ a benchmark which
contains manually created emoji of 118 random images from the
CelebA dataset [21]. The benchmark was created by a team of
professional annotators, who used the web service that creates the
emoji images. Fig. 9 shows side by side samples of the original
image, the human generated emoji, the emoji generated by the
generator function of DTN, and the emoji generated by both the
generator G = g ◦ f and the compound generator e ◦ c ◦ G of
our TOS method. As can be seen, the DTN emoji tend to be more
informative, albeit less restrictive than the ones created manually.
TOS respects the configuration space and creates emoji that are
similar to the ones created by the human annotators, but which
tend to carry more identity information.

6.4.1 Identifiability
In order to evaluate the identifiability of the resulting emoji, we
have collected a second example for each identity in the set of
118 CelebA images and a set s′ of 100,000 random face images
(unsupervised, without identity), which were not included in s.
The VGG face CNN descriptor [28] is then used in order to
perform retrieval as follows. For each image x in the manually
annotated set, a gallery s′ ∪ x′ is created, where x′ is the other
image of the person in x. Retrieval is then performed using VGG

TABLE 5
A comparison of median rank for retrieval out of a set of 100,001 face

images for either manually created emoji, or emoji and VR avatars
created by DTN or TOS. The results are shown for the “raw” G(x), as
well as for the configuration compliant e(..(x)). Since DTN does not

produce a configuration-compliant emoji, we obtain the results for the
e(..(x)) column, by applying to its output a pretrained network c̄ that
maps emoji to configurations. Also shown are DANN results obtained
when training such a mapping c̄ that is adapted to the samples in s.

Method Emoji Avatars
g(f(x)) e(..(x)) g(f(x)) e(..(x))

Manual NA 16,311 NA NA
DANN [8] NA 59,625 NA 52,435
DTN 16 18,079 195 38,805
TOS 30 3,519 758 11,153
TOS fixed c̄ 26 14,990 253 43,160

faces and either the manually created emoji, G(x), or e(c(G(x)))
as the probe.

In these experiments, the VGG face network is used in order
to avoid a bias that might be caused by using f both for training
the DTN and the TOS methods and for evaluation. The results are
reported in Tab. 5(left). As can be seen, the G(x) emoji generated
by DTN are extremely discriminative and obtain a median rank of
16 in cross-domain identification out of 105 distractors. However,
DTNs are not compatible with any configuration vector. In order
to demonstrate this, we trained a network c̄ that maps emoji
images to configurations. When applied to the emoji generated
by DTN and transforming the results, using e, back to an emoji,
the obtained images are less identifiable than the emoji created
manually (Tab. 5, under e(..(x))). By comparison, the median
rank of the emoji created by the configuration vector c(G(x))
of TOS is much better than the result obtained by the human
annotators. As expected, DTN has more identifiable results than
TOS, when considering the output of g(f(x)) directly, since TOS
has additional terms and the role of LCONST in TOS is reduced.

The need to train c and G jointly, as is done in the TOS
framework, is also verified in a second experiment, in which we
pretrained network c to be the network c̄. The results of rendering
the configuration vector were also not as good as those obtained by
the unmodified TOS framework. As expected, querying by G(x)
directly, produces results that are between DTN and TOS.

It should be noted that using the pretrained c̄ directly on input
faces, leads to fixed configurations (modes), since c̄ was trained to
map from Y1 and not fromX . This is also true when the prediction
is based on f mappings of the input and when training a mapping
from X to Y2 under the f distance on the resulting avatar.

6.4.2 Domain Adaptation

This situation calls for the use of unsupervised domain adaptation
(Sec. 3) to learn a mapping from X to Y2 by adapting a mapping
from Y1. Despite some effort, applying the domain adaptation
method of [8] did not result in satisfactory results (Tab. 5 and
Fig. 10), since the method does not preserve the image identity.

