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Abstract

In this paper, we propose a framework capable of gen-
erating face images that fall into the same distribution as
that of a given one-shot example. We leverage a pre-trained
StyleGAN model that already learned the generic face dis-
tribution. Given the one-shot target, we develop an iterative
optimization scheme that rapidly adapts the weights of the
model to shift the output’s high-level distribution to the tar-
get’s. To generate images of the same distribution, we in-
troduce a style-mixing technique that transfers the low-level
statistics from the target to faces randomly generated with
the model. With that, we are able to generate an unlimited
number of faces that inherit from the distribution of both
generic human faces and the one-shot example. The newly
generated faces can serve as augmented training data for
other downstream tasks. Such setting is appealing as it re-
quires labeling very few, or even one example, in the target
domain, which is often the case of real-world face manip-
ulations that result from a variety of unknown and unique
distributions, each with extremely low prevalence. We show
the effectiveness of our one-shot approach for detecting face
manipulations and compare it with other few-shot domain
adaptation methods qualitatively and quantitatively.

1. Introduction
Deep learning has been prevailing in a variety of com-

puter vision tasks, especially in supervised settings such as
learning for classification, detection or segmentation [20,
39, 29, 19]. Deep generative models such as Variational
AutoEncoder (VAE) [24, 30] and Generative Adversarial
Networks (GAN) [16, 37, 45, 2, 1, 53] in particular have
gained significant prominence in the field of deep learning
due to their ability to generate highly realistic images de-
picting faces, natural scenes and objects.

Recent advances in deep learning have paved the way
for many important applications ranging from super res-
olution, movie making, game development, cross domain
style transfer, face synthesis and aging prediction, image
inpainting, photo editing and others. However, the advent
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Figure 1: One-shot domain adaptation on encoder-decoder
DeepFake using StyleGAN generator. (a). A Random
StyleGAN generated image. (b). A one-shot image from
encoder-decoder DeepFake of DFDC [13]. (c). A Style-
GAN generated image using the same random latent input
as (a) after domain adaptation. (d). The StyleGAN recon-
sutrcted one-shot DeepFake after domain adaptation.

of DL has also precipitated the emerging of applications
that abuse its power. Technologies such as Face2Face [45],
FaceSwap [2], and encoder-decoder DeepFake [1] have re-
sulted in the rise of online impersonations/fabrication of
news, threatening even to sway the outcomes of elections.

In this paper, we are interested in detecting Deepfakes,
which refers to manipulations to replace the human face of
authentic media with the face of a different person [40, 10,
13]. This is often coupled with malicious intent of defam-
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ing other people or spreading fabricated news. Image gen-
erations have been trending as a popular research topic due
to the rising prevalence and public interest in Deepfake. As
a result, many techniques for generating images have been
proposed, each with specific probabilistic distributions or
fingerprints. Often times, a new type of synthetic images
emerges online but the underlying techniques are unknown,
and only a few bespoke examples exist. Training a classifier
to detect them poses significant challenges as we are unable
to infer the complete probabilistic distribution.

To this end, our method aims to mimic a complete distri-
bution of the target domain given just one example. While
most existing domain adaptation approaches try to find a
feature space in which there is maximum confusion be-
tween source and target distributions [27, 32], we directly
manipulate the distribution in the image space. We first
train a deep generative model to learn the generic proba-
bilistic distribution of human faces on a large collection of
face images. Specifically, we adopt Style-based Genera-
tor (StyleGAN) [23] given its high capacity and superior
generation quality. With the trained StyleGAN model and
a single example from a specific distribution, we run iter-
ative optimization of the input style vector to project the
image to the StyleGAN distribution, followed by optimiz-
ing the model weights to minimize the projection distance
and shift the StyleGAN distribution to the target’s. We are
then able to generate an unlimited number of random faces
that are from a similar distribution as the target and yet pre-
serve the manifold of the generic human face distributions.
We further transfer low-level style from the one-shot target
to the StyleGAN generated images. To do so, we notice
the style vector of a given image has hierarchical structures
and represents different attributes at different style layers.
If we replace the style vector of randomly synthesized im-
ages with the style vector of the target at late layers, we
are able to transfer the low-level statistics from the target
domain to the random images we generated. We refer to
this procedure as style-mixing. Combining iterative weight
optimization with style-mixing, the generated images not
only capture the overall probabilistic distribution of the tar-
get domain but also resemble the one-shot image in low-
level appearances and details. Finally, one can then use the
generated images to train a model for detecting images from
the target domain. Extensive experiment shows that our de-
tector achieves significantly improved accuracy compared
with the baseline and other state-of-the-art few-shot domain
adaptation and image translation techniques.

