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ABSTRACT Supporting high mobility in millimeter wave (mmWave) systems enables a wide range of
important applications, such as vehicular communications and wireless virtual/augmented reality. Realizing
this in practice, though, requires overcoming several challenges. First, the use of narrow beams and the
sensitivity of mmWave signals to blockage greatly impact the coverage and reliability of highly-mobile
links. Second, highly-mobile users in dense mmWave deployments need to frequently hand-off between
base stations (BSs), which is associated with critical control and latency overhead. Furthermore, identifying
the optimal beamforming vectors in large antenna array mmWave systems requires considerable training
overhead, which significantly affects the efficiency of these mobile systems. In this paper, a novel inte-
grated machine learning and coordinated beamforming solution is developed to overcome these challenges
and enable highly-mobile mmWave applications. In the proposed solution, a number of distributed yet
coordinating BSs simultaneously serve a mobile user. This user ideally needs to transmit only one uplink
training pilot sequence that will be jointly received at the coordinating BSs using omni or quasi-omni
beam patterns. These received signals draw a defining signature not only for the user location, but also
for its interaction with the surrounding environment. The developed solution then leverages a deep learning
model that learns how to use these signatures to predict the beamforming vectors at the BSs. This renders
a comprehensive solution that supports highly mobile mmWave applications with reliable coverage, low
latency, and negligible training overhead. Extensive simulation results based on accurate ray-tracing, show
that the proposed deep-learning coordinated beamforming strategy approaches the achievable rate of the
genie-aided solution that knows the optimal beamforming vectors with no training overhead. Compared with
traditional beamforming solutions, the results show that the proposed deep learning-based strategy attains
higher rates, especially in high-mobility large-array regimes.

INDEX TERMS Millimeter wave, deep learning, machine learning, beamforming, channel estimation,
vehicular communications, wireless virtual/augmented reality.

I. INTRODUCTION
Millimeter wave (mmWave) communication attracted
considerable interest in the last few years, thanks to the high
data rates enabled by its large available bandwidth [1]–[3].
This makes mmWave a key technology for next-generation
wireless systems [4]–[7]. Most of the prior research has
focused on developing beamforming strategies [8]–[10],
evaluating the performance [11]–[13], or studying the prac-
tical feasibility of mmWave communication at fixed or low-
mobility wireless systems [14]–[16]. But can mmWave also
support highly-mobile yet data-hungry applications, such
as vehicular communications or wireless augmented/virtual
reality (AR/VR)? Enabling these applications faces several
critical challenges: (i) the sensitivity of mmWave signal

propagation to blockages and the large signal-to-noise
ratio (SNR) differences between line-of-sight (LOS) and
non-LOS links severely impact the reliability of the mobile
systems, (ii) with mobility, and in dense deployments,
the user needs to frequently hand over from one base
station (BS) to another, which imposes control overhead
and introduces a latency problem, and (iii) with large
arrays, adjusting the beamforming vectors requires large
training overhead, which imposes a fundamental limit
on supporting mobile users. In this paper, we develop a
novel solution based on coordinated beamforming, and
leveraging tools from machine learning, to jointly address
all these challenges and enable highly-mobile mmWave
systems.
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A. PRIOR WORK
Coordinating the transmission between multiple BSs to
simultaneously serve the same user is one main solution
for enhancing the coverage and overcoming the frequent
handover problems in dense mmWave systems [17]–[19].
In [17], extensive measurements for 73 GHz coordinated
multi-point transmission were done at an urban open square
scenario in downtown Brooklyn. The measurements showed
that serving a user simultaneously by a number of BSs
achieves significant coverage improvement. Analyzing the
network coverage of coordinated mmWave beamforming
was also addressed in prior work [18], [19], mainly using
tools from stochastic geometry. In [18], the performance of
heterogeneous mmWave cellular networks was analyzed to
show that a considerable coverage gain can be achieved
using base station cooperation, where the user is simulta-
neously served by multiple BSs. In [19], a setup where the
user is only connected to LOS BSs was considered and the
probability of having at least one LOS BS was analyzed.
The results showed that the density of coordinating BSs
should scale with the square of the blockage density to
maintain the same LOS connectivity. While [17]–[19] proved
the significant coverage gain of BS coordination, they did
not investigate how to construct these coordinated beam-
forming vectors, which is normally associated with high
coordination overhead. This paper, therefore, targets devel-
oping low-complexity mmWave coordination strategies that
harness the coordination coverage and latency gains but with
low coordination overhead.

The other major challenge with highly-mobile mmWave
systems is the huge training overhead associated with
adjusting large array beamforming vectors. Developing
beamforming/channel estimation solutions to reduce this
training overhead has attracted considerable research interest
in the last few years [20]–[33]. This prior research has mainly
focused on three directions: (i) beam training [20]–[23],
(ii) compressive channel estimation [24]–[28], and (iii) loca-
tion aided beamforming [29]–[33]. In beam training,
the candidate beams at the transmitter and receiver are
directly trained using exhaustive or adaptive search to select
the ones that optimize the metric of interest, e.g., SNR.
Beam training, though, requires large overhead to train all
the possible beams and is mainly suitable for single-user
and single stream transmissions [20]–[23]. In order to
enable spatial multiplexing at mmWave systems, [24]–[28]
proposed to leverage the sparsity of mmWave channels and
formulated the mmWave channel estimation problem as a
sparse reconstruction problem. Compressive sensing tools
were then used to efficiently estimate the parameters (angles
of arrival/departure, path gains, etc.) of the sparse channel.
While compressive channel estimation techniques can gener-
ally reduce the training overhead compared to exhaustive
search solutions, they still require relatively large training
overhead that scales with the number of antennas. Further,
compressive channel estimation techniques normally make

hard assumptions on the exact sparsity of the channel and the
quantization of the angles of arrival/departure, which leaves
their practical feasibility uncertain.

To further reduce the training overhead, and given the
directivity nature of mmWave beamforming, out-of-band
information such as the locations of the transmitter and
receiver can be leveraged to reduce the beamforming training
overhead [29]–[33]. In [29], the transmitter/receiver location
information was exploited to guide the sensing matrix design
used in the compressive estimation of the channel. Position
information was also leveraged in [30] and [31] to build
the beamforming vectors in LOS mmWave backhaul and
vehicular systems. In [32] and [33], the BSs serving vehicular
systems build a database relating the vehicle position and the
beam training result. This database is then leveraged to reduce
the training overhead with the knowledge of the vehicle loca-
tion. While the solutions in [29]–[33] showed that the posi-
tion information can reduce the training overhead, relying
only on the location information to design the beamforming
vectors has several limitations. First, position-acquisition
sensors, such as GPS, have limited accuracy, normally in
the order of meters, which may not work efficiently with
narrow-beam systems. Second, GPS sensors do not work well
inside buildings, which makes these solutions not capable
of supporting indoor applications. Further, the beamforming
vectors are not merely a function of the transmitter/receiver
location but also of the environment geometry, blockages, etc.
This makes location-based beamforming solutions mainly
suitable for LOS environment, as the same location in
NLOS environment may correspond to different beam-
forming vectors depending, for example, on the position of
the obstacles.

B. CONTRIBUTION
In this paper, we propose a novel integrated communication
and machine learning solution for highly-mobile mmWave
applications. Our proposed solution considers a coordinated
beamforming system where a set of BSs simultaneously
serve one mobile user. For this system, a deep learning
model learns how to predict the BSs beamforming vectors
directly from the signals received at the distributed BSs
using only omni or quasi-omni beam patterns. This is moti-
vated by the intuition that the signals jointly received at
the distributed BSs draw a defining multi-path signature not
only of the user location, but also of its surrounding envi-
ronment. This proposed solution has multiple gains. First,
making beamforming prediction based on the uplink received
signals, and not on position information, enables the devel-
oped strategy to support both LOS and NLOS scenarios
and waives the requirement for special position-acquisition
sensors. Second, the prediction of the optimal beams requires
only omni received pilots, which can be captured with
negligible training overhead. Further, the deep learning
model in the proposed system operation does not require
any training before deployment, as it learns and adapts to
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any environment. Finally, since the proposed deep learning
model is integrated with the coordinated beamforming
system, it inherits the coverage and reliability gains of coor-
dination. More specifically, this paper contributions can be
summarized as follows.
• We propose a low-complexity coordinated beamforming
system in which a number of BSs adopting RF beam-
forming, linked to a central cloud processor applying
baseband processing, simultaneously serve a mobile
user. For this system, we formulate the training and
design problem of the central baseband and BSs RF
beamforming vectors to maximize the system effec-
tive achievable rate. The effective rate is a metric that
accounts for the trade-off between the beamforming
training overhead and achievable rate with the designed
beamforming vectors, which makes it a suitable metric
for highly-mobile mmWave systems.

• We develop a baseline coordinated beamforming
strategy for the adopted system, which depends on
uplink training in designing the RF and baseband beam-
forming vectors. With this baseline solution, the BSs
first select their RF beamforming vectors from a prede-
fined codebook. Then, a central processor designs its
baseband beamforming to ensure coherent combining
at the user. We prove that in some special yet impor-
tant cases, the baseline beamforming strategy obtains
optimal achievable rates. This solution, though, requires
high training overhead, which motivates the integration
with machine learning models.

• We propose a novel integrated deep learning and
coordinated beamforming solution, and develop its
system operation and machine learning modeling. The
key idea of the proposed solution is to leverage
the signals received at the coordinating BSs with
only omni or quasi-omni patterns, i.e., with negli-
gible training overhead, to predict their RF beam-
forming vectors. Further, the developed solution enables
harvesting the wide-coverage and low-latency coordi-
nated beamforming gains with low coordination over-
head, rendering it a promising enabling solution for
highly-mobile mmWave applications.