In the domain adaptation method, network p extracts 2048-
dimensional feature vectors from 64× 64 RGB images. It resem-
bles the structure of network c - with 4 convolution layers. Each
convolution is with 64-128-256-512 filters respectively. The last
convolutional layer employs a stride of 1, instead of 2 and does
not use batch-normalized or leaky ReLU. Finally, the network
output is flattened to a 1-dimensional feature vector.

12

(a) (b) (c)

Fig. 9. Shown, side by side, are (a) sample images from the CelebA dataset. (b) emoji, from left to right: the images created manually using a web
interface (for evaluation only), the result of DTN, and the two results of our TOS: G(x) and then e(c(G(x))). (c) VR avatar results: DTN, the two
TOS results, and a 3D rendering of the resulting configuration file. See Tab. 5 for retrieval performance.

The label prediction network l accepts as input, feature vectors
generated by p and outputs emoji parameterization vectors match-
ing the input image. It consists of three fully connected layers.
Each hidden layer is followed by batch-normalization and leaky
ReLU activation. The last layer is followed by Tanh activation.
The hidden layers contain 1024 and 512 units respectively.

The discriminator d predicts the input image domain given its
feature vector. It consists of two fully connected layers with 512
hidden units. The hidden layer is followed by batch normalization
and leaky ReLU activations. It is preceded by a gradient reversal
layer to ensure that the feature distributions of both domains are
similar. The last layer is followed by Sigmoid activation.

6.4.3 Human rating

Finally, we asked a group of 20 volunteers to select the better
emoji, given a photo from celebA and two matching emoji: one
created by the expert annotators and one created by TOS (e◦c◦G).
The raters were told that they are presented with the results of two
algorithms for automatically generating emoji and were requested
to pick their favorable emoji for each image. The images were
presented printed out, in random order, and the raters were given
an unlimited amount of time. In 39.53% of the answers, the TOS
emoji was selected. This is remarkable, considering that in a good
portion of the celebA emoji, the TOS created very dark emoji in an
unfitting manner (since f is invariant to illumination and since the

configuration has many more dark skin tones than lighter ones).
TOS, therefore, not only provides more identifiable emoji, but is
also very close to be on par with professional annotators. It is
important to note that we did not compare to DTN in this rating,
since DTN does not create a configuration vector, which is needed
for avatar applications (Fig 2).

6.4.4 Multiple Images Per Person
We evaluate the results obtained per person and not just per image
on the Facescrub dataset [27]. For each person q, we considered
the set of their images Xq , and selected the emoji that was most
similar to their source image, i.e., the one for which:

argmin
x∈Xq

||f(x)− f(e(c(G(x))))|| (17)

The qualitative results are appealing and are shown in Fig. 11. The
general problem of mapping a set X ⊂ X to a single output in Y
is left for future work.

6.5 VR Avatars
We next apply the proposed TOS method to a commercial avatar
generator engine, see Fig. 9(c). We sample random parameter-
izations and automatically align their frontally-rendered avatars
into 64 × 64 RGB images to form the training set t. We then
train a CNN e to mimic this engine and generate such images

13

Fig. 10. Shown, side by side are sample images from the CelebA dataset
and the results obtained by the DANN domain adaptation method [8].
These results are not competitive.

given their parameterization. Using the same architectures and
configurations as in Sec. 6.4, including the same training set s,
we train g and c to map natural facial photographs to their engine-
compliant set of parameters. We also repeat the same identification
experiment and report median rankings of the analog experiments,
see Tab. 5(right). The 3D avatar engine is by design, not as
detailed as the 2D emoji one, with elements such as facial hair
still missing and less part shapes available. In addition, the avatar
model style is more generic and focused on real time puppeteering
and not on cartooning. Therefore, the overall numbers are lower
for all methods, as expected. TOS seems to be the only method
that is able to produce identifiable configurations, while the other
methods lead to ranking that is close to random.

