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ABSTRACT

Graph Neural Networks (GNNs) are the predominant technique for learning over
graphs. However, there is relatively little understanding of why GNNs are suc-
cessful in practice and whether they are necessary for good performance. Here,
we show that for many standard transductive node classification benchmarks, we
can exceed or match the performance of state-of-the-art GNNs by combining shal-
low models that ignore the graph structure with two simple post-processing steps
that exploit correlation in the label structure: (i) an “error correlation” that spreads
residual errors in training data to correct errors in test data and (ii) a “prediction
correlation” that smooths the predictions on the test data. We call this overall
procedure Correct and Smooth (C&S), and the post-processing steps are imple-
mented via simple modifications to standard label propagation techniques from
early graph-based semi-supervised learning methods. Our approach exceeds or
nearly matches the performance of state-of-the-art GNNs on a wide variety of
benchmarks, with just a small fraction of the parameters and orders of magnitude
faster runtime. For instance, we exceed the best known GNN performance on
the OGB-Products dataset with 137 times fewer parameters and greater than 100
times less training time. The performance of our methods highlights how directly
incorporating label information into the learning algorithm (as was done in tra-
ditional techniques) yields easy and substantial performance gains. We can also
incorporate our techniques into big GNN models, providing modest gains.

1 INTRODUCTION

Following the success of neural networks in computer vision and natural language processing, there
are now a wide range of graph neural networks (GNNs) for making predictions involving relational
data (Battaglia et al., 2018; Wu et al., 2020). These models have had much success and sit atop
leaderboards such as the Open Graph Benchmark (Hu et al., 2020). Often, the methodological devel-
opments for GNNs revolve around creating strictly more expressive architectures than basic variants
such as the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) or GraphSAGE (Hamilton
et al., 2017a); examples include Graph Attention Networks (Veličković et al., 2018), Graph Isomor-
phism Networks (Xu et al., 2018), and various deep models (Li et al., 2019; Rong et al., 2019; Chen
et al., 2020). Many ideas for new GNN architectures are adapted from new architectures in models
for language (e.g., attention) or vision (e.g., deep CNNs) with the hopes that success will translate
to graphs. However, as these models become more complex, understanding their performance gains
is a major challenge, and scaling them to large datasets is difficult.

Here, we see how far we can get by combining much simpler models, with an emphasis on un-
derstanding where there are easy opportunities for performance improvements in graph learning,
particularly transductive node classification. We propose a simple pipeline with three main parts
(Figure 1): (i) a base prediction made with node features that ignores the graph structure (e.g., an
MLP or linear model); (ii) a correction step, which propagates uncertainties from the training data
across the graph to correct the base prediction; and (iii) a smoothing of the predictions over the
graph. Steps (ii) and (iii) are just post-processing and use classical methods for graph-based semi-
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Figure 1: Overview of our GNN-free model, Correct and Smooth, with a toy example. The left
cluster belongs to orange and the right cluster belongs to blue. We use MLPs for base predictions,
ignoring the graph structure, which we assume gives the same prediction on all nodes in this ex-
ample. After, base predictions are corrected by propagating errors from the training data. Finally,
corrected predictions are smoothed with label propagation.

supervised learning, namely, label propagation (Zhu, 2005).1 With a few modifications and new
deployment of these classic ideas, we achieve state-of-the-art performance on several node classifi-
cation tasks, outperforming big GNN models. In our framework, the graph structure is not used to
learn parameters but instead as a post-processing mechanism. This simplicity leads to models with
orders of magnitude fewer parameters that take orders of magnitude less time to train and can easily
scale to large graphs. We can also combine our ideas with state-of-the-art GNNs and see modest
performance gains.

A major source of our performance improvements is directly using labels for predictions. This
idea is not new — early diffusion-based semi-supervised learning algorithms on graphs such as the
spectral graph transducer (Joachims, 2003), Gaussian random field models (Zhu et al., 2003), and
and label spreading (Zhou et al., 2004) all use this idea. However, the motivation for these methods
was semi-supervised learning on point cloud data, so the features were used to construct the graph.
Since then, these techniques have been used for learning on relational data from just the labels (i.e.,
no features) (Koutra et al., 2011; Gleich & Mahoney, 2015; Peel, 2017; Chin et al., 2019) but have
largely been ignored in GNNs. That being said, we find that even simple label propagation (which
ignores features) does surprisingly well on a number of benchmarks. This provides motivation
for combining two orthogonal sources of prediction power — one coming from the node features
(ignoring graph structure) and one coming from using the known labels directly in predictions.