Extensive simulations were performed to evaluate the perfor-
mance of the developed solution and the impact of the
key system and machine learning parameters. At both LOS
and NLOS scenarios, the results show that the effective
achievable rate of the developed solution approaches that
of the genie-aided coordinated beamforming which knows
the optimal beamforming vectors with no training overhead.
Compared to the baseline solution, deep-learning coordi-
nated beamforming achieves a noticeable gain, especially
when users are moving with high speed and when the BSs
deploy large antenna arrays. The results also confirm the
ability of the proposed deep learning based beamforming
to learn and adapt to time-varying environment, which is
important for the system robustness. Further, the results
show that learning coordinated beamforming may not require

phase synchronization among the coordinating BSs, which
is especially important for practical implementations. All
that highlights the capability of the proposed deep-learning
solution in efficiently supporting highly-mobile applications
in large-array mmWave systems.
Notation: We use the following notation throughout this

paper: A is a matrix, a is a vector, a is a scalar, and A is
a set. |A| is the determinant of A, whereas AT , AH , A∗ are
its transpose, Hermitian (conjugate transpose), and conjugate
respectively. diag(a) is a diagonal matrix with the entries of a
on its diagonal, and blkdiag (A1, . . . ,AN ) is a block diagonal
matrix with the matrices A1, . . . ,AN on the diagonal. I is the
identity matrix and N (m,R) is a complex Gaussian random
vector with meanm and covariance R.

II. SYSTEM AND CHANNEL MODELS
In this section, we describe the adopted frequency-selective
coordinated mmWave system and channel models. The key
assumptions made for each model are also highlighted.

A. SYSTEM MODEL
Consider the mmWave communication system in Fig. 1,
where N base stations (BSs) or access points (APs) are
simultaneously serving one mobile station (MS). Each
BS is equipped with M antennas and all the BSs are
connected to a centralized/cloud processing unit. For
simplicity, we assume that every BS has only one RF
chain and is applying analog-only beamforming using
networks of phase shifters [1]. Extensions to more sophis-
ticated mmWave precoding architectures at the BSs such
as hybrid precoding [8], [9] are also interesting for future
research. In this paper, we assume that the mobile user has
a single antenna. The developed algorithms and solutions,
though, can be extended to multi-antenna users.

FIGURE 1. A block diagram of the proposed mmWave coordinated
beamforming system. The transmitted signal sk at every subcarrier
k,k = 1, ..,K , is first precoded at the central/cloud processing unit
using fCP

k , and then transmitted jointly from the N terminals/BSs
employing the RF beamforming vectors fRF

n ,n = 1, . . . ,N .

In the downlink transmission, the data symbol sk ∈
C at subcarrier k, k = 1, . . . ,K , is first precoded using

the N × 1 digital precoder fCPk =

[
f CPk,1 , . . . , f

CP
k,N

]T
∈

CN×1 at the central/cloud processing unit. The resulting
symbols are transformed to the time domain using N
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K -point IFFTs. A cyclic prefix of length D is then added
to the symbol blocks before sending them to the BSs using
error-negligible and delay-negligible wired channels, e.g.,
optical fiber cables. Every BS n applies a time-domain analog
beamforming fRFn ∈ CM×1 and transmits the resulting signal.
The discrete-time transmitted complex baseband signal from
the nth BS at the kth subcarrier can then be written as

xk,n = fRFn f CPk,n sk , (1)

where the transmitted signal on the k-th subcarrier sk is
normalized such that E[sksHk ] =

P
K , with P the average

total transmit power. Since the RF beamforming is assumed
to be implemented using networks of quantized phase
shifters, the entries of fRFn are modeled as

[
fRFn
]
m =

1
√
(M )

ejφn,m , where φn,m is a quantized angle. Adopting a

per-subcarrier transmit power constraint and defining FRF
=

blkdiag
(
fRF1 , . . . , fRFN

)
∈ CNM×N , the cloud baseband

precoder and the BSs RF beamformers satisfy∥∥∥FRFfCPk
∥∥∥2 = 1, k = 1, 2, . . . ,K . (2)

At the user, assuming perfect frequency and carrier
offset synchronization, the received signal is transformed to
the frequency domain using a K-point FFT. Denoting the
M × 1 channel vector between the user and the nth BS at
the kth subcarrier as hk,n ∈ CM×1, the received signal at
subcarrier k after processing can be expressed as

yk =
N∑
n=1

hTk,nxk,n + vk , (3)

where vk ∼ NC
(
0, σ 2

)
is the receive noise at subcarrier k .

B. CHANNEL MODEL
We adopt a geometric wideband mmWave channel
model [3], [7], [34], [35] with L clusters. Each cluster `,
` = 1, . . . ,L is assumed to contribute with one ray that
has a time delay τ` ∈ R, and azimuth/elevation angles of
arrival (AoA) θ`, φ`. Further, let ρn denote the path-loss
between the user and the n-th BS, and prc(τ ) represents a
pulse shaping function for TS -spaced signaling evaluated at
τ seconds [27]. With this model, the delay-d channel vector
between the user and the nth BS, hd,n, follows

hd,n =

√
M
ρn

L∑
`=1

α` p(dTS − τ`) an (θ`, φ`), (4)

where an (θ`, φ`) is the array response vector of the nth BS
at the AoA θ`, φ`. Given the delay-d channel in (4),
the frequency domain channel vector at subcarrier k , hk,n, can
be written as

hk,n =
D−1∑
d=0

hd,ne−j
2πk
K d . (5)

Considering a block-fading channel model,
{
hk,n

}K
k=1 are

assumed to stay constant over the channel coherence time,
denoted TC, which depends on the user mobility and the

channel multi-path components [36] . In the next section,
we will develop the problem formulation and discuss this
channel coherence time in more detail.

III. PROBLEM FORMULATION
The main goal of the proposed coordinated mmWave beam-
forming system is to enable wireless applications with high
mobility and high data rate requirements, and with strict
constraints on the coverage, reliability, and latency. Thanks to
simultaneously serving the user from multiple BSs, the coor-
dinated beamforming system in Section II provides transmis-
sion diversity and robustness against blockage, which directly
enhances the system coverage, reliability, and latency. The
main challenge, however, with this system is achieving
the high data rate requirements, as the time overhead of
training and designing the cloud baseband and terminals
RF beamforming vectors can be very large, especially for
highly-mobile users. With this motivation, this paper focuses
on developing efficient channel training and beamforming
design strategies that maximize the system effective achiev-
able rate, and enable highly-mobile mmWave applications.
Next, we formulate the effective achievable rate optimization
problem.

A. ACHIEVABLE RATE
Given the system and channel models in Section II, and
employing the cloud and RF beamformers

{
fCPk
}K
k=1, F

RF,
the user achievable rate is expressed as

R =
1
K

K∑
k=1

log2

1+ SNR

∣∣∣∣∣
N∑
n=1

hTk,nf
RF
n f CPk,n

∣∣∣∣∣
2, (6)

where SNR = P
Kσ 2

denotes the signal-to-noise ratio.
Due to the constraints on the RF hardware, such as the

availability of only quantized angles, φm,n, for the RF phase
shifters, the BSs RF beamforming vectors fRFn , n = 1, . . . ,N ,
can take only certain values [8], [20], [24], [37]. Therefore,
we assume that the RF beamforming vectors are selected
from finite-size codebooks, which we formally state in the
following assumption.
Assumption 1: The BSs RF beamforming vectors are

subject to the quantized codebook constraint, fRFn ∈ FRF,∀n,
where the cardinality of FRF is |FRF| = Ntr.
The optimal cloud baseband and terminals RF beamforming
vectors that maximize the system achievable rate can then be
found by solving

{

?

fCPk }
K
k=1, {

?

fRFn }
N
n=1

= argmax
K∑
k=1

log2

1+ SNR

∣∣∣∣∣
N∑
n=1

hTk,nf
RF
n f CPk,n

∣∣∣∣∣
2, (7)

s.t. fRFn ∈ FRF, ∀n, (8)∥∥∥FRFfCPk
∥∥∥2 = 1, ∀k, (9)

which is addressed in the next lemma.
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Lemma 1: For a given concatenated channel vector hk =[
hTk,1, . . . ,h

T
k,N

]T
,∀k , the optimal cloud baseband precoder

and terminal RF beamformers that solve (7)-(9) are

?

fCPk =

(
h
T
k F

RF
)H∥∥∥hTk FRF
∥∥∥ , ∀k, (10)

and

{

?

fRFn }
N
n=1 = argmax

fRFn ∈FRF,∀n

K∑
k=1

log2

(
1+SNR

N∑
n=1

∣∣∣hTk,nfRFn ∣∣∣2
)
,

(11)

which yield the optimal achievable rate R?.
Proof: The proof is straightforward, and follows

from the maximum ratio transmit solution. First, note that
the power constraint

∥∥FRFfCPk
∥∥2 = 1 can be reduced

to
∥∥fCPk ∥∥2 = 1, given the block diagonal structure of the

RF precoding matrix FRF. Under this power constraint,
the optimal central precoder for the kth subcarrier that

maximizes
∣∣∣hTk FRFfCPk

∣∣∣2 for a given RF codeword FRF is
expressed in (10). The optimal RF precoder is then obtained
by searching over the codebook FRF, as shown in (11).

B. EFFECTIVE ACHIEVABLE RATE
The optimal achievable rate R?, given by Lemma 1, assumes
perfect channel knowledge at the cloud processing unit and
RF terminals. Obtaining this channel knowledge, however,
is very challenging and requires large training overhead in
mmWave systems with RF architectures. This is mainly due
to (i) the large number of antennas at the BSs, and (ii) the RF
filtering of the channel seen at the baseband [9]. To accurately
evaluate the actual rate experienced by the mobile user, it is
important to incorporate the impact of this time overhead
required for the channel training and beamforming design.
For that, we adopt the effective achievable rate metric, which
we define shortly.