Our contributions can be summarized as follows:

1. We introduce a novel one-shot domain adaptation
framework that is effective at training a face manip-
ulation detector given a single example of a specific
face manipulation distribution.

2. We demonstrate that the images generated with our ap-

proach, when utilized to train a classifier, achieves su-
perior performance in telling apart real and manipu-
lated face images.

2. Related Work
2.1. Face Manipulation and Detection

Only recently, a new generation of AI-based image and
video synthesis algorithms have become prominent due to
the development of new deep generative models such as
VAEs [24, 30] and GANs [16, 37]. In this paper, we
mostly consider face identity manipulation methods includ-
ing Face2Face [45], FaceSwap [2], and encoder-decoder
Deepfake [1]. Other notable face manipulation methods
include audio to lip-sync [44], training a parameter-to-
video rendering network [5], synthesizing dynamic-textures
with deep neural networks [34], using paired video to
learn a conditional GAN [37], or training an identity-
specific celebrity network [25]. There are publicly avail-
able DeepFake datasets such as FaceForensics++ [40] and
DFDC [13]. A comprehensive state-of-the-art report has
been published by Zollhofer et al. [53].

Our interest in this paper lies in detecting such face
manipulations. Existing approaches exploit specific arti-
facts arising from the synthesis process, such as eye blink-
ing [26], or color, texture and shape cues [11, 9]. Li et
al. [26] observed that DeepFake faces lack realistic eye
blinking, which is utilized in a CNN/RNN model to expose
DeepFake videos. Yang et al. [49] utilized the inconsistency
in head pose to detect fake videos. As a more generic ap-
proach, Zhou et al. [51] proposed a two-stream CNN for
DeepFake detection.

2.2. Few-shot Domain Adaptation

Overcoming the need for large training sets and im-
proving the capability of the model to generalize from few
examples have been extensively studied in recent litera-
tures [15, 28, 31, 46]. Earlier work leverages generative
models of appearance that share priors across classes in a
hierarchical manner [14, 41]. More recently, a new category
of works emerges which focuses on using meta-learning to
quickly adapt models to novel tasks [15, 35, 38, 33]. These
methods adopt better optimization strategies during train-
ing and enhance the generalizability of the model. On the
other hand, [47, 42, 43] focuses on learning image embed-
dings that are better suited for few-shot learning. Simi-
larly, [12, 18, 48] also propose augmenting the training set
for the few-shot classification task.

2.3. Deep Generative Model for Image Synthesis
and Disentanglement

Deep generative models such as GAN [16] and VAE [24]
have been very successful in modeling natural image dis-
tributions and synthesizing realistic-looking figures. Re-



cent advances such as WGAN [4], BigGAN [7], Progres-
sive GAN [22] and StyleGAN [23] have developed better
architectures, losses and training schemes. In particular,
StyleGAN [23] proposes a GAN architecture to implicitly
learn hierarchical latent styles that contribute to the synthe-
sized images. Our approach leverages StyleGAN as back-
bone and directly takes advantage of its expressiveness and
disentanglement ability. On the other hand, several recent
works aim to reverse the generation process and project an
image onto latent manifold of GANs, as well as manipulat-
ing the latent code to control the output [52, 8, 3, 6]. Our
work is motivated to not only manipulate the latent mani-
fold, but also adjust the model-parameter manifold to shift
the whole output space given an input image.

3. Our Approach
We first motivate our approach. We are concerned about

the scenario where we spot a single face image that is sus-
pected to be generated (aka fake), yet we have no knowl-
edge about the technique that produced it. Our goal is to:
(1) Predict the probabilistic distribution of the target given
the one-shot example; (2) Sample from the distribution to
synthesize random images that are similar to the target do-
main and; (3) Train a classifier to detect future face images
generated by the same technique. At first sight, predicting
the distribution of the unknown face manipulation given one
example seems ill-posed and unfeasible. We address this by
learning a generic face manifold as prior, and then shift the
distribution towards the target domain.