Recent research connects GNNs to label propagation (Wang & Leskovec, 2020; Jia & Benson, 2020)
as well as Markov Random fields (Qu et al., 2019; Gao et al., 2019), and some techniques use ad hoc
incorporation of label information in the features (Shi et al., 2020). However, these approaches are
still expensive to train, while we use label propagation in two understandable and low-cost ways. We
start with a cheap “base prediction” from a model that ignores graph structure (apart from perhaps
a cheap pre-processing feature augmentation step like a spectral embedding). After, we use label
propagation for error correction and then to smooth final predictions. These post-processing steps
are based on the fact that errors and labels on connected nodes are positively correlated. Assum-
ing similarity between connected nodes is at the center of much network analysis and corresponds
to homophily or assortative mixing (McPherson et al., 2001; Newman, 2003; Easley & Kleinberg,
2010). In the semi-supervised learning literature, the analog is the smoothness or cluster assump-
tion (Chapelle et al., 2003; Zhu, 2005). The good performance of label propagation that we see
across a wide variety of datasets suggests that these correlations hold on common benchmarks.

1One of the main methods that we use (Zhou et al., 2004) is often called label spreading. The term “label
propagation” is used in a variety of contexts (Zhu, 2005; Wang & Zhang, 2007; Raghavan et al., 2007; Gleich &
Mahoney, 2015). The salient point for this paper is that we assume positive correlations on neighboring nodes
and that the algorithms work by “propagating” information from one node to another.
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Overall, our methodology demonstrates that combining several simple ideas yields excellent per-
formance in transductive node classification at a fraction of the cost, in terms of both model size
(i.e., number of parameters) and training time. For example, on the OGB-Products benchmark, we
out-perform the current best-known GNN with more than two orders of magnitude fewer parame-
ters and more than two orders of magnitude less training time. However, our goal is not to say that
current graph learning methods are poor or inappropriate. Instead, we aim to highlight easier ways
in which to improve prediction performance in graph learning and to better understand the source
of performance gains. Our main finding is that more direct incorporation of labels into the learning
algorithms is key. And by combining our ideas with existing GNNs, we also see improvements,
although they are minor. We hope that our approach spurs new ideas that can help in other graph
learning tasks, such as inductive node classification, link prediction, and graph prediction.

1.1 ADDITIONAL RELATED WORK

The Approximate Personalized Propagation of Neural Predictions (APPNP) framework is most rel-
evant to our work, as they also smooth base predictions (Klicpera et al., 2018). However, they focus
on integrating this smoothing into the training process so that their model can be trained end to
end. Not only is this significantly more computationally expensive, it also prevents APPNP from
incorporating label information at inference. Compared to APPNP, our framework produces more
accurate predictions, is faster to train, and more easily scales to large datasets. Our framework also
complements the Simplified Graph Convolution (Wu et al., 2019), as well as algorithms designed
to increase scalability (Bojchevski et al., 2020; Zeng et al., 2019; Rossi et al., 2020). The primary
focus of our approach, however, is using labels directly, and scalability is a byproduct. There is
also prior work connecting GCNs and label propagation. Wang & Leskovec (2020) use label prop-
agation as a pre-processing step to weight edges for GNNs, whereas we use label propagation as a
post-processing step and avoid GNNs. Jia & Benson (2020) use label propagation with GNNs for
regression tasks, and our error correction step adapts some of their ideas for the case of classifica-
tion. Finally, there are several recent approaches that incorporate nonlinearity into label propagation
methods to compete with GNNs and achieve scalability (Eliav & Cohen, 2018; Ibrahim & Gle-
ich, 2019; Tudisco et al., 2020), but these methods focus on settings of low label rates and don’t
incorporate feature learning.

2 CORRECT AND SMOOTH MODEL

We start with some notation. We assume that we have an undirected graph G = (V,E), where there
are n = |V | nodes with features on each node represented by a matrix X ∈ Rn×p. Let A be the
adjacency matrix of the graph, D be the diagonal degree matrix, and S be the normalized adjacency
matrix D−1/2AD−1/2. For the prediction problem, the node set V is split into a disjoint set of
unlabeled nodes U and labeled nodes L, which are subsets of the indices {1, . . . , n}. We represent
the labels by a one-hot-encoding matrix Y ∈ Rn×c, where c is the number of classes (i.e., Yij = 1
if i ∈ L is in class j, and 0 otherwise), and we further split the labeled nodes into a training set Lt
and validation set Lv . Our problem is transductive node classification: assign each node j ∈ U a
label in {1, . . . , C}, given G, X , and Y .