The formulation of the effective achievable rate requires
understanding how often the beamforming vectors need to
be redesigned as the user moves. This can be captured by
one of two metrics: (i) the channel coherence time TC,
which is the time over which the multi-path channel remains
almost constant, and (ii) the channel beam coherence time TB,
which is a recent concept introduced for mmWave systems
to represent the average time over which the beams stay
aligned [36]. While the channel coherence time is normally
shorter than the beam coherence time, It was shown in [36]
that updating the beams every beam coherence time incurs
negligible receive power loss compared to updating them
every channel coherence time. Adopting this model, we make
the following assumption on the system operation.
Assumption 2: The cloud baseband and terminal RF

beamforming vectors are assumed to be retrained and
redesigned every beam coherence time, TB, such that the
first Ttr time of every beam coherence time is allocated for

the channel training and beamforming design, and the rest
of it is used for the data transmission using the designed
beamforming vectors.

Now, we define the effective achievable rate, Reff, as the
achievable rate using certain precoders,

{
fCPk
}K
k=1 ,F

RF, times
the percentage of time these precoders are used for data
transmission, i.e.,

Reff =
(
1−

Ttr
TB

)
1
K

K∑
k=1

× log2

1+ SNR

∣∣∣∣∣
N∑
n=1

hTk,nf
RF
n f CPk,n

∣∣∣∣∣
2. (12)

The effective achievable rate in (12) captures the impact
of user mobility on the actually experienced data rate. For
example, with higher mobility, the beam coherence time
decreases, which results in lower data rate for the same beam-
forming vectors and beam training overhead. The objective
of this paper is then to develop efficient channel training
and beamforming design strategies that maximize the system
effective achievable rate. If 5

(
Ttr,

{
fCPk
}K
k=1 ,F

RF
)
repre-

sents a certain channel training/beamforming design strategy
that requires training overhead Ttr to design the cloud and
RF beamforming vectors

{
fCPk
}K
k=1 ,F

RF, the final problem
formulation can then be written as

5?
(
Ttr,

{
fCPk
}K
k=1

,FRF
)

= argmax
(
1−

Ttr
TB

) K∑
k=1

× log2

1+ SNR

∣∣∣∣∣
N∑
n=1

hTk,nf
RF
n f CPk,n

∣∣∣∣∣
2 (13)

s.t. fRFn ∈ FRF ∀n, (14)∥∥∥fCPk ∥∥∥2 = 1 ∀k. (15)

Solving the problem in (13)-(15) means developing solu-
tions that require very low channel training overhead to
realize beamforming vectors that maximize the system
achievable rate, R. It is worth noting also that R? represents
an ultimate upper bound for the effective achievable rate Reff
with Ttr = 0 and R = R?.

In the literature, two main directions to address this
mmWave channel estimation/beamforming design problem
are compressed sensing and beam training. In compressed
sensing, the sparsity of mmWave channels is leveraged and
random beams are employed to estimate the multi-path
channel parameters, such as the angles or arrival and
path gains [24]–[27], [38]. The estimated channel can then
be used to construct the beamforming vectors. The other
approach is to directly train the RF beamforming vectors
through exhaustive or hierarchical search to find the best
beams [7], [20], [21]. Each of the two directions has its own
advantages and limitations. Both of them, though, require
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large training overhead which makes them inefficient in
handling highly-mobile mmWave applications. In this paper,
we show that integrating machine learning tools with typical
mmWave beam training solutions can yield efficient channel
training/beamforming design strategies that have very low
training overhead and near-optimal achievable rates, which
enables highly-mobile mmWave systems.

In the next sections, we present a baseline coordi-
nated mmWave beamforming solution based on conventional
beam training techniques. Then, we show in Section V
how machine learning models can be integrated with the
proposed baseline solution, leading to novel techniques with
near-optimal effective achievable rates for mmWave systems.

IV. BASELINE COORDINATED BEAMFORMING
In this section, we present a baseline solution for the channel
training/beamforming design problem in (13)-(15) based on
conventional communication system tools. The proposed
solution has low beamforming design complexity and enables
the integration with the machine learning model in Section V.
In the following subsections, we present the baseline solution
and evaluate its achievable rate performance and mobility
support.

A. PROPOSED SOLUTION
As shown in Section III, for a given set of RF beamforming
vectors

{
fRFn
}N
n=1, the cloud baseband beamformers can be

written optimally as a function of the effective channel
h
T
k F

RF. This implies that the cloud baseband and terminal RF
beamforming design problem is separable and can be solved
in two stages for the RF and baseband beamformers. To find
the optimal RF beamforming vectors, though, an exhaustive
search over all possible BSs beamforming combinations is
needed, as indicated in (11). This yields high computational
complexity, especially for large antenna systems with large
codebook sizes. For the sake of low-complexity solution,
we propose the following system operation.

1) UPLINK SIMULTANEOUS BEAM TRAINING
In this stage, the user transmits Ntr = |FRF| repeated

pilot sequences of the form
{
spilotk

}K
k=1

to the BSs. During

this training time, every BS switches between its Ntr RF
beamforming vectors such that it combines every received
pilot sequence with a different RF beamforming vector. Let
gp, p = 1, . . . ,Ntr denotes the p-th beamforming codeword
inF , then the combined received signal at the n-th BS for the
p-th training sequence can be expressed as

r (p)k,n = gTp hk,ns
pilot
k + gTp vk,n, k = 1, 2, . . . ,K , (16)

where vk,n ∼ NC
(
0, σ 2I

)
is the receive noise vector at the

n-th BS and k-th subcarrier.
The combined signals for all the beamforming codewords

are then fed back from all the BSs/terminals to the cloud
processor, which calculates the received power using every

RF beamforming vector and selects the BSs downlink RF
beamforming vectors separately for every BS, according to

fBLn = argmax
gp∈FRF

K∑
k=1

log2

(
1+ SNR

∣∣∣hTk,ngp∣∣∣2). (17)

Note that selecting the RF beamforming vectors disjointly
for the different BSs avoids the combinatorial optimiza-
tion complexity of the exhaustive search and enables the
integration with the machine learning model, as will be
discussed in Section V. Further, this disjoint optimization
can be shown to yield optimal achievable rate in some
important special cases for mmWave systems, which will be
discussed in the next subsection. Once the RF beamforming
vectors are selected, the effective channels hTk,nf

BL
n ,∀n, k

are fed back to the central processor, and the cloud base-
band beamforming vectors fCPk ∀k are constructed according
to (10). Note that building the baseband precoders relies
only on the effective channels hTk,nf

BL
n ,∀n, k that result from

the beam training and does not require the full channel
knowledge.

2) DOWNLINK COORDINATED DATA TRANSMISSION
The designed cloud and RF beamforming vectors are
employed for the downlink data transmission to achieve
the coverage, reliability, and latency gains of the coordi-
nated beamforming transmission. With the proposed base-
line solution for the channel training/beamforming design,
and denoting the beam training pilot sequence time as Tp,
the effective achievable rate, RBLeff , can be characterized as

RBLeff =(
1−

NtrTp
TB

)
1
K

K∑
k=1

log2

1+SNR

∣∣∣∣∣
N∑
n=1

∣∣∣hTk,nfBLn ∣∣∣2∣∣∣∣∣
2, (18)

where the RF beamforming vectors fBLn , n = 1, . . . ,N , are
given by (17).

B. PERFORMANCE ANALYSIS AND MOBILITY SUPPORT
In this subsection, we evaluate the achievable rate perfor-
mance of the proposed solution and discuss its mobility
support.

1) ACHIEVABLE RATE
Despite its low complexity and the disjoint RF beamforming
design, the achievable rate of the baseline coordinated beam-
forming solution converges to the upper bound R? in impor-
tant special cases for mmWave systems, namely in the
single-path channels and large antenna regimes, which is
captured by the following proposition.
Proposition 1: Consider the system and channel models in

Section II, with a pulse shaping function p(t) = δ(t), then
the achievable rate of the baseline coordinated beamforming
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solution satisfies

RBL =
1
K

K∑
k=1

log2

1+ SNR

∣∣∣∣∣
N∑
n=1

∣∣∣hTk,nfBLn ∣∣∣2∣∣∣∣∣
2

= R?, for L = 1, (19)

and when a beamsteering codebook FRF is adopted, with
beamforming codewords gp = a(θp, φp) for some quantized
angles θp, φp, the achievable rate of the baseline solution
follows

lim
M→inf

RBL = R? almost surely. (20)

Proof: The proof is simple and is omitted due to space
limitation. An important note is that when L = 1 and
p(t) = δ(t), then the value of

∣∣∣hTk,nfBLn ∣∣∣ will be the same for
all subcarriers. Hence, solving the optimal RF beamforming
problem in (11) will be equivalent to the greedy baseline RF
optimization problem in (17).

Proposition 1 shows that, for some important special cases,
the disjoint RF beamforming design across BSs achieves
the same data rate of the upper bound R? which requires
combinatorial optimization complexity.

2) EFFECTIVE ACHIEVABLE RATE AND MOBILITY SUPPORT
The effective achievable rate depends on (i) the time over-
head in training the channel and designing the beam-
forming vectors, and (ii) the achievable rate using the
constructed beamforming vectors. While the baseline solu-
tion can achieve optimal rate in some special yet impor-
tant mmWave-relevant cases, the main drawback of this
solution is the requirement of large training overhead, as it
exhaustively searches over all theNtr codebook beamforming
vectors. This makes it very inefficient in supporting wireless
applications with high throughput andmobility requirements.
For example, consider a system model with BSs employing
32× 8 uniform planar antenna arrays, and adopting an over-
sampled beamsteering RF codebook of sizeNtr = 1024. If the
pilot sequence training time is Tp = 10 us, this means that the
training over head will consume ∼ 45% of the channel beam
coherence time for a vehicle moving with speed v = 30 mph,
whose beam coherence time is around 23 ms [36]. In the next
section, we show how machine learning can be integrated
with this baseline solution to dramatically reduce this training
overhead and enable highly-mobile mmWave applications.