3.1. Overview
Our pipeline consists of the following components:

1. Face Manifold Approximation. We learn the generic
probabilistic distribution of human faces by training
StyleGAN on a large collection of natural face im-
ages. All possible style vectors of the trained Style-
GAN shall span a low-dimensional space that approx-
imates the generic face manifold.

2. One-shot Manifold Projection. Given a manipulated
face as input, we fix the weight of the StyleGAN model
and optimize the style vector to minimize the distance
between the synthesized image and the input. Doing
so enables us to find the one-shot’s nearest neighbor
on the StyleGAN manifold. In other words, we project
the target image onto the manifold.

3. StyleGAN Manifold Shifting. After finding the near-
est neighbor of the input image, we then fix the
corresponding style vector and update the StyleGAN
model weights to again minimize the distance between
the synthesized image and the target. Updating the
weights of the model shifts the output manifold to-
wards the target distribution.

4. Style Mixing. We generate a large number of random
faces from the updated StyleGAN model. Each time
we generate a face, we replace the final layers of the
random style vector with those of the target, such that
we transfer the low-level statistics from the target to
the generated images.

5. Deepfake Detection. We use the generated images as
training data to learn model for detecting images in the
target domain.

3.2. Face Manifold Approximation

Deep generative models are rich, hierarchical models
that can learn probability distributions of the training data.
As the first step, we resort to these models to learn the
generic distribution of faces. We begin by training a deep
generative model on a large collections of face images. If
the model has sufficient capacity and is well trained, the en-
tirety of its generated images shall span a low-dimension
space that approximates the real-world face manifold. Fur-
thermore, given enough training data, the larger capacity
the model has, the more closely the output manifold would
match with the true face distribution. We consider a few
GAN variants including StyleGAN [23], ProGAN [22] and
WGAN-GP [17] as candidate models to learn the face man-
ifold.

We analytically examine the capacity and expressiveness
of the models by running the following experiment: we first
train all three models on real-world face images. After the
models are trained, we select one of the models as model A,
and fine-tune it with images generated from model B. We
then train a classifier on real vs images generated by fine-
tuned A, and then test on real vs images generated by B. We
can expect that, if A has higher capacity than B, it would
learn to generate images with similar distributions and cov-
erages as B. Otherwise, if B is more expressive, it is difficult
for fine-tuned A to recover model B’s manifold, hence the
classification accuracy would be low. Table. 1 lists the clas-
sifier generalization results, which clearly shows that Style-
GAN is most expressive amongst the candidate models. In
addition, StyleGAN generates the most realistic and high-
resolution images compared with other generative models.
For these reasons, we utilize a StyleGAN model trained on
an online collection of high-resolution face images as the
base model for our approach.

3.3. StyleGAN Manifold Projection

The original StyleGAN consists of a mapping network
f and a synthesis network g. f takes random noise as in-
put and outputs a style vector s. s is modeled as an 18
layer vector. The synthesis network takes the style vec-
tor s and a random noise vector as input, and s is used
as parameters for adaptive instance normalization [21] to
transform the output after each convolution layer. Karras et



Model A Model B Classification Accuracy

StyleGAN ProGAN 99.6%
WGAN-GP 99.4%

ProGAN StyleGAN 72.7%
WGAN-GP 98.1%

WGAN-GP StyleGAN 68.5%
ProGAN 88.2%

Table 1: Comparing the capacity of StyleGAN, ProGAN
and WGAN-GP. Higher classification accuracy indicates A
has larger capacity and could better mimic the distribution
of B.

al. [22] shows that using style vector as layer-wise guidance
not only makes synthesizing high-resolution images easier,
but also leads to hierarchical disentanglement of local and
global attributes. For our purpose, we consider a trained
StyleGAN model. In this case, all possible style vectors
generated by the mapping network form a synthetic-face
manifold that mimics the true distribution of human faces.