Our approach starts with a simple base predictor on node features, which does not rely on any
learning over the graph. After, we perform two types of label propagation (LP): one that corrects
the base predictions by modeling correlated error and one that smooths the final prediction. We
call the combination of these two methods Correct and Smooth (C&S; Figure 1). The LPs are only
post-processing steps — our pipeline is not trained end-to-end. Furthermore, the graph is only used
in these post-processing steps and in a pre-processing step to augment the features X , but not for
the base predictions. This makes training fast and scalable compared to standard GNN models.
Moreover, we take advantage of both LP (which tends to perform fairly well on its own without
features) and the node features. We will see that combining these complementary signals yields
excellent predictions.
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2.1 SIMPLE BASE PREDICTOR

To start, we use a simple base predictor that does not rely on the graph structure. More specifically,
we train a model f to minimize

∑
i∈Lt

`(f(xi), yi), where xi is the ith row of X , yi is the ith
row of Y , and ` is a loss function. For this paper, f is either a linear model or a shallow multi-
layer perceptron (MLP) followed by a softmax, and ` is the cross-entropy loss. The validation
set Lv is used to tune hyperparameters such as learning rates and the hidden layer dimensions for
the MLP. From f , we get a base prediction Z ∈ Rn×c, where each row of Z is a probability
distribution resulting from the softmax. Omitting the graph structure for these base predictions
avoids the scalability issues with GNNs. In principle, though, we can use any base predictor for Z,
including those based on GNNs, and we explore this in Section 3. However, for our pipeline to be
simple and scalable, we just use linear classifiers or MLPs with subsequent post-processing, which
we describe next.

2.2 CORRECTING FOR ERROR IN BASE PREDICTIONS WITH RESIDUAL PROPAGATION

Next, we improve the accuracy of the base prediction Z by incorporating labels to correlate errors.
The key idea is that we expect errors in the base prediction to be positively correlated along edges
in the graph. In other words, an error at node i increases the chance of a similar error at neighboring
nodes of i. We should “spread” such uncertainty over the graph. Our approach here is inspired in part
by residual propagation (Jia & Benson, 2020), where a similar concept is used for node regression
tasks, as well as generalized least squares and correlated error models more broadly (Shalizi, 2013).

To this end, we first define an error matrix E ∈ Rn×c, where error is the residual on the training
data and zero elsewhere:

ELt
= ZLt

− YLt
, ELv

= 0, EU = 0. (1)

The residuals in rows of E corresponding to training nodes are zero only when the base predictor
makes a perfect predictions. We smooth the error using the label spreading technique of Zhou et al.
(2004), optimizing the objective

Ê = arg min
W∈Rn×c

trace(WT (I − S)W ) + µ‖W − E‖2F . (2)

The first term encourages smoothness of the error estimation over the graph, and is equal to∑c
j=1 w

T
j (I − S)wj , where wj is the jth column of W . The second term keeps the solution close

to the initial guess E of the error. As in Zhou et al. (2004), the solution can be obtained via the
iteration E(t+1) = (1 − α)E + αSE(t), where α = 1/(1 + µ) and E(0) = E, which converges
rapidly to Ê. This iteration is a diffusion, propagation, or spreading of the error, and we add the
smoothed errors to the base prediction to get corrected predictions Z(r) = Z + Ê. We emphasize
that this is a post-processing technique and there is no coupled training with the base predictions.

This type of propagation is provably the right approach under a Gaussian assumption in regression
problems (Jia & Benson, 2020); however, for the classification problems we consider, the smoothed
errors Ê might not be at the right scale. We know that in general,

‖E(t+1)‖2 ≤ (1− α)‖E‖+ α‖S‖2‖E(t)‖2 = (1− α)‖E‖2 + α‖E(t)‖2. (3)

When E(0) = E, we then have that ‖E(t)‖2 ≤ ‖E‖2. Thus, the propagation cannot completely
correct the errors on all nodes in the graph, as it does not have enough “total mass,” and we find
that adjusting the scale of the residual can help substantially in practice. To do this, we propose two
variations of scaling the residual.

Autoscale. Intuitively, we want to scale the size of errors in Ê to be approximately the size of the
errors in E. We only know the true errors at labeled nodes, so we approximate the scale with the
average error over the training nodes. Formally, let ej ∈ Rc correspond to the jth row of E, and
define σ = 1

|Lt|
∑
j∈Lt

‖ej‖1. Then the corrected predictions on an unlabeled node i is given by

Z
(r)
i,: = Zi,: + σÊ:,i/‖ÊT:,i‖1 for i ∈ U .

Scaled Fixed Diffusion (FDiff-scale). Alternatively, we can use a diffusion like the one from
Zhu et al. (2003), which keeps the known errors at training nodes fixed. More specifically, we
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iterate E(t+1)
U = [D−1AE(t)]U and keep fixed E(t)

L = EL until convergence to Ê, starting with
E(0) = E. Intuitively, this fixes error values where we know the error (on the labeled nodes L),
while other nodes keep averaging over the values of their neighbors until convergence. With this
type of propagation, the maximum and minimum values of entries in E(t) do not go beyond those
in EL. We still find it effective to select a scaling hyperparameter s to produce Z(r) = Z + sÊ.