V. DEEP LEARNING COORDINATED BEAMFORMING
Machine learning has attracted considerable interest in the
last few years, thanks to its ability in creating smart systems
that can take successful decisions and make accurate predic-
tions. Inspired by these gains, this section introduces a novel
application of machine learning in mmWave coordinated
beamforming. We show that leveraging machine learning
tools can yield interesting performance gains that are very
difficult to attain with traditional communication systems.
In the next subsections, we first explain the main idea of the

proposed coordinated deep learning beamforming solution,
highlighting its advantages. Then, we delve into a detailed
description of the system operation and the machine learning
modeling. For a brief background on machine/deep learning,
we refer the reader to [39].

A. THE MAIN IDEA
As discussed in Section IV, the key challenge in supporting
highly-mobile mmWave applications is the large training
overhead associated with estimating the large-scale MIMO
channel or scanning the large number of narrow beams.
An important note about these beam training solutions (and
similarly for compressed sensing) is that they normally do
not make any use of the past experience, i.e., the previous
beam training results. Intuitively, the beam training result is a
function of the environment setup (user/BS locations, room
furniture, street buildings and trees, etc.). These functions,
though, are difficult to characterize by closed-form equations,
as they generally convolve many parameters and are unique
for every environment setup.

In this paper, we propose to integrate deep learning
models with the communication system design to learn
the implicit mapping function relating the environment
setup, which include the environment geometry and user
location among others, and the beam training results.
To achieve that, the main question is how to characterize
the user locations and environment setup in the learning
models at the BSs? One solution is to rely on the GPS data
fed back from the users. This solution, however, has several
drawbacks: (i) the GPS accuracy is normally in the order of
meters, whichmay not be reliable for mmWave narrow beam-
forming, (ii) GPS devices do not work well inside buildings,
and therefore will not support indoor applications, such as
wireless virtual/augmented reality. Further, relying only on
the user location is insufficient as the beamforming direction
depends also on the environment, which is not captured by the
GPS data. In the proposed solution, the machine learning
model uses the uplink pilot signal received at the terminal
BSs with only omni or quasi-omni beam patterns to learn
and predict the best RF beamforming vectors. Note that
these received pilot signals at the BSs are the results of the
interaction between the transmitted signal from the user and
the different elements of the environment through propaga-
tion, reflection, and diffraction. Therefore, these pilots, which
are received jointly at the different BSs, draw an RF signature
of the environment and the user/BS locations— the signature
we need to learn the beamforming directions.

This proposed coordinated deep learning solution oper-
ates in two phases. In the first phase (learning), the deep
learning model monitors the beam training operations and
learns the mapping from the omni-received pilots to the beam
training results. In the second phase (prediction), the system
relies on the developed deep learning model to predict the
best RF beamforming using only the omni-received pilots,
totally eliminating the need for beam training. This solu-
tion, therefore, achieves multiple important gains in the
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FIGURE 2. This figure abstracts the timing diagram of the two phases of the proposed deep learning coordinated beamforming strategy.
In the online learning phase, the BSs combine the uplink training pilot using both codebook beams and omni/quasi-omni patterns. In the
deep-learning prediction phase, only omni-patterns are used to receive the uplink pilots. (a) Online Learning Phase. (b) Deep Learning
Prediction Phase.

same time. First, it does not need any special resources
for learning, such as GPS data, as the deep learning model
learns how to select the beamforming vectors directly from
the received uplink pilot signal. Second, since the deep
learning model predicts the best RF beamforming vectors
using only omni-received uplink pilots, the proposed solution
has negligible training overhead and can efficiently support
highly-mobile mmWave applications, as will be shown in
Section VI. It is worth noting here that while combining
the uplink training signal with omni patterns penalizes the
receive SNR, we show in Section VI-C that this is still
sufficient to efficiently train the learning model with reason-
able uplink transmit power. Another key advantage of the
proposed system operation is that the deep learning model
does not need to be trained before deployment, as it learns
and adapts to any environment, and can support both LOS
and NLOS scenarios. Further, as we will see in Section VI,
the deep learning model learns and memorizes the different
scenarios it experiences, such as different traffic patterns,
which enables it to become more robust over time. Finally,
since the proposed deep learning model is integrated with
the baseline coordinated beamforming solution, the resulting
system inherits the coverage, reliability, and latency gains
discussed in Section III.

B. SYSTEM OPERATION
The proposed deep learning coordinated beamforming inte-
grates machine learning with the baseline beamforming
solution in Section IV to reduce the training overhead
and achieves high effective achievable rates. This inte-
grated system operates in two phases, namely the online
learning and the deep learning prediction phases depicted
in Figures 2 and 3. Next, we explain the two phases in detail.

1) PHASE 1: ONLINE LEARNING PHASE
In this phase, the machine learning model monitors the
operation of the baseline coordinated beamforming system
and trains its neural network. Specifically, for every beam

coherence time TB, the user sends Ntr + 1 repeated uplink
training pilot sequences spilotk , k = 1, . . . ,K . Similar to
the baseline solution explained in Section IV-A, every BS
switches between its Ntr RF beamforming beams in the code-
bookFRF such that it combines every received pilot sequence
with a different RF beamforming vector. The only difference
is that every BS nwill also receive one additional uplink pilot
sequence using an omni (or quasi-omni) beam, g0, as depicted
in Fig. 3(a), to obtain the received signal

romni
k,n = gT0 hk,ns

pilot
k + gT0 vk,n, k = 1, 2, . . . ,K . (21)

The combined signals romni
k,n , r (p)k,n, p = 1, . . . ,Ntr,∀k will

be fed back from all the BS terminals to the cloud. The
cloud performs two tasks. First, it selects the downlink RF
beamforming vector for every BS according to (17) and
the baseband beamformers as in (10), which is similar to
the baseline solution in Section IV-A. Second, it feeds the
machine learning model with (i) the omni-received sequences
from all the BSs romni

k,n ,∀n which represent the inputs to the
deep learning model, and (ii) the achievable rate of every RF
beamforming vector R(p)n , n = 1, . . . ,Ntr defined as

R(p)n =
1
K

K∑
k=1

log2

(
1+ SNR

∣∣∣hTk,ngp∣∣∣2), (22)

which represent the desired outputs from the machine
learning model, as will be described in detail in Section V-C.
The deep learning model is, therefore, trained online to
learn the implicit relation between the OFDM omni-received
signals captured jointly at all the BSs, which represent a
defining signature for the user location/environment, and the
rates of the different RF beamforming vectors. Once the
model is trained, the system operation switches to the second
phase — deep learning prediction. It is important to note
here that using omni patterns at the BSs during the uplink
training reduces the receive SNR compared to the case when
combining the received signal with narrow beams. We show
in Section VI-C, though, that this receive SNR with omni
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FIGURE 3. This figure illustrates the system operation of the proposed deep-learning coordinated beamforming solution, which consists of
two phases. In the online learning phase, the deep-learning model leverages the signals received with both omni and codebook beams to
train its neural network. In the deep learning prediction phase, the deep-learning model predicts the BS RF beamforming vectors relying on
only omni-received signals, requiring negligible training overhead. (a) Online Learning Phase. (b) Deep Learning Prediction Phase.

patterns is sufficient to efficiently train the neural networks
under reasonable assumptions on the uplink training power.
It is also worth noting that training the neural network model
in this online learning phase is done in the background at the
cloud and does not affect the operation of the communication
system (uplink training and downlink data transmission).

2) PHASE 2: DEEP LEARNING PREDICTION PHASE
In this phase, the system relies on the trained deep learning
model to predict the RF beamforming vectors based on
only the omni-received signals captured at the BS terminals.
Specifically, at every beam coherence time, TB, the user trans-

mits an uplink pilot sequence
{
spilotk

}K
k=1

. The BS terminals
combine the received signals using the omni (or quasi-omni)
beamforming patterns g0 used in the online learning phase.
This constructs the combined signals romni

k,n which are fed
back to the cloud processor, as depicted in Fig. 3(b). Using
these omni combined signals romni

k,n ∀n,∀k , the cloud then
asks the trained deep learning model to predict the best RF
beamforming vector fDLn that maximizes the achievable rate
in (22) for every BS n. Finally, the predicted RF beamforming
vectors fDLn , n = 1, . . . ,N are used by the BS terminals

to combine the uplink pilot sequence, and to estimate the
effective channels hTk,nf

DL
n ,∀k, n, which are used to construct

the cloud baseband beamforming vectors according to (10).
In the deep learning prediction phase, the system effective

achievable rate RDLeff is given by

RDLeff =
(
1−

2 Tp
TB

)
1
K

K∑
k=1

× log2

1+ SNR

∣∣∣∣∣
N∑
n=1

∣∣∣hTk,nfDLn ∣∣∣2∣∣∣∣∣
2, (23)

where the training time 2Tp represents the time spent
for the uplink training of the omni pattern g0 and the
predicted beam fDLn , each requiring one beam training pilot
sequence time, Tp. Note that we neglected the processing
time of executing the deep learning model, as it is normally
one or two orders of magnitude less than the over-the-air
beam training time, Tp. It is also worth mentioning that,
in general, the deep learning model can predict the best NB
beams for every BS to be refined in the uplink training,
instead of just predicting the best beam, fDLn . In this case,
the training overhead will be (NB + 1)Tp, which will still
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be much smaller than the baseline training overhead, as NB
should typically be much smaller than Ntr.
An important question is when will the system switch

its operation from the first phase (learning) to the second
phase (prediction)? During the learning phase, and thanks
to the proposed system design, the cloud processor can keep
calculating both the effective achievable rate of the baseline
solution RBLeff , and the estimated effective rate of the learning
phase RDLeff . The system can then switch to the deep learning
prediction phase when RDLeff > RBLeff . This also results in an
overall effective achievable rate of max(RBLeff ,R

DL
eff ). Note that

this result implies that the deep learning model will only be
leveraged when it can achieve a better rate than the baseline
solution and that it has almost no cost on the system perfor-
mance. Finally, we assume for simplicity that the system
will completely switch to the second phase after the deep
learning model is trained. In practice, however, the system
should periodically switch back to the online learning phase
to ensure updating the learning model with any changes in the
environment. Designing and optimizing this mixed system
operation for time-varying environment models is an inter-
esting future research direction.