With the StyleGAN manifold and a visual example from
an arbitrary distribution, our next step is to project the ex-
ample onto the manifold. To do so, we first detect the facial
landmarks and preprocess the image by cropping it to be 1.3
times larger than the face region, followed by resizing it to
1024x1024 which is the output size of StyleGAN. Let the
preprocessed image be I . Projecting I to StyleGAN mani-
fold means we would like to find the style vector sI that the
generated image g(sI) is most similar to I . In this way, sI
is the style vector corresponding to I’s manifold projection.
This process could be more formally formulated as solving
for the following objective function:

sI = argmin
s

D(g(s), I). (1)

With a differentiable distance function D, we can solve for
Eqn. 1 by backpropagating the loss D through g with the
weights fixed, and then iteratively update s until the loss
converges. This is similar to fine-tuning using the given ex-
ample I , but here we are optimizing s instead of the weights
of g. It is also important to use an appropriate distance func-
tion D. Common candidates for reconstruction loss are `1,
`2 and CNN-based perceptual loss. We experimented with
those losses and found that using a combination of percep-
tual and `1 loss leads to the best visual quality and recon-
struction fidelity:

D(g(s), I) =
∑
l

‖fl(g(s))−fl(I)‖22+λ‖g(s)−I‖11. (2)

Here fl is the neuron responses at lth layer extracted with
a pre-trained VGG-16 model, and λ = 5 is the weight of
`1 loss. The reconstruction loss usually converges within
1,000 iterations of optimization. After it converges, the

style vector sI is taken as the projection of I on the Style-
GAN manifold, and the reconstruction g(sI) is the nearest
neighbor of I amongst StyleGAN output images.

A more accurate projection requires optimizing the style
vector and the noise vector at the same time. However, we
found that the noise vector had little effects on the final re-
construction output. In our experiments, we always initial-
ize the style vector to be a zero vector and the noise vector
to be random Gaussian, and we update the style vector but
keep the noise fixed during optimization.

3.4. StyleGAN Manifold Shifting

After we found the projection of the target on the origi-
nal StyleGAN manifold, our next step is to shift the Style-
GAN manifold towards the target distribution. To do so, we
use similar iterative optimization procedure as 3.3. How-
ever, instead of updating the style vector s, we fix s to be
the output of 3.3 sI while updating the model weights to
match the generated image with the target. The idea here is
that every time we update the weight of g, we are slightly
adjusting the StyleGAN manifold when the weight changes
are sufficiently small. By fixing the style vector to be sI and
updating the model weights of g, we are pulling the nearest
neighbor of StyleGAN manifold closer to the target such
that the entire manifold becomes more similar to the target
distribution. Similar to Eqn. 1, the objective function can be
defined as:

gI = argmin
g

D(g(sI), I). (3)

Here, we reuse Eqn. 2 as the distance function. As far as
the optimization is concerned, it comes down to the choice
of updating different layers of the StyleGAN. As shown
in [23], the late layers of the style vector control the low-
level details of the output image such as the color or local
textures, while the initial layers control the global attributes
such as gender, appearance or identity. We experimented
updating different StyleGAN layers for manifold shifting,
and examine the synthetic image quality and the domain
adaptation effectiveness. Our observation is that updating
all StyleGAN layers makes the optimized model generate
images most similar to the target and also achieve the high-
est accuracy when being used to train classifiers. Since we
already inferred sI that generates an image similar to I , this
step would only slightly adjust the weights of the model.
In this case, the optimized model still preserves the generic
face manifold learned in 3.2.

To better illustrate the effects of manifold projection and
shifting, Fig. 2 shows visual examples of an input, the re-
constructed image after manifold projection, and the recon-
structed image after manifold shifting. It shows that after
manifold shifting, the reconstructed image matches with the
input more closely in global color and appearances.



Figure 2: The reconstruction after manifold projection and
manifold shifting for one-shot encoder-decoder (top), neu-
ral talking head (middle) and FSGAN (bottom). From left
to right: the input image; g(sI) as the reconstructed image
after manifold projection; gI(sI) as the reconstructed image
after manifold shifting.

3.5. Style Mixing

In the previous steps, we optimize the weights of the
StyleGAN model such that it generates images of similar
distribution as the target. However, it does not suffice to
simply change the global appearances as there are certain
low-level statistics that the target exhibits, which are use-
ful signals when training a classifier. We propose to use
style mixing to further generate images that match with the
target in low-level details. Karras et al. [23] shows that
StyleGAN’s style vector comes with the property of dis-
entanglement, which separates the high-level and low-level
attributes of the synthesized image at different style layers.
Based on this, we use the style vector sI inferred in 3.3
as the interpretable representation of the target. For each
random style vector s that we sampled with the mapping
network, we replace the final layers of s with those of sI
before giving it as input to the generator so that the gen-
erated random image g(s) inherits the low-level color and
textures from I .