7 CONCLUSIONS

With the advent of better computer graphics engines and the
plethora of available models, and the ability of neural networks to
compare cross-domain entities, the missing element for bridging
between computer vision and computer graphics is the ability
to link image data to a suitable computer graphics model. The
presented DTN method created analogies without explicit super-
vision. Highly identifiable emoji were generated; However, emoji
applications call for parametrized characters, which can then be
transformed by artists to other views and new expressions. DTN
does not output these configurations and, as we show, the emoji

Fig. 11. Multi-image results obtained by the TOS method for a sample
of individuals from the Facescrub dataset. Shown, side by side, are the
image used to create the TOS and the DTN emoji, the DTN emoji, and
the TOS emoji, obtained by e ◦ c ◦ g ◦ f . The image that represents a
person maximizes, out of all images for this person, f -constancy for the
TOS method.

created by DTN cannot be converted to a configuration. The TOS
network is able to generate identifiable emoji that are coupled with
a valid configuration vector. This is done by jointly training two
networks, g and c, in order to achieve a common goal.

While TOS was presented in a way that requires the rendering
function e to be differentiable, working with black-box renderers
using gradient estimation techniques is a common practice, e.g.,
in Reinforcement Learning, and the simple REINFORCE [36]
method can be readily used.

Our experiments have focused on the specific emoji domain,
in which solutions are both lacking and in high demand. However,
in a broader view, TOS addresses one of the most fundamental
paradigms in computational vision and, more generally, in percep-
tion – the one of analysis by synthesis. In this paradigm, there
are three major subroutines: First, given an input, a hypothesis is
conceived. Second, a representation of the hypothesis is created.
The domain of this representation would typically be more abstract
than the domain of the input. Third, the representation is compared
to the input. The machinery required for the second and third steps
(image synthesis and distance learning, respectively) has been
the focus of much study. Our method is unique in its ability to
provide the missing hypothesis generation tool with no additional
supervision. More concretely: the input is x ∈ X , the generated
hypothesis is c(G(x)), the representation of the hypothesis is

14

e(c(g(x))) ∈ Y1, and the comparator employs f and some metric.
The TOS network method is both unsupervised (no cor-

respondences between the hypotheses and the input space are
required) and able to bridge the semantic gap between X and
Y1 via f . Furthermore, for iterative paradigms, which employ
analysis by synthesis loops, the error signal of the verification step
‖g(x)− e(c(g(x)))‖ can be used to update the hypothesis during
runtime, or, to train a second network, which given G(x) and
the error signal of the previous iteration, updates the hypothesis.
Thus, TOS fully addresses all aspects of the analysis by synthesis
framework.

REFERENCES

[1] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan. A theory of learning from different domains. Machine
Learning, 79(1-2).

[2] S. Benaim and L. Wolf. One-Sided Unsupervised Domain Mapping. In
NIPS, 2017.

[3] K. Crammer, M. Kearns, and J. Wortman. Learning from multiple
sources. J. Mach. Learn. Res., 9:1757–1774, June 2008.

[4] A. Dosovitskiy and T. Brox. Generating images with perceptual similar-
ity metrics based on deep networks. In NIPS. 2016.

[5] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate
chairs with convolutional neural networks. In CVPR, 2015.

[6] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised
visual domain adaptation using subspace alignment. In ICCV, 2013.

[7] T. Galanti and L. Wolf. A theory of output-side unsupervised domain
adaptation. arXiv preprint arXiv:1703.01606, 2017.

[8] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky. Domain-adversarial training of
neural networks. JMLR, 17(1):2096–2030, Jan. 2016.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using
convolutional neural networks. In CVPR, 2016.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Nets. In
NIPS. 2014.

[11] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra.
DRAW: a recurrent neural network for image generation. In ICML, 2015.

[12] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation
with conditional adversarial networks. In CVPR, 2017.

[13] D. Jimenez Rezende, S. M. A. Eslami, S. Mohamed, P. Battaglia,
M. Jaderberg, and N. Heess. Unsupervised learning of 3d structure from
images. In NIPS. 2016.

[14] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In ECCV, 2016.

[15] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to Discover
Cross-Domain Relations with Generative Adversarial Networks. In
ICML, 2017.