2.3 SMOOTHING FINAL PREDICTIONS WITH PREDICTION CORRELATION

At this point, we have a score vector Z(r), obtained from correcting the base predictor Z with
a model for the correlated error Ê. To make a final prediction, we further smooth the corrected
predictions. The motivation is that adjacent nodes in the graph are likely to have similar labels,
which is expected given homophily or assortative properties of a network. Thus, we can encourage
smoothness over the distribution over labels by another label propagation. First, we start with our
best guess G ∈ Rn×c of the labels:

GLt
= YLt

, GLv,U = Z
(r)
Lv,U

. (4)

Here, we set the training nodes back to their true labels and use the corrected predictions for the
validation and unlabeled nodes (we can also use the true validation labels, which we discuss later in
the experiments). We then iterate G(t+1) = (1− α)G + αSG(t) with G(0) = G until convergence
to give the final prediction Ŷ . The classification for a node i ∈ U is arg maxj∈{1,...,c} Ŷij .

As with error correlation, the smoothing here is a post-processing step, decoupled from the other
steps. This type of prediction smoothing is similar in spirit to APPNP (Klicpera et al., 2018), which
we compare against later. However, APPNP is trained end-to-end, propagates on final-layer repre-
sentations instead of softmaxes, does not use labels, and is motivated differently.

2.4 SUMMARY AND ADDITIONAL CONSIDERATIONS

To review our pipeline, we start with a cheap base prediction Z, using only node features but not
the graph structure. After, we estimate errors Ê by propagating known errors on the training data,
resulting in error-corrected predictions Z(r) = Z + Ê. Finally, we treat these as score vectors
on unlabeled nodes, and combine them with the known labels through another LP step to produce
smoothed final predictions. We refer to this general pipeline as Correct and Smooth (C&S).

Before showing that this pipeline achieves state-of-the-art performance on transductive node classi-
fication, we briefly describe another simple way of improving performance: feature augmentation.
The hallmark of deep learning is that we can learn features instead of engineering them. However,
GNNs still rely on informative input features to make predictions. There are numerous ways to
get useful features from just the graph topology to augment the raw node features (Henderson et al.,
2011; 2012; Hamilton et al., 2017b). In our pipeline, we augment features with a regularized spectral
embedding (Chaudhuri et al., 2012; Zhang & Rohe, 2018) coming from the leading k eigenvectors
of the matrix D−1/2τ (A + τ

n11
T )D

−1/2
τ , where 1 is a vector of all ones, τ is a regularization pa-

rameter set to the average degree, and Dτ is diagonal with ith diagonal entry equal to Dii + τ . The
underlying matrix is dense, but we can apply matrix-vector products in time linear in the number of
edges and use iterative eigensolvers to compute the embeddings quickly.

3 EXPERIMENTS ON TRANSDUCTIVE NODE CLASSIFICATION

To demonstrate the effectiveness of our methods, we use nine datasets (Table 1). The Arxiv and
Products datasets are from the Open Graph Benchmark (OGB) (Hu et al., 2020); the Cora, Citeseer,
and Pubmed are three classic citation network benchmarks (Getoor et al., 2001; Getoor, 2005; Na-
mata et al., 2012); and wikiCS is a web graph (Mernyei & Cangea, 2020). In these datasets, classes
are categories of papers, products, or pages, and features are derived from text. We also use a Face-
book social network of Rice University, where classes are dorm residences and features are attributes
such as gender, major, and class year, amongst others (Traud et al., 2012), as well as a geographic
dataset of US counties where classes are 2016 election outcomes and features are demographic (Jia
& Benson, 2020). Finally, we use an email dataset of a European research institute, where classes
are department membership and there are no features (Leskovec et al., 2007; Yin et al., 2017).
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Table 1: Summary statistics of datasets. We include (i) the reduction in the number of parameters,
(ii) the change in accuracy of our best C&S model compared to the state-of-the-art GNN method,
and (iii) the training time, including spectral embedding computing time if needed. By avoiding
expensive GNNs, our methods require fewer parameters and are faster to train. Our methods are
typically more accurate (see also Tables 2 and 4).

Datasets Classes Nodes Edges Parameter ∆ Accuracy ∆ Time

Arxiv 40 169,343 1,166,243 -84.9% + 0.26 12.35 s
Products 47 2,449,029 61,859,140 -93.47% +1.74 170.6 s
Cora 7 2,708 5,429 -98.37% + 1.09 0.5 s
Citeseer 6 3,327 4,732 -89.68% - 0.69 0.48 s
Pubmed 3 19,717 44,338 -96.00% - 0.30 0.85 s
Email 42 1,005 25,571 - 97.89% + 4.26 42.83 s
Rice31 10 4,087 184,828 - 99.02% + 1.39 39.33 s
US County 2 3,234 12,717 - 74.56% + 1.77 39.05 s
wikiCS 10 11,701 216,123 - 84.88% + 2.03 7.09 s

Data splits. The training/validation/test splits for Arxiv and Products are given by the benchmark,
and the splits for wikiCS come from Mernyei & Cangea (2020). For the Rice, US counties, and
email data, we use 40%/10%/50% random splits, and for the smaller citation networks, we use
60%/20%/20% random splits, as in Wang & Leskovec (2020) (in contrast to lower label rate set-
tings (Yang et al., 2016)) to ameliorate sensitivity to hyperparameters. In all of our experiments, the
standard deviations in prediction accuracy over splits is typically less than 1% and does not change
our qualitative comparisons.