We experimented with replacing different number of the
final layers, and found that replacing the three last layers
of s with those of sI preserves the global appearance of
the image yet still manages to change the output to more
closely resemble I . Combining manifold shifting and style
mixing, the generated images not only capture the generic
human face manifold but also display low-level statistics of

the target.

3.6. Classification

The last step is to use the randomly generated images
as a synthetic dataset to train a classifier against the tar-
get domain. In the case of face manipulation detection,
we train a classifier between real images and one-shot op-
timized StyleGAN synthetic images, and use it to detect
the actual face manipulation images from the real images.
Another task we could solve using the synthetic datasets is
multi-domain classification, where given an image we could
classify it into a specific type of face manipulations. For all
classification tasks, we use ResNet50 [20] as the backbone
model.

4. Experiments
4.1. Experiment Setup and Results

We evaluate our method on several face manipulation
algorithms to show its effectiveness. We use DFDC [13]
and FaceForensics++ [40], which consists of a large num-
ber of videos that are generated by different face manipu-
lation techniques including encoder-decoder Deepfake [1],
Face2Face [45] and FaceSwap [2], neural talking head [50]
and FSGAN [36]. For each of the algorithms, we randomly
select one image from the dataset. We then apply our one-
shot domain adaptation to shift the StyleGAN distribution
towards the image and mix the low-level styles and gen-
erate a large number of random faces. Finally, we train a
classifier using the generated faces to detect images in the
target domain.

Qualitatively, we show visual results of one-shot domain
adaptation in Fig. 3. For each dataset, we show the one-
shot image, the reconstructed image corresponding to the
target, and randomly sampled images that mimic the target
distribution. At each column, we use the same random style
vector to generate the images so that they have the same
identities. However, their appearances change according to
the one-shot input. We can see that the reconstructed im-
age, which is the closest neighbor of the target on the shifted
StyleGAN manifold, visually resembles the target. The ran-
domly sampled images also inherit similar appearances and
low-level characteristics from the target.

For quantitative evaluation, we first generate 10,000 ran-
dom images using the one-shot example for each of the
face manipulation techniques. We then train a classifier us-
ing real face images as real and the 10,000 synthetic im-
ages as fake, and then test on real face images vs the ac-
tual face manipulation images (encoder-decoder, Face2Face
or FaceSwap). As the baseline, we train the classifier us-
ing real faces images and 10,000 random images generated
by the original StyleGAN (without domain adaptation) and
evaluate on real face images vs actual face manipulations.
Table. 2 shows the results. From it we can see that without



(a) Target (b) Reconstructed image (c) Randomly sampled images.

Figure 3: Visual examples of one-shot DeepFake domain adaptation using StyleGAN. From top to bottom: encoder-decoder,
neural talking head and FSGAN.

domain adaptation, the detection accuracy is low. This is
expected as the original StyleGAN generated images have
a distinct distribution from the target. However, after do-
main adaptation using the one-shot example, the classifica-
tion accuracy improves significantly - almost perfect for all
three datasets. This shows that our one-shot domain adap-
tation is effective at generating images with similar distri-
bution to the target domain, at the slight cost of seeing
one more image compared with the baseline. In addition
to train a binary classifier on real vs manipulated, we fur-
ther experimented with fine-grained classification by train-
ing a multi-domain classifier using all images from the three
StyleGAN-synthetic face manipulation domains. The high
accuracy of fine-grained classification (82.1%) shows that
the our synthetic datasets have distinguishable distributions
from each other and their distributions are also consistent
with the target domain.

In Fig. 4, we plot the t-SNE embeddings of StyleGAN
generated image before and after domain adaptation, com-
paring with the embeddings of actual fake images. We can
see that before domain adaptation, the embeddings of Style-
GAN generated images and encoder-decoder Deepfake im-
ages are separated. After domain adaptation, the embed-
dings between the two domains are much closer to each

other.

Figure 4: t-SNE embedding visualizations. Above: Embed-
dings of original StyleGAN generated images and encoder-
decoder Deepfake images. Below: Embeddings of one-shot
domain-adapted StyleGAN generated images and Deepfake
images.