C. MACHINE LEARNING MODELING
In this subsection, we describe the different elements of
the proposed machine learning model: (i) the input/output
representation and normalization, (ii) the neural network
architecture, and (iii) the adopted deep learning model.
It is worth mentioning that the machine learning model
presented in this section is just one possible solution for the
integrated communication and learning system proposed in
Section V-B, with no optimality guarantees on its perfor-
mance or complexity. Developing other machine learning
models with higher performance and less complexity is an
interesting and important future research direction.

1) INPUT REPRESENTATION AND NORMALIZATION
As discussed in Section V-B, the proposed deep learning
coordinated beamforming solution relies on omni (or quasi-
omni) received signals to predict distributed beamforming
directions. Based on that, we propose to define the inputs
to the neural network model as the OFDM omni-received
sequences, romni

k,n , collected from the N BSs. Since the sparse
mmWave channel is highly correlated in the frequency
domain [40], we will only consider a subset of the OFDM
symbols for the inputs of the learning model. For simplicity,
we will set the inputs of the model to be equal to the
first KDL samples, romni

k,n , k = 1, . . . ,KDL of the K-point
OFDM symbol. Note that inputing the raw data directly
to the neural network without extracting further features is
motivated by the ability of deep neural networks in learning
the hidden and relevant features of the inputs [39]. Finally,
We represent every received signal romni

k,n by two inputs,

<

{
romni
k,n

}
,=
{
romni
k,n

}
, carrying the real and imaginary

FIGURE 4. A block diagram of the proposed machine learning model for
the nth BS. The model relies on the OFDM omni-received sequences from
the N BSs to predict the nth BS achievable rate with every RF
beamforming codeword.

components of romni
k,n . Therefore, the total number of inputs

to the learning model is 2 KDLN , as depicted in Fig. 4.
Normalizing the inputs of the neural network normally

allows using higher learning rates and makes the model less
affected by the initialization of the neural network weights
and the outliers of the training samples [41]. For our appli-
cation, there are four main approaches in normalizing the
model inputs: (i) per-carrier per-BS normalization, where
we independently normalize every received signal romni

k,n of
every carriers and BS, (ii) per-BS normalization, where we
apply the same normalization/scaling to all the carriers of
the BS, but independently from the other BSs, (iii) per-sample
normalization, where the 2 KDLN inputs of every learning
sample are subject to the same normalization/scaling, and
(iv) per-dataset normalization, where we only scale the whole
dataset by a single factor.

In our coordinated beamforming application, the corre-
lation between the received signals at the same BS may
carry important information that will be lost if a per-carrier
normalization is adopted. Similarly, the correlation between
the signals received at different BSs from the same user
may carry some information about the relative location and
multi-path patterns for this user and every BS. This infor-
mation will be distorted when using a per-BS normalization.
Further, the correlation between the joint multi-path patterns
at the N BSs for different user locations may carry relevant
information, which will be lost when using a per-sample
normalization. Therefore, it is intuitive to adopt a per-dataset
normalization in our coordinated beamforming application
to avoid losing any information that could be useful for the
learning model. This intuition is also confirmed by the simu-
lation results in Section VI. In these simulations, we consider
a simple per-dataset normalization where all the inputs are
divided by a constant scaler 1norm, defined as

1norm = max
k=1,...,KDL,
n=1,...,N ,
s=1,...,S

Ik,n,s, (24)

where Ik,n,s denotes the absolute value of the omni-received
signal romni

k,n at the nth BS and kth subcarrier for the
sth learning sample.
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2) OUTPUT REPRESENTATION AND NORMALIZATION
As shown in Section IV, separating the BS RF and
cloud baseband beamforming design problems yields
low-complexity yet highly-efficient systems, with achievable
rates approaching the optimal bound in some important cases.
With this motivation, we propose to have N independent
deep learning models for the N BSs, where the objective
of every model, n, n = 1, . . . ,N , is to predict the best
RF beamforming vector fDLn ∈ FRF with the highest data
rate for the nth BS. Note that every model, n, will still
rely on the omni-received sequences from the N BSs to
predict the beamforming vectors of BS n, as shown in Fig. 4.
Further, every deep learning model has Ntr = |FRF| outputs,
each representing the predicted rate with one of the Ntr RF
beamforming vectors.

In the online learning phase, explained in Section V-B,
a new training sample for the deep learning models is gener-
ated every beam coherence time, TB. This training sample for
the nth BS model consists of (i) the omni-received sequences
romni
k,n ,∀k,∀n, which are the inputs to the deep learning

model, and (ii) the achievable rates, R(p)n , p = 1, . . . ,Ntr, for
the Ntr RF beamforming vectors, which represent the desired
outputs from the model. Note that both the omni-received
sequences romni

k,n ,∀k,∀n and the achievable rates R(p)n ,∀p,∀n
are constructed during the uplink training phase, as described
in Section V-B. These training samples are used by the
cloud to train the deep learning models of the N BSs. For
the training of the nth BS model, n, 1, . . . ,N , the desired

outputs R(p)n , p = 1, . . . ,Ntr of every training sample are
normalized as

R
(p)
n =

R(p)n

maxp R
(p)
n

. (25)

The objective of this per-sample normalization is to regularize
the deep neural network and make sure it does not learn
only from the samples with higher data rates (higher output
values). This is particularly important for mmWave systems
where some user locations have LOS links (with high data
rates) while others experience non-LOS connections (with
much lower data rates). In this case, if the training samples
are not normalized, the neural network model may learn only
from the LOS samples, as will be illustrated in Section VI.

3) NEURAL NETWORK ARCHITECTURE
The main objective of this paper is to develop an inte-
grated communication-learning coordinated beamforming
approach for highly-mobile mmWave applications. Opti-
mizing the deep neural network model, though, is out
of the scope of this paper, and is one of the important
future research directions. In this paper, we adopt a simple
neural network architecture based on fully-connected layers.
As shown in Fig. 4, the neural network architecture consists
of MLayer fully-connected layers, each with MNodes nodes.
The fully-connected layers use rectifier linear units (ReLU)
activations [39]. Every fully-connected layer is followed by

a drop-out layer to ensure the regularization and avoid the
over-fitting of the neural network [42]. The performance of
the proposed deep learning coordinated beamforming solu-
tion with the adopted neural network architecture as well
as comparisons with other network architectures will be
discussed in Section VI.

4) LOSS FUNCTION AND LEARNING MODEL
The objective of the deep learning model is to predict the best
RF beamforming vectors with the highest achievable rates for
every BS. Therefore, we adopt a regression learning model in
which the neural network of every model n, n = 1, . . . ,N ,
is trained to make its outputs, R̂(p)n , p = 1, . . . ,Ntr, as close
as possible to the desired normalized achievable rates, R

(p)
n ,

p = 1, . . . ,Ntr. Note that adopting a regression model
enables the neural network to predict not only the best RF
beamforming vector, but the second best, third best, etc. —
or generally, the best NB RF beams. Formally, the neural
network for every model n is trained to minimize the loss
function, Ln (θ), defined as

Ln (θ) =
Ntr∑
p=1

MSE
(
R
(p)
n , R̂

(p)
n

)
, (26)

where MSE
(
R
(p)
n , R̂

(p)
n

)
is the mean-squared-error between

R
(p)
n and R̂(p)n , and θ denotes the set of all the parameters in the

neural network. Note that the outputs of the learning model,
R̂(p)n ,∀p, are functions of the network parameters θ and the
model inputs romni

k,n ,∀k,∀n. To simplify the notation, though,

we dropped these dependencies from the symbol R̂(p)n ,∀p.

D. EFFECTIVE ACHIEVABLE RATE AND
MOBILITY SUPPORT
As shown in Section IV, the achievable rate with the baseline
coordinated beamforming solution approaches the optimal
bound in some special yet important cases. The challenge
with the baseline solution, though, is the requirement of
exhaustive beam training which consumes a lot of training
resources and significantly reduces the effective achievable
rate. For the deep learning coordinated beamforming solu-
tion, the learning model is trained to approach the achievable
rate of the baseline solution, which is optimal in some cases.
Further, it requires only two training resources for the omni
pattern and predicted beam training, which makes its training
overhead almost negligible. This means that the proposed
deep learning coordinated beamforming solution, when effi-
ciently trained, can approach the optimal effective achievable
rate, R?, and support highly-mobile mmWave applications,
as will be shown in the following section.