Base predictors and other models. We use Linear and MLP models as simple base predictors,
where the input features are the raw node features and the spectral embedding. We also use a
Plain Linear model that only uses the raw features for comparison and Label Propagation (LP;
specifically, the Zhou et al. (2004) version), which only uses labels. For comparable GNN models
to our framework (in terms of simplicity or style), we use GCN, SGC, and APPNP. For the GCN
models, we added extra residual connections from the input to every layer and from every layer to
the output, which produced better results. The number of layers and hidden channels for the GCNs
are the same as the MLPs. Thus, GCNs here represent a class of GCN-type models and not the
original model Kipf & Welling (2017).

Finally, we include several “state-of-the-art” (SOTA) baselines. For Arxiv and Products, this is
UniMP (Shi et al., 2020) (top of OGB leaderboard, as of October 1, 2020). For Cora, Citeseer and
Pubmed, we reuse the top performance scores from Chen et al. (2020). For Email and US County,
we use GCNII (Chen et al., 2020). For Rice31, we use GCN with spectral and node2vec (Grover &
Leskovec, 2016) embeddings (this is the best GNN-based model that we found). For wikiCS, we use
APPNP as reported by Mernyei & Cangea (2020). We select a set of fixed hyperparameters using
the validation set. See the appendix for additional model architecture details.

3.1 FIRST RESULTS ON NODE CLASSIFICATION

In our first set of results, we only use the training labels in our C&S framework, as these are what
GNNs typically use to train models. Similar as for base models, we select hyperparameters for C&S
using the validation set, except that the number of iterations for each stage is fixed to 50. For the
results discussed here, this is generous to our baselines. The ability to include validation labels is an
advantage of our approach (and label propagation in general), and this improves performance of our
framework even further (Table 1). We discuss this in the next section.

Table 2 reports the results, and we highlight a few important findings. First, within our model, there
are substantial gains from the LP post-processing steps (for instance, on Products, the MLP base
prediction goes from 63% to 84%). Second, even the Plain Linear model with C&S is sufficient
to outperform plain GCNs in many cases, and LP (a method with no learnable parameters) is often
fairly competitive with GCNs. This is striking given that the main motivation for GCNs was to
address the fact that connected nodes may not have similar labels (Kipf & Welling, 2017). Our
results suggest that directly incorporating correlation in the graph with simple use of the features
is often a better idea. Third, our model variants can out-perform SOTA on Products, Cora, Email,
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Table 2: Performance of our C&S framework, using only the ground truth training labels in Equa-
tion (4). Further improvements can be made by including ground truth validation labels (Table 4).

Methods Base Model Arxiv Products Cora Citeseer Pubmed

LP — 68.5 74.76 86.50 70.64 83.74
Plain GCN — 71.74 75.64 85.77 73.68 88.13
SGC Plain Linear 69.39 68.83 86.81 72.04 84.04
APPNP Plain Linear 66.38 OOM 87.87 76.53 89.40
SOTA — 73.79 82.56 88.49 77.99 90.30

Plain Linear 52.32 47.73 73.85 70.27 87.10
Base Linear 70.08 50.05 74.75 70.51 87.19
Prediction MLP 71.51 63.41 74.06 68.10 86.85

Plain Linear 71.11 80.24 88.62 76.31 89.99
Autoscale Linear 72.07 80.25 88.73 76.75 89.93

MLP 72.62 78.60 87.39 76.31 89.33

Plain Linear 70.60 82.54 89.05 76.22 89.74
FDiff- Linear 71.57 83.01 88.66 77.06 89.51
scale MLP 72.43 84.18 87.39 76.42 89.23

Methods Base Model Email Rice31 US County wikiCS

LP — 70.69 82.19 87.90 76.72
Plain GCN — — 15.45 84.13 78.61
SGC Plain Linear — 16.59 83.92 72.86
APPNP Plain Linear 70.28 11.34 84.14 69.83
SOTA — 71.96 86.50 88.08 79.84

Plain Linear — 9.84 75.74 72.45
Base Linear 66.24 70.26 84.07 74.29
Prediction MLP 69.13 17.16 87.70 73.07

Plain Linear — 75.99 85.25 79.57
Autoscale Linear 72.50 86.42 86.15 79.53

MLP 74.55 85.50 89.64 78.10

Plain Linear — 73.66 87.38 79.54
FDiff- Linear 72.53 87.55 88.11 79.25
scale MLP 75.74 85.74 89.85 78.24

Rice31, and US County (often substantially so). On the other datasets, there is not much difference
between our best-performing model and the SOTA.