4.2. Ablation Study
As described, there are two main components of our ap-

proach: StyleGAN manifold shifting and style mixing. To
better understand the effects of each component, in Fig. 5
we compare visual examples of a randomly generated im-
age with manifold shifting only and with style mixing only,
given the one-shot example. We can see that with only man-



Train Test Average Precision
Real/StyleGAN Real/encoder-decoder 35.2%

Real/one-shot encoder-decoder Real/encoder-decoder 93.4%
Real/StyleGAN Real/Face2Face 35.3%

Real/one-shot Face2Face Real/Face2Face 99.2 %
Real/StyleGAN Real/FaceSwap 41.6%

Real/one-shot FaceSwap Real/FaceSwap 95.2%
Real/(one-shot) encoder-decoder/Face2Face/FaceSwap Real/encoder-decoder/Face2Face/FaceSwap 82.1%

Table 2: Quantitative evaluation results. (One-shot) encoder-decoder Deepfake/Face2Face/FaceSwap are the synthetic
datasets generated by StyleGAN after running domain adaptation algorithm given the one-shot example of encoder-decoder
Deepfake/Face2Face/FaceSwap (Fig. 3 (a)).

ifold shifting, the output images are different from the input
in low-level characteristics. Meanwhile, if we only mix the
styles without adjusting the original StyleGAN model, the
output image’s colors and textures are distorted and do not
look realistic. In both cases, the classification accuracy us-
ing the randomly generated images significantly drops com-
pared with the results of utilizing both components (Table.
3).

Figure 5: Analyzing the effects of different components.
From left to right: Target encoder-decoder Deepfake image;
Randomly generated image after manifold shifting with-
out style mixing; Randomly generated image using original
StyleGAN with style mixing; Randomly generated image
after manifold shifting and style mixing.

Setting Average Precision
StyleGAN manifold shifting only 43.1%

StyleGAN mix style only 34.0%
Ours 93.4%

Table 3: Real vs encoder-decoder Deepfake classification
results. The classification models are trained using im-
ages generated by StyleGAN with manifold-shifting only
or style-mixing only.

As for the reconstruction losses used for optimizing the
style vector and the model weights, we experimented with
`1, `2, VGG-16, and a combination of these losses. We ob-
serve that the reconstruction quality is correlated with the
reconstruction loss used. As shown by the example images
in Fig. 6, using a single loss of either `1, `2 or VGG-16 re-
sults in bleached color or distorted appearances compared

with accurate reconstructions generated by using a combi-
nation of `1 and perceptual loss. Note that for all VGG-
16 losses, we use all the layers to compute the feature re-
sponses when measuring the perceptual similarity.

Figure 6: Input reconstruction after optimizing style and
weights using different losses. From left to right: input,
`1 loss, `2 loss, VGG-16 loss, combining `1 and VGG-16
losses.

To show the effectiveness of our approach on datasets
other than face manipulations and that it can be used as a
generic domain adaptation approach, we further show that
our one-shot domain adaptation technique can be applied
to other domains such as cats. Given a single cat image as
input and a pre-trained StyleGAN cat model, we can gen-
erate random images that are visually similar to the target
(Fig. 7).

4.3. Comparisons
Comparison with Few-shot Classification We compare
our results with few-shot classifications. We train a clas-
sifier using different number of examples from the target
domain (encoder-decoder Deepfake) and use it to classify
the target from the real faces. Table. 4 shows the results.
We can see that directly training a classifier with very few
examples (1 or 10) in the target domain leads to inferior
performance compared with ours. Only when the number
of examples from the target domain is large enough (over
100), the classifier can achieve high accuracy. For all the
experiments, we use 10,000 real face images as real, and
adjust the weight between false positive loss and false neg-
ative loss to reflect the imbalanced quantity of real and fake.
Comparison with Fine-tuning Another possibility is to
fine-tune a pre-trained StyleGAN model, by further train-
ing it with a few examples from the target domain. Ide-



(a) Input (b) Randomly generated images

Figure 7: One-shot domain adaptation on cats.