[16] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep
convolutional inverse graphics network. In NIPS. 2015.

[17] J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg. State of the
“art”: A taxonomy of artistic stylization techniques for images and video.
IEEE Transactions on Visualization and Computer Graphics, 2013.

[18] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.
[19] M. Lin, Q. Chen, and S. Yan. Network In Network. In ICLR, 2014.
[20] M.-Y. Liu and O. Tuzel. Coupled Generative Adversarial Networks. In

NIPS. 2016.
[21] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in

the wild. In ICCV, 2015.
[22] A. Mahendran and A. Vedaldi. Understanding deep image representa-

tions by inverting them. In CVPR, 2015.
[23] Y. Mansour. Learning and domain adaptation. In Algorithmic Learning

Theory, 20th International Conference, ALT, pages 4–6, 2009.
[24] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation:

Learning bounds and algorithms. In COLT, 2009.
[25] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.
[26] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.

Reading digits in natural images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning,
2011.

[27] H. Ng and S. Winkler. A data-driven approach to cleaning large face
datasets. In ICIP, 2014.

[28] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In
British Machine Vision Conference, 2015.

[29] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[30] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee.
Generative adversarial text to image synthesis. In ICML, 2016.

[31] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. In International Conference of the Center for
Nonlinear Studies on Experimental Mathematics : Computational Issues
in Nonlinear Science, pages 259–268, 1992.

[32] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image
generation. In ICLR, 2017.

[33] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the
gap to human-level performance in face verification. In CVPR, 2014.

[34] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks:
Feed-forward synthesis of textures and stylized images. In ICML, 2016.

[35] N. Wang, D. Tao, X. Gao, X. Li, and J. Li. Transductive face sketch-
photo synthesis. IEEE transactions on neural networks and learning
systems, 24(9):1364–1376, 2013.

[36] R. J. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 1992.

[37] L. Wolf, Y. Taigman, and A. Polyak. Unsupervised creation of parame-
terized avatars. In ICCV, 2017.

[38] Z. Yi, H. Zhang, P. Tan, and M. Gong. DualGAN: Unsupervised dual
learning for image-to-image translation. In ICCV, 2017.

[39] Y. Zhang, N. Wang, S. Zhang, J. Li, and X. Gao. Fast face sketch
synthesis via kd-tree search. In ECCV, 2016.

[40] A. Zhmoginov and M. Sandler. Inverting face embeddings with convo-
lutional neural networks. arXiv preprint arXiv:1606.04189, 2016.

[41] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In ICCV, 2017.

Adam Polyak is a PhD student under the super-
vision of Prof, L. Wolf from Tel-Aviv University
and a Research Engineer in the Facebook AI
Research (FAIR) Group. He received the bach-
elors degree in computer science and mathe-
matics from Bar-Ilan University as part of the
program for mathematically talented youth, and
the masters (Hons.) (magna cum laude) degree
under the guidance of Prof. L. Wolf.

Yaniv Taigman graduated from Tel-Aviv Uni-
versity with a Masters in Computer Science.
While pursuing his PhD research, he co-founded
Face.com where he held the position of CTO.
When Face.com was acquired by Facebook in
2012, he joined the office in Menlo Park to lead
research and engineering projects. During this
time, he worked on efficient methods for face
recognition (DeepFace project), and helped start
the AI group. In 2016, he established a satellite
FAIR team in Tel-Aviv.

Lior Wolf is a Research Scientist in the Face-
book AI Research (FAIR) Group and a Full Pro-
fessor at the School of Computer Science at
Tel-Aviv University. Previously, he was a post-
doctoral associate in Prof. Poggio’s lab at MIT
and he graduated from the Hebrew University,
Jerusalem, where he worked under the super-
vision of Prof. Shashua. He is an ERC grantee
and has received the ICCV 2001 Marr Prize
honorable mention and the best paper awards
at ECCV 2000, the post ICCV 2009 workshop

on eHeritage, the pre-CVPR2013 workshop on action recognition and
ICANN 2016.