To get a sense of how much using ground truth labels directly helps, we also experiment with
a version of C&S without labels. Instead of running our LP steps, we just smooth the output
of the base predictors using the approach of Zhou et al. (2004) and call this the Basic Model.
We see that the linear and MLP base predictor can often exceed the performance of a GCN (Ta-
ble 3). Again, these results suggest that smoothed outputs are important, and that the original
motivations for GCNs are misleading. Instead, we hypothesize that GCNs gain performance by
having smoothed outputs over the graph, a similar observation made by Wu et al. (2019). How-
ever, there are still gaps in performance between our models here and those in Table 2 that directly
use labels. Next, we see how to improve performance of C&S even further by using more labels.

Table 3: Performance of our Basic
Model, which only uses labels for
base predictions.

Base Model Arxiv Products

Plain Linear 63.30 66.27
Linear 71.42 78.73
MLP 72.48 80.34
Plain GCN 71.74 75.64

3.2 FURTHER IMPROVEMENTS BY USING MORE LABELS

We improve the C&S performance by using both training and
validation labels in Equation (4) instead of just the training la-
bels. Importantly, we do not use validation labels to update
the base prediction model — they are just used to select hyper-
parameters. Using validation labels boosts performance even
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Table 4: Performance of our Correct and Smooth (C&S) model with both train and validation labels
ground truth labels used in Equation (4).

Methods Base Model Arxiv Products Cora Citeseer Pubmed

Plain Linear 72.71 80.55 89.54 76.83 90.01
Autoscale Linear 73.78 80.56 89.77 77.11 89.98

MLP 74.02 79.29 88.55 76.36 89.50

Plain Linear 72.42 82.89 89.47 77.08 89.74
FDiff- Linear 72.93 83.27 89.53 77.29 89.57
scale MLP 73.46 84.55 88.18 76.41 89.38

SOTA — 73.65 82.56 88.49 77.99 90.30
Methods Base Model Email Rice31 US County wikiCS

Plain Linear — 76.59 85.22 81.87
Autoscale Linear 73.33 87.25 86.38 81.57

MLP 73.45 86.13 89.71 80.75

Plain Linear — 75.31 88.16 81.18
FDiff- Linear 72.57 87.89 88.06 81.06
scale MLP 76.22 86.26 90.05 80.83

SOTA — 71.96 86.50 88.08 79.84
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Figure 2: Accuracy and model size on Products.

Table 5: C&S with GNN base predictors.

Dataset Model Performance

GAT 73.56
ogbn-arxiv GAT + C&S 73.86

SOTA 73.79

US County GCNII (SOTA) 88.08
GCNII + C&S 89.59

further: Table 4 shows results, Table 1 shows gains over SOTA,
and the appendix has more details. The ability to incorporate
labels is a benefit of our approach. On the other hand, GNNs do not have this advantage, as they
often rely on early stopping to prevent overfitting, may not always benefit from more data (e.g.,
under distributional shift), and do not directly use labels. Thus, our comparisons in Table 2 are more
generous than needed. With validation labels, our best model out-performs SOTA in seven of nine
datasets, often by substantial margins (Table 1).

The evaluation procedure for GNN benchmarks differ from those for LP. For GNNs, a sizable valida-
tion set is often used (and needed) for substantial hyperparameter tuning, as well as early stopping.
With LP, one can use the entire set of labeled nodes L with cross-validation to select the single
hyperparameter α. Given the setup of transductive node classification, however, there is no reason
not to use validation labels at inference if they are helpful (e.g., via LP in our case). The results in
Tables 1 and 4 show the true performance of our model and is the proper point of comparison.

Overall, our results highlight two important findings. First, big and expensive-to-train GNN mod-
els are not actually necessary for good performance for transductive node classification on many
datasets. Second, combining classical label propagation ideas with simple base predictors outper-
forms graph neural networks on these tasks.

3.3 FASTER TRAINING AND IMPROVING EXISTING GNNS

Our C&S framework often requires significantly fewer parameters compared to GNNs or other
SOTA solutions. As an example, we plot parameters vs. performance for Products in Figure 2.
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(a) Ground Truth

(b) Spectral Embedding + Linear + C&S

(c) Spectral Embedding + GCN

Figure 3: (a) US County visualizations, where the embedding is given by GraphViz (roughly, a com-
pressed rotated version of the latitude and longitude coordinates). Colors correspond to class labels.
(b) Panels corresponding to parts of (a) that show at which stage C&S made a correct prediction. (c)
The same panels showing GCN predictions.