VI. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
coordinated deep-learning beamforming solution, and illus-
trate its ability to support highly-mobile mmWave appli-
cations. First, we present the considered simulation setup
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FIGURE 5. Figure (a) illustrates the considered street-level simulation setup where 4 BSs, each has UPA, are serving one single-antenna vehicular
mobile user. Figure (b) shows the rectangular x-y grid which represents the candidate locations of the mobile user antenna.

in Section VI-A. Then, we show the capability of the
proposed deep learning solution in predicting the beam-
forming directions and approach the optimal effective achiev-
able rate in Section VI-B. In Sections VI-C - VI-D,
we study the impact of the main communication and machine
learning parameters on the system performance. Finally,
Sections VI-E - VI-F investigate several important aspects of
the integrated communication/learning beamforming system
such as its ability to adapt with the environment, its sensitivity
to BSs synchronization, and its performance with untrained
scenarios.

A. SIMULATION SETUP
This section describes in detail the various aspects of
the considered simulation setup including the communica-
tion system/channel models, the machine learning model,
and the simulation scenarios. While the coordinated beam-
forming strategies proposed in this paper are general for
indoor/outdoor applications, we focus in these simulation
results on the vehicular application, which is one important
use case for 5G cellular systems [32], [43].

1) SYSTEM SETUP AND CHANNEL GENERATION
We adopt the mmWave system and channel models in
Section II, where a number of BSs are simultaneously
serving one mobile user over the 60 GHz band. Since the
proposed deep-learning coordinated beamforming approach
relies on learning the correlation between the transceiver
locations/environment geometry and the beamforming direc-
tions, it is important to generate realistic data for the channel
parameters (AoAs/AoDs/pathloss/delay/etc.).With this moti-
vation, our simulations use the commercial ray-tracing
simulator, Wireless InSite [44], which is widely used in
mmWave research [33], [45], [46], and is verified with
channel measurements [46], [47]. In the following points,
we summarize the environment/system setup and channel
generation.
• Environment setup: We consider the system model in
Section II in a street-level environment, where N =
4 BSs are installed on 4 lamp posts to simultane-

ously serve one vehicular mobile user, as depicted
in Fig. 5(a). The 4 lamp posts are located on the corners
of a rectangle, with 60m distance between the lamp
posts on each side of the street (along the y-axis),
and 50m distance between the lamp posts across the
street (along the x-axis). In the ray-tracing, we use ITU
60 GHz 3-layer dielectric material for the buildings,
ITU 60 GHz single-layer dielectric for the ground, and
ITU 60 GHz glass for the windows. This ensures that
the important ray-tracing parameters, such as the reflec-
tion and penetration coefficients, accurately model the
mmWave system operational frequency.

• Base stations setup: Each BS is installed on one lamp
post at height 6 m, and has a uniform planar array (UPA)
facing the street, i.e., on the y-z plane. Unless otherwise
mentioned, the BS UPAs consist of 32 columns and
8 rows resulting in a total ofM = 256 antenna elements,
and use 30dBm transmit power. Adopting the system
model in Section II, the BSs are assumed to be connected
with a central processing via error-negligible delay-
negligible links. In practice, this can be realized using
optical fiber links connecting the four BSs together, with
one of them hosting the central processor.

• mobile user setup: The vehicular mobile user has a
single antenna that is deployed at a height of 2m.
We show the car in Fig. 5(a) only for illustration. This
car, though, is not modeled in the ray-tracing simu-
lations, which only consider the mobile user antenna.
At every beam coherence time, the location of the
mobile user antenna is randomly selected from a uniform
x-y grid of candidate locations, as depicted in Fig. 5(b).
The x-y rectangular grid has dimensions 40m ×60m
with a resolution of 0.1 m, i.e., a total of 240 thousand
points. This x-y grid shares the same center with the rect-
angle defined by the 4 BSs. During the uplink training,
the MS is assumed to use 30dBm transmit power.

• Ray-tracing based channel generation: In our simu-
lations, we adopt the frequency-selective geometric
channel model in Section II-B. For this model,
the important question is how to generate the channel
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parameters, such as the AoAs, AoDs, path gains and
delays of each ray. We normally resort to stochastic
models in generating these parameters [1], [40], [48].
In this paper, though, the key idea is to leverage the deep
neural network power in learning the mapping between
the omni-received multi-path signatures and the beam-
forming directions. This implicitly relies on learning
the underlying environment geometry and the interplay
between this geometry and the transmitter/receiver loca-
tions. Therefore, it is crucial to generate realistic channel
parameters that correspond to real environment geom-
etry. This is the main motivation for using ray-tracing in
generating the channel parameters.
In the Wireless InSite ray-tracing [44], we use the X3D
model with Shooting and Bouncing Ray (SBR) tracing
mode. In this mode, the simulator shoots hundreds
of rays from the transmitters and select the ones
that find paths to the receiver for which it gener-
ates the key parameters (AoAs/AoDs/etc.). Considering
the ray-tracing channel parameters for the strongest
25 paths, which normally have power gap more than
20dB, we construct the channel matrix between each
BS and mobile user using MATLAB, according to (4).
The considered setup adopts an OFDM system of size
K = 1024. Note that for every candidate user location in
the x-y grid, we generate 4 channel vectors which corre-
spond to the channels between this user and the 4 BSs.

2) COORDINATED BEAMFORMING
In the simulation results, the beamforming vectors are
constructed as described in Sections IV-V. At every beam
coherence time, a new user location is selected, and the
channel vectors hk,n∀k are constructed based on the parame-
ters generated from the ray-tracing simulations as described
earlier in this section. For the baseline coordinated beam-
forming, we first simulate the uplink beam training at each BS
n by calculating |hTk,ngp|∀k for all the beamforming vectors gp
in the codebookF . Then, the best RF beamforming vector for
every BS is determined based on (17). Finally, the effective
achievable rate is calculated according to (18). In these simu-
lations, we consider an oversampled beamsteering codebook
of Ntr = MyMzNOS,yNOS,z beams, with My,Mz denoting
the number of columns and rows of the BSs UPAs, and
NOS,y,NOS,z defining the oversampling factors in the azimuth
and elevation directions. The pth beamforming vector in this
codebook is expressed as gp = a∗(θp, φp), p = 1, . . . ,Ntr,
where a(θp, φp) is the UPA array steering vector with the
quantized angles θp, φp.
The simulation of the deep-learning coordinated beam-

forming approach is similar to the baseline coordinated beam-
forming with the following extra steps. First, at every beam
coherence time, TB, i.e., a new user location, in addition to
calculating |hTk,ngp|∀k for all the beams, we also calculate
the omni-received sequences romni

k,n ∀k in (21). To do that,
we consider the signal received by only the first antenna

FIGURE 6. This figure illustrates the non-LOS setup where a bus is
blocking the LOS path between most of the possible locations for the
mobile user antenna and the UPA of the 3rd BS.

element, which is equivalent to adopting a beamforming
vector g0 = [1, 0, . . . , 0] in (21). For the noise term in (21),
we add random noise samples taken fromNC(0,N0) with the
noise power N0 corresponding to 1 GHz system bandwidth
and 5 dB noise figure. The omni received sequence from
the N BSs and the rate corresponds to every BF vector,
calculated based on (22), form one data point for the machine
learning model. By randomly picking NDL user locations,
we build an NDL-point dataset for the machine learning
model. In the second phase of the deep-learning coordi-
nated beamforming approach, we simulate the uplink training
by only calculating the omni-received sequence romni

k,n ∀k .
We then use themachine learningmodel to predict the best RF
beamforming vector fDLn for every BS n. Finally, the effective
achievable rate is calculated using (23).

3) MACHINE LEARNING MODEL
We consider the deep learning model described in detail in
Section V-C. The neural network model of every BS has
2 NKDL inputs, which are the the real and imaginary compo-
nents of the omni-received sequences romni

k,n , k = 1, . . . ,KDL
of the N BSs, and Ntr outputs, which represent the achiev-
able rates R(p)n ,∀p of the RF candidate beamforming vectors.
Unless otherwise mentioned, the neural network model has
6 fully connected layers, each of 2 NKDL = 512 nodes,
i.e., with KDL = 64. The fully-connected layers use ReLU
activation units and every layer is followed by a drop-out
regulation layer of dropout rate .5%. For training the model,
we use a dataset with a maximum size of NDL = 240
thousand samples and a batch size of 100. In the deep learning
experimental work, we used the Keras libraries [49] with a
TensorFlow [50] backend.

4) LOS AND NLOS SCENARIOS
In order to evaluate the performance of our proposed
deep-learning coordinated beamforming solution in rich
mmWave environment with blockage, we consider both LOS
andNLOS scenarios in the simulations. Earlier in this section,
we described the LOS scenario, which is depicted in Fig. 5.
The NLOS scenario is similar to the LOS one but with a large
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FIGURE 7. The effective achievable rate of the proposed deep-learning
coordinated beamforming solution compared to the baseline coordinated
beamforming and the upper bound, R?. The figure considers a LOS
scenario with 4 BSs serving one vehicle moving at speed 30 mph. This
figure shows that as we train the neural network model (with more
dataset sizes), the performance of the deep-learning coordinated
beamforming approaches the optimal effective achievable rate.

bus of dimensions 20 m x 5 m standing in front of BS 3,
as shown in Fig. 6. This bus blocks the LOS path between
BS 3 and most of the candidate user locations in the x-y grid.

Next, we evaluate the performance of the proposed
deep learning coordinated beamforming solution for various
communication and machine learning parameters.

B. DOES THE SYSTEM LEARN HOW TO BEAMFORM?
The proposed deep-learning coordinated beamforming solu-
tion relies on the ability of deep neural networks in learning
the relation between the multi-path signatures collected
jointly at multiple BS locations and the RF beamforming
vectors. The first question that we need to address then is
whether these networks are successfully learning how to
select the optimal RF beamforming vectors, with the opti-
mality defined according to (17). To answer this ques-
tion and to evaluate the quality of this learning, we plot
the effective achievable rate of the proposed deep-learning
coordinated beamforming for different training dataset sizes
in Figures 7 and 8.