Train Test Average Precision
Real/1-shot DF Clf Real/DF 52.1%
Real/10-shot DF Clf Real/DF 79.7%

Real/100-shot DF Clf Real/DF 93.0%
Real/1000-shot DF Clf Real/DF 99.5%

Ours 93.4

Table 4: Comparing with training a encoder-decoder Deep-
fake classifier with different number of examples. Our one-
shot domain adaptation can achieve detection accuracy on
par with a 100-shot DF classifier.

ally the fine-tuned model would generate synthetic images
with a similar distribution as the target domain. However,
we found that fine-tuning StyleGAN with only a few ex-
amples is difficult, as the model would collapse and keep
generating identical images. The classification accuracy of
Table 5 shows that only when we have sufficient examples
(over 100) to fine-tune the original StyleGAN model, would
it not lead to mode collapse and achieve reasonable classifi-
cation accuracy. Note here we use the ProGAN (pre-trained
on real face images) synthetic images as the target domain,
which is more difficult to differentiate with real.

Train Test Average Precision
Real/1-shot ProGAN Real/ProGAN 10.2%

Real/10-shot ProGAN Real/ProGAN 21.8%
Real/100-shot ProGAN Real/ProGAN 88.7%

Real/1000-shot ProGAN Real/ProGAN 99.0%
Ours 62.1%

Table 5: Comparing with fine-tuning StyleGAN with differ-
ent number of examples.

Method FUNIT Ours
Accuracy 34.4% 93.4%

Figure 8: Above from top to bottom: Random StyleGAN
generated images; Input 1-shot encoder-decoder Deepfake
and translated images using FUNIT; Translated images us-
ing our one-shot domain adaptation. Below: DeepFake
classification accuracy when trained on FUNIT vs our gen-
erated images.

Comparison with FUNIT We also compare our results
with Few-Shot Unsupervised Image-to-Image Translation
(FUNIT) [28]. FUNIT could also translate an image to the
target domain given a few examples of the target domain.
However, at training time, FUNIT would require a large
number of labeled images in over 100 classes. In contrast,
our approach is entirely unsupervised and only requires pre-
training the StyleGAN model. At test time, FUNIT can also
translate the images from the source domain (e.g. Style-
GAN synthetic images) to the target domain (e.g. encoder-
decoder Deepfake) given one example. However in terms
of translation quality, from Fig. 8 we can see that FUNIT
actually modifies the identity of the source image instead
of changing the appearances or low-level statistics. We fur-
ther use these images to train a real/Deepfake classifier: we
first use random StyleGAN generated images as the content
and the 1-shot Deepfake image as the style, which are given
to the trained FUNIT model to generate a synthetic dataset
that adapts StyleGAN to Deepfake. We then train a clas-
sifier using real vs FUNIT translated images, and test on
real vs actual Deepfake images. This results in an average
precision significantly lower than ours.

5. Conclusions
We propose a simple yet effective one-shot domain adap-

tation method based on StyleGAN. Our approach not only
generates compelling visual results similar to the one-shot
target, but also allows us to train robust classifiers in re-
sponse to different target domains. This process is also fully
automatic, requiring little supervision. As future work, we
would like to extend our framework to be a more generic
image translation and domain adaptation approach.
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[40] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies,
and M. Nießner. Faceforensics++: Learning to detect ma-
nipulated facial images. arXiv preprint arXiv:1901.08971,
2019. 1, 2, 5

[41] R. Salakhutdinov, J. Tenenbaum, and A. Torralba. One-shot
learning with a hierarchical nonparametric bayesian model.
In Proceedings of ICML Workshop on Unsupervised and
Transfer Learning, pages 195–206, 2012. 2

[42] J. Snell, K. Swersky, and R. Zemel. Prototypical networks
for few-shot learning. In Advances in Neural Information
Processing Systems, pages 4077–4087, 2017. 2

[43] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M.
Hospedales. Learning to compare: Relation network for
few-shot learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1199–
1208, 2018. 2

[44] S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-
Shlizerman. Synthesizing obama: learning lip sync from au-
dio. ACM Transactions on Graphics (TOG), 36(4):95, 2017.
2

[45] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and
M. Nießner. Face2face: Real-time face capture and reenact-
ment of rgb videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2387–
2395, 2016. 1, 2, 5

[46] S. Valverde, M. Salem, M. Cabezas, D. Pareto, J. C. Vi-
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