While having fewer parameters can be useful, the real gain is in faster training time, and our models
are typically orders of magnitude faster to train than models with comparable accuracy because we
do not use the graph structure for our base predictions. As one example, although our MLP + C&S
model based for the Arxiv dataset has a similar number of parameters compared to the GCN + la-
bels method on the OGB leaderboards, our model runs 7 times faster per epoch and converges much
faster. In addition, compared to the SOTA for the Products dataset, our framework with a linear base
predictor has higher accuracy, trains over 100 times faster, and has 137 times fewer parameters.

We also evaluated our methods on an even larger dataset, the papers100M benchmarks (Hu et al.,
2020). Here, we obtain 65.33% using C&S with the Linear model as the base predictor, which out-
performs the state-of-the-art on October 1, 2020 (63.29%). Due to computational limits, we could
not run exhaustive benchmarks of other GNN models on this dataset.

Our pipeline can also be used to improve the performance of GNNs in general. We applied our
error correction and final prediction smoothing to more complex base predictors such as GCNII or
GAT. This improves our results on some datasets, including beating SOTA on ogbn-arxiv (Table 5).
However, the performance improvements are sometimes only minor, suggesting that big models
might be capturing the same signal as our simple C&S framework.

3.4 PERFORMANCE VISUALIZATION

To aid in understanding the performance of our C&S framework, we visualize the predictions on
the US County dataset (Figure 3). As expected, the residual error correlation tends to correct nodes
where neighboring counties provide relevant information. For example, we see that many errors
in the base predictions are corrected by the residual correlation (Figure 3b, left and right panels) In
these cases, which correspond to parts of Texas and Hawaii, the demographic features of the counties
are outliers compared to the rest of the country, leading both the linear model and GCN astray. The
residual correlation from neighboring counties is able to fix the predictions. We also see that the
final prediction correlation will smooth the prediction, as shown in the center panel of Figure 3b so
that the errors can be fixed based on the correct classification of the neighbors. We observe similar
behavior on the Rice31 dataset (see the appendix).

4 DISCUSSION

GNN models are becoming more expressive, more parameterized, and more expensive to train.
Our results suggest that we should explore other techniques for improving performance, such as
label propagation and feature augmentation. In particular, label propagation and its variants are
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longstanding, powerful ideas. More directly incorporating them into graph learning models has
major benefits, and we have shown that these can lead to both better predictions and faster training.
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Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with
approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 2464–2473, 2020.

Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster kernels for semi-supervised learn-
ing. In Advances in neural information processing systems, pp. 601–608, 2003.

Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with general
degrees in the extended planted partition model. In Conference on Learning Theory, pp. 35–1,
2012.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the International Conference on Machine Learning,
2020.

Alex Chin, Yatong Chen, Kristen M. Altenburger, and Johan Ugander. Decoupled smoothing on
graphs. In The World Wide Web Conference, pp. 263–272, 2019.

David Easley and Jon Kleinberg. Networks, crowds, and markets. Cambridge University Press,
2010.

Buchnik Eliav and Edith Cohen. Bootstrapped graph diffusions: Exposing the power of nonlinearity.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(1):1–19, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019.

Hongchang Gao, Jian Pei, and Heng Huang. Conditional random field enhanced graph convolu-
tional neural networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 276–284, 2019.

Lise Getoor. Link-based classification. In Advanced Methods for Knowledge Discovery from Com-
plex Data, pp. 189–207. Springer, 2005.

Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning probabilistic models of
relational structure. In International Conference on Machine Learning, pp. 170–177, 2001.

David F Gleich and Michael W Mahoney. Using local spectral methods to robustify graph-based
learning algorithms. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 359–368, 2015.

Aditya Grover and J. Leskovec. node2vec: Scalable feature learning for networks. Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Engineering Bulletin, 2017b.

10



Published as a conference paper at ICLR 2021

Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hanghang Tong, and
Christos Faloutsos. It’s who you know: graph mining using recursive structural features. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 663–671, 2011.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu, Leman Akoglu,
Danai Koutra, Christos Faloutsos, and Lei Li. RolX: structural role extraction & mining in large
graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 1231–1239, 2012.

Weihua Hu, M. Fey, M. Zitnik, Yuxiao Dong, H. Ren, Bowen Liu, Michele Catasta, and J. Leskovec.
Open graph benchmark: Datasets for machine learning on graphs. ArXiv, abs/2005.00687, 2020.

Rania Ibrahim and David Gleich. Nonlinear diffusion for community detection and semi-supervised
learning. In The World Wide Web Conference, pp. 739–750, 2019.

Junteng Jia and Austin R. Benson. Residual correlation in graph neural network regression. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM Press, 2020.

Thorsten Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the
International Conference on Machine Learning, pp. 290–297, 2003.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
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A MODEL DETAILS

Here we provide some more details on the models that we use. In all cases we use the Adam opti-
mizer and tune the learning rate. We follow the models and hyperparameters provided in OGB (Hu
et al., 2020) and wikiCS (Mernyei & Cangea, 2020) and manually tune some hyperparameters on
the validation data for the potential better performance.