In Fig. 7, we consider the LOS scenario, described in
Section VI-A, where 4 BSs, each with 32 × 8 UPA are
simultaneously serving one mobile user, moving with speed
30 mph. The BSs use beamsteering codebook with oversam-
pling factor of 2 at both the azimuth and elevation directions.
For this scenario, we plot the effective achievable rate of
the proposed deep-learning coordinated beamforming solu-
tion in Fig. 7 versus the size of the dataset used in training
the neural network model. Recall that every point in the
training dataset is collected in one beam coherence time,
TB. This means that if the system spent time equals, for
example, to 10000TB in training its neural network model,
then it will be able to predict the beamforming vectors that
achieves the effective rate corresponding to the dataset size

FIGURE 8. This figure compares the effective achievable rate of the
proposed deep-learning and baseline coordinated beamforming solutions
with respect to the upper bound, R?. The figure adopts the NLOS scenario
described in Section VI-A where 4 BSs are serving one vehicle moving
with speed 30 mph. The effective achievable rate of the proposed
deep-learning coordinated beamforming approaches the upper bound as
larger dataset size is considered, i.e., with more time spent in training the
neural network model.

10k samples in Fig. 7. This figure shows that the effective
achievable rate of the proposed deep-learning coordinated
beamforming approaches the optimal rate R?, defined in
Lemma 1 with reasonable dataset sizes. This means that the
neural network model is successfully predicting the best
RF beamforming vector, out of 1024 candidate beams, for
every BS using multi-path signatures received with only a
single antenna (or omni-pattern) at every BS. This clearly
illustrates the ability of the proposed deep-learning based
solution in supporting highly-mobile mmWave applications
with negligible training overhead. It is important to note
that the genie-aided coordinated beamforming performance
in Fig. 7 represents the upper bound on the performance of
any other channel training and beamforming strategy for the
given system and channel models. Therefore, approaching
this bound illustrates the optimality of the proposed deep
learning based solution. Fig. 7 also shows that it is better
to select the best NB = 4 beams predicted by the neural
network and refine them through beam training, as described
in Section V-B. Finally, Fig. 7 illustrates that leveraging deep
learning can achieve considerable data rate gains compared
to the baseline coordinated beamforming solution.

In Fig. 8, we adopt the NLOS scenario described in
Section VI-A, where a large bus is standing in front of
BS 3, as shown in Fig. 6. The system, channel, and machine
learning models are identical to those adopted in Fig. 7.
For this NLOS scenario, Fig. 8 compares between the effec-
tive achievable rate of (i) the developed deep-learning coor-
dinated beamforming strategy with NB = 1,NB = 4,
(ii) the baseline coordinated beamforming, and (iii) the upper
bound, R?, for different training dataset sizes. The result in
this figure is very important as it shows that the deep
learning model can learn not only LOS beamforming, but
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FIGURE 9. The figure compares the effective achievable rate of the
deep-learning coordinated beamforming with the baseline coordinated
beamforming and the upper bound, R?, for different values of BS
antennas and user speeds. The deep-learning model was trained with a
LOS dataset of size 20k samples. The performance of the proposed
deep-learning coordinated beamforming is nearly as good as the upper
bound even for large arrays and highly-mobile users.

also predicting best NLOS beamforming vectors given the
jointmulti-path signatures. Note that this is a key advantage
of our proposed deep learning solution that relies on the
multi-path signature, not on the user location/coordinates,
in predicting the beams. If the system relies only on the
knowledge of the user location, it will not be able to effi-
ciently predict the beamforming vectors in NLOS scenarios,
as the same user location may correspond to different NLOS
setups and, consequently, different beamforming vectors.

C. IMPACT OF COMMUNICATION SYSTEM PARAMETERS
Themainmotivation for the deep-learning coordinated beam-
forming solution is supporting highly-mobile applications
in large-array mmWave systems. In achieving that, our
proposed deep learning model makes beamforming predic-
tions based on signals received with only omni or quasi omni
antennas, i.e., with low-SNR. In this section, we evaluate
the impact of the key system parameters, namely the user
mobility, the number of BS antennas, and the uplink transmit
power, on the performance of the developed deep-learning
coordinated beamforming strategy.

1) IMPACT OF USER SPEED AND NUMBER OF BS ANTENNAS
In Fig. 9, we consider the LOS scenario, described in
Section VI-A, with 4 BSs serving onemobile user. Each BS is
assumed to have a UPA withMz = 8 rows,My columns, and
is using a beamsteering codebook with oversampling factor
of 2 in both the elevation and azimuth directions. In Fig. 9,
we plot the effective achievable rate of the deep-learning
coordinated beamforming solution, the baseline coordinated
beamforming, and the upper bound R? for different number
of BS antennas and user speeds. Recall that the number of

beams in the beamsteering codebooks equals 4 (the overall
azimuth/elevation oversampling factor) times the number
of antennas. First, consider the baseline coordinated beam-
forming solution performance in Fig. 9. As more antennas are
deployed at the BSs, the beamforming gain increases but the
training overhead also increases, resulting in a trade-off for
the effective achievable rate in (18). This trade-off defines
an optimal number of BS antennas for every user speed
(or equivalently beam coherence time), as shown in Fig. 9.
It is important to note that the performance of the base-
line coordinated beamforming solution degrades significantly
with increasing the number of BS antennas or the user speed.
This illustrates why traditional beamforming strategies are
not capable of supporting highly-mobile users in mmWave
systems with large arrays.

In contrast, the deep-learning coordinated beam-
forming, which is trained with a dataset of size
20k samples, achieves almost the same performance of
the upper bound for different values of user speeds
and BS antennas. This is thanks to the negligible uplink
training overhead using omni patterns. It is worth noting
here that while larger arrays may require bigger datasets
(longer time) for training the neural network model during
the online learning phase, the uplink training overhead in
the deep learning prediction phase does not depend on
the number of antennas as it relies on omni or quasi-
omni patterns. Therefore, once the neural network model is
trained, the deep-learning coordinated beamforming solution
works efficiently with large antenna arrays. This is a key
advantage of our developed deep-learning based solution over
traditional mmWave channel training/estimation techniques
such as analog beam training [20], [51] and compressive
sensing [24], [25], [52].

2) IMPACT OF UPLINK TRANSMIT POWER AND
OMNI TRAINING PATTERN
An important aspect of the proposed deep learning coordi-
nated beamforming solution is the use of only omni (or quasi-
omni) beam patterns at the BSs during the uplink training.
This raises, though, questions on whether the received signals
with omni reception, romni

k,n ∀k , which are the inputs to the
neural network model, have sufficient SNR for the system
operation, and whether the MS will need to use very high
uplink transmit power to ensure enough receive SNR at the
BSs. To answer these questions, we plot the effective achiev-
able rates of the proposed deep learning solution, baseline
solution, and optimal bound in Fig. 10 versus the uplink
transmit power. We also assume that the downlink transmit
power during data transmission by every BS equals the uplink
transmit power from the MS. The rest of the communication
system and machine learning parameters are similar to the
setup in Fig. 9. As shown in Fig. 10, for low values of
uplink transmit power, the performance of the deep-learning
strategy is worse than the baseline solutions, as the SNR of
the omni-received sequences is low and the learning model is
not able to learn and predict the right beamforming vectors.
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For reasonable uplink transmit power, though, −10dBm
to 0dBm, the deep-learning coordinated beamforming
achieves good gain over the baseline solution. This means
that the receive SNR with omni patterns during uplink
training is sufficient to draw a defining RF signature of
the environment and efficiently train the neural network
model.

FIGURE 10. The effective achievable rates of the proposed deep-learning
and baseline coordinated beamforming solutions compared with the
upper bound, R? for different uplink transmit powers. The
figure considers the LOS scenario in Section VI-A where
4 BSs are serving a user moving with speed 30 mph.

It is important to note here that the main reason
why we need to use beamforming during mmWave beam
training or channel estimation is to estimate the direc-
tional information at every BS, such as the angles of
arrival/departure, which we do not need in the proposed
deep learning coordinated beamforming solution that relies
on predicting this information via deep learning using the
signals captured at multiple distributed BSs.

D. IMPACT OF MACHINE LEARNING PARAMETERS
The primary objective of this paper is to motivate leveraging
machine learning tools in highly-mobile mmWave commu-
nication systems. Optimizing the machine learning model
itself, though, is out of the scope of this paper, and is worthy
for independent publications. In this section, we briefly high-
light the impact of some machine learning parameters, such
as the input/output normalization and the neural network
architecture, on the system performance.

1) IMPACT OF INPUT AND OUTPUT NORMALIZATION
The proper normalization of the inputs and outputs of the
neural network allows realizing efficient machine learning
models with high learning rates, robustness against weight
initialization biases, among other system gains. In Fig. 11,
we plot the effective achievable rates for different input
normalization strategies, namely per-dataset, per-sample,
per-basestation, and per-element normalization, which are

FIGURE 11. The effective achievable rates for different input and output
normalization strategies. This figure considers the NLOS scenario,
described in Section VI-A with a deep learning model trained with a 20k
samples dataset. The figure shows that per-dataset input normalization
in the presence of per-BS output normalization achieves the higher
effective rates compared to the other candidate strategies.

explained in detail in Section V-C. This figure considers
the NLOS scenario, described in Section VI-A, with BSs
employing 16×8 UPAs and with a deep-learning model
trained using a 20k-samples dataset. As shown in Fig. 11,
the per-dataset normalization achieves the highest effective
achievable rate among the four candidate strategies. To under-
stand the intuition behind this performance, it is important
to note that the correlation among the received signals at
the different subcarriers of each BS may carry useful infor-
mation, such as the distance between the user and the BS.
Similarly, the correlation between the received signals of
the same user at the 4 BSs and the correlation between
the received signals at different user locations may carry
logical information that helps the neural network model in
learning the mapping between the multi-path signatures and
the beamforming beams. The per-dataset normalization is
the only strategy, among the 4 candidates, that preserves
all theses kinds of correlation. Therefore, it allows the
machine learning model to leverage all the information
carried by the training dataset.