For our MLPs, every linear layer is followed by batch normalization, ReLU activation, and 0.5
dropout. The other parameters depend on the dataset as follows.

• OGB datasets: 3 layers and 256 hidden channels with learning rate equal to 0.01.
• Cora, Citseer, Pubmed (Getoor et al., 2001; Getoor, 2005; Namata et al., 2012) and

Email (Leskovec et al., 2007; Yin et al., 2017): 3 layers and 64 hidden channels with
learning rate = 0.01.

• wikiCS: 3 layers and 256 hidden channels with learning rate equal to 0.005.
• US County (Jia & Benson, 2020), Rice31 (Traud et al., 2012): 5 layers and 256 hidden

channels with learning rate equal to 0.005.

Most of the “State-of-the-Art” models are taken from benchmark datasets. We determined SOTA
for Email, US County, and Rice31 based on all other models used in the paper. The best performing
SOTA baselines were as follows. For Email, GCNII with 5 layers, 256 hidden channels, learning
rate equal to 0.01. For US County, GCNII with 8 layers, 256 hidden channels, learning rate equal
to 0.03. For Rice31, we reused our base GCN architecture and trained it over spectral and node2vec
embeddings. This significantly outperformed the other GNN variants.

All models were implemented with PyTorch(Paszke et al., 2019) and PyTorch Geometric(Fey &
Lenssen, 2019).

B PERFORMANCE RESULTS WITH ONLY RESIDUAL CORRELATION

Table 6 shows results when using residual correlation but not smoothing in the final predictions, i.e.,
just the “C” step of our C&S framework. The results indicate both the label propagation steps matter
significantly for the final improvements.

C ADDITIONAL ABLATION FOR SPECTRAL EMBEDDING

Table 7 shows additional result for ablation regards to spectral embedding.

D SPECTRAL EMBEDDING RUNTIME

Table 8 shows the time for computing spectral embedding for different datasets.

E ADDITIONAL VISUALIZATION

Visualizations of the US County and Rice31 dataset are shown in Figures 4 to 9. The Rice31
visualization is generated by projecting the 128-dimensional spectral embedding used in the main
text down to two dimensions with UMAP (McInnes et al., 2018).
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Table 6: Performance of our C&S framework with the error correction step but not the final predic-
tion smoothing, using only the ground truth training labels in Equation (4).

Methods Base Model Arxiv Products Cora Citeseer Pubmed

Plain Linear 66.89 74.63 79.56 72.56 88.56
Autoscale Linear 71.52 70.93 79.08 70.77 88.84

MLP 71.97 69.85 74.11 71.78 87.35

Plain Linear 65.62 80.97 76.48 70.48 87.52
FDiff- Linear 70.26 73.89 79.32 70.53 84.47
scale MLP 71.55 72.72 74.36 71.45 86.97

Methods Base Model Email Rice31 US County wikiCS

Plain Linear — 43.97 82.60 77.49
Autoscale Linear 73.39 86.19 84.08 74.06

MLP 71.64 84.61 88.83 78.72

Plain Linear — 72.44 87.16 75.98
FDiff- Linear 71.31 85.22 88.27 73.86
scale MLP 72.59 85.42 89.62 78.40

Table 7: Comparison of base models with and without spectral embedding when combined with
C&S, using only training labels.

Methods Base Model Arxiv Products Cora Citeseer Pubmed

Plain MLP 59.67 59.23 74.21 69.34 86.73
Base Plain GCN 71.74 75.64 85.77 73.68 88.13
Prediction GCN 71.76 76.12 85.83 73.60 88.32

Autoscale Plain MLP 71.76 79.42 87.56 76.42 89.29

FDiff-scale Plain MLP 71.57 83.8 87.61 76.44 89.28

Methods Base Model Email Rice31 US County wikiCS

Plain MLP — 15.73 87.77 71.42
Base Plain GCN — 15.45 84.13 78.61
Prediction GCN 74.51 38.54 89.72 78.15

Autoscale Plain MLP — 85.05 89.67 78.92

FDiff-scale Plain MLP — 86.40 89.64 78.10

Table 8: Runtime for generating spectral embedding in inn terms of seconds.
Arxiv Products Cora Citeseer Pubmed Email Rice31 US County wikiCS

90.13 2958.62 7.14 6.98 14.33 7.37 16.6 12.25 11.42

15



Published as a conference paper at ICLR 2021

Figure 4: US County ground truth class labels.
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Figure 5: US County Linear Base Prediction within C&S.
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Figure 6: US County GCN (includes spectral embedding features).
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Figure 7: Rice31 ground truth class labels.
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Figure 8: Rice31 Linear Base Predictor within C&S.
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Figure 9: Rice31 GCN (includes spectral embedding features).
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