In Fig. 11, we also plot the effective rates with and without
per-BS output normalization. The normalization strategy is
explained in Section V-C. Fig. 11 shows that normalizing the
outputs of the training dataset is required to achieve good
data rates. To justify this performance, we first emphasize
that these results consider the NLOS scenario in Fig. 6.
In this scenario, some achievable rates, R(p)n ∀p (the outputs
of the machine learning model), correspond to NLOS links
while others are results of LOS links. The challenge here
is that the achievable rates corresponding to NLOS links
have much smaller values compared to those of LOS links.
Without output normalization, the training of the neural
network weights will be dominated by the LOS-related
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FIGURE 12. The figure compares the effective achievable rates of the
adopted fully-connected neural network architecture in Fig. 4 and another
architecture based on CNN. The results show the two architectures
achieve almost the same effective data rates despite the potential
complexity reduction in the CNN model.

outputs which have large differences between its candidate
beams (the output bins). These weights will not be sensitive
to the relatively small differences between the rates of the
NLOS-related outputs. In other words, the machine learning
model will only learn how to beamform to the users with LOS
links. This draws insights into the importance of normalizing
the outputs of the neural network training dataset.

2) IMPACT OF NETWORK ARCHITECTURE
In the simulation results of this paper, we adopt the
fully-connected neural network architecture in Fig. 4. For the
sake of motivating the future research into optimizing the
machine learning model, we compare the effective achiev-
able rates of the fully-connected architecture and another
architecture based on convolutional neural networks (CNN)
in Fig. 12. This figure adopts the LOS scenario with
BSs employing 32 × 8 UPAs and steering codebooks
with oversampling factor of 2 in the azimuth direction.
The fully-connected architecture consists of 4 layers with
512 nodes per layer. For the CNN-based architecture, it first
applies four 2D 32 × 2 convolutional filters on two input
channels representing the real and imaginary components of
the omni-received sequences romni

k,n ∀k . Amax-pooling layer is
then added and followed by three fully-connected layers with
512 nodes per layer. This results in a total of ∼754k param-
eters in the CNN-based architecture compared to ∼ 1048k
parameters in the fully-connected architecture. Despite its
lower complexity compared to the fully-connected architec-
ture, the CNN architecture achieves almost the same effective
spectral efficiency of the fully-connected model, as shown in
Fig. 12. One intuition for this efficient performance comes
from the CNN dependence on extracting local information
using small-sized filters. In our model, these filters may
capture the correlation between the adjacent samples in the

OFDM sequence, which helps extracting valuable informa-
tion with lower complexity compared to the brute-force
approach in the fully-connected model. This highlights the
potential of exploring new neural network architectures for
integrated learning/communication systems.

E. SYSTEM ADAPTABILITY AND ROBUSTNESS
One main advantage of integrating machine learning in wire-
less communication is realizing robust systems that adapt
efficiently to the highly-mobile aspects of the environment.
To examine this gain, we plot the effective achievable rates in
Fig. 13 for an important setup where the environment changes
multiple times as follows.

FIGURE 13. The figure plots the effective achievable rates of the
developed deep-learning and baseline coordinated beamforming as well
as the upper bound, R?, for a setup where the environment is changing
between LOS and NLOS scenarios. The figure illustrates that the deep
learning model generalizes its learning over time to perform well at both
LOS and NLOS scenarios.

• First, when the system started working, at dataset size
equals 0 samples, the LOS scenario in Fig. 5 was consid-
ered where 4 BSs is serving a car moving alone in
the street. The BSs employ 32 × 8 UPAs and using
beamsteering codebooks with oversampling factor of 2
in only the azimuth direction.

• After some time, which is spent to build a dataset of
size 10k samples, a large bus appeared suddenly and
stopped in front of BS 3, as depicted in Fig. 5. Since
the deep-learning model was trained only for the LOS
scenario before the bus arrives, the effective achievable
rate of the deep-learning coordinated beamforming solu-
tion degraded significantly at the first moment of the
bus arrival. This is clear in the effective rate transition
at dataset size 10k samples in Fig. 13. Assuming that
the bus parked in front of BS 3 for some time, the deep
learningmodel started learning this newNLOS scenario.
In other words, the neural network weights that were
initially adjusted for the LOS dataset are now being
refined again based on the new NLOS training samples.

• After more time, which is spent to build an overall
dataset of size 18k samples, the bus left. Interestingly,
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FIGURE 14. The effective achievable rates of the proposed deep-learning
coordinated beamforming solution are plotted for different phase
synchronization assumptions. These rates are also compared with the
baseline solution and the upper bound, R?. The figure shows that the
deep-learning coordinated beamforming achieves good gain over
the baseline solution even when only received signal strength indicators
(no phase information) are used as inputs to the machine learning model.

the performance of the proposed deep learning solution
now did not degrade again, but rather did as well as the
first stage (before the bus arrives). This is very impor-
tant as it shows that the deep learning model has
generalized its learning to both the LOS and NLOS
scenarios, which is also confirmed by the performance
of the deep-learning solution after the bus arrives again
at the dataset size 26k samples.

The results in Fig. 13 show that the coordinated beamforming
system became more robust over time, and is able to adapt
and perform well at both the LOS and NLOS scenarios.
More generally, this means that when we first deploy the
deep-learning coordinated beamforming system in a new
environment, it will experience many new scenarios, such
as cars and pedestrian blocking the signals, trees growing,
etc., for which the system was not trained. After some
time, the model will generalize its learning to cover all
these scenarios and develop into a robust and adaptable
system.

F. DOES THE SYSTEM REQUIRE PHASE
SYNCHRONIZATION TO LEARN?
The machine learning model, in the proposed deep-learning
beamforming solution, relies on the signals received jointly
at multiple BSs. Therefore, the phase of these signals
may intuitively carry useful information that helps the
model in learning how to predict the beamforming for each
multi-path signature. Maintaining this phase information,
though, is difficult in practice as it requires perfect synchro-
nization of the terminal BSs oscillators. In this section, we are
interested in evaluating the performance of the proposed
deep-learning coordinated beamforming solution in a setting
where we relax the phase synchronization requirements.

In Fig. 14, we consider the LOS scenario in Section VI-A,
and plot the effective achievable rates of the proposed

deep learning coordinated beamforming solution under
three different assumptions on the phase synchronization:
(i) perfect phase synchronization where the clocks of 4 BSs
are perfectly synchronized, (ii) no synchronization, where
uniform random phase δn ∈ [0, 2π ] is added to the omni
received signal at every BS n, and (iii) received signal
strength indicators (RSSI), where only the amplitude of the
omni received sequence, |romni

k,n |,∀k, n, is fed to the neural
network model. As shown in Fig. 14, the performance of
the deep-learning coordinated beamforming with no phase
synchronization approaches that with perfect phase synchro-
nization as more time is spent in training the neural network
(or equivalently large datasets are adopted). This result is
very useful for practical implementations as it means that
the phase synchronization may not be needed to learn
coordinated beamforming if large enough datasets are
adopted. Fig. 14 also illustrates that relying only on RSSI
in deep-learning coordinated beamforming, which does not
require any phase information, still achieves a reasonable gain
over the baseline coordinated beamforming solution.

Finally, it is worth mentioning that while Fig. 14 shows
that the machine learning model can learn well with no phase
synchronization, both the baseline and the deep-learning
coordinated beamforming solutions still need this synchro-
nization in the downlink data transmission phase, as the
signals from the 4 BSs need to add coherently at the mobile
user antenna. This requirement though can be relaxed if
the user is served with only one BS at a time. This way,
the 4 BS coordinate the learning but only one of them beam-
form to the user at any given time. Clearly, these different
approaches for coordinated beamforming have a trade-off
between implementation complexity and system performance
(data rate, reliability, etc.). Investigating this trade-off for
practical systems is an interesting future research direction.

VII. CONCLUSION
In this paper, we developed an integrated machine
learning and coordinated beamforming strategy that enables
highly-mobile applications in large antenna array mmWave
systems. The key idea of the developed strategy is to
leverage a deep learning model that learns the mapping
from omni-received uplink pilots and the beam training
result. This is motivated by the intuition that the signal
received at multiple distributed BSs renders an RF defining
signature for the user location and its interaction with the
surrounding environment. The proposed solution requires
negligible training overhead and performs almost as good
as the genie-aided solution that perfectly knows the optimal
beamforming vectors. Further, thanks to integrating deep
learning with the coordinated transmission from multiple
BSs, the developed solution ensures reliable coverage and low
latency, resulting in a comprehensive framework to enable
highly-mobile mmWave applications. Extensive simulations,
based on accurate ray-tracing, were performed to evaluate the
proposed solution in various LOS and NLOS environment.
These results indicated that the proposed solutions attains

VOLUME 6, 2018 37345



A. Alkhateeb et al.: Deep Learning Coordinated Beamforming for Highly Mobile Millimeter Wave Systems

high data rate gains compared to coordinated beamforming
strategies that do not leverage machine learning, especially
in high-mobility large-array scenarios. The results also illus-
trated that with sufficient learning time, the deep learning
model efficiently adapts to changing environment, yielding
a robust beamforming system. From a practical perspec-
tive, the results illustrated that phase synchronization among
the coordinated BSs is not necessary for learning how to
accurately predict the beamforming vectors. The results in
this paper encourage several future research directions such
as the extension to multi-user systems, the investigation of
time-varying scenarios, and the development of more sophis-
ticated machine learning models for mmWave beamforming.
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