
Fastpass: A Centralized “Zero-Queue” Datacenter Network

Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, Hans Fugal
M.I.T. Computer Science & Artificial Intelligence Lab Facebook

http://fastpass.mit.edu/

ABSTRACT
An ideal datacenter network should provide several properties, in-
cluding low median and tail latency, high utilization (throughput),
fair allocation of network resources between users or applications,
deadline-aware scheduling, and congestion (loss) avoidance. Current
datacenter networks inherit the principles that went into the design
of the Internet, where packet transmission and path selection deci-
sions are distributed among the endpoints and routers. Instead, we
propose that each sender should delegate control—to a centralized
arbiter—of when each packet should be transmitted and what path it
should follow.

This paper describes Fastpass, a datacenter network architecture
built using this principle. Fastpass incorporates two fast algorithms:
the first determines the time at which each packet should be transmit-
ted, while the second determines the path to use for that packet. In
addition, Fastpass uses an efficient protocol between the endpoints
and the arbiter and an arbiter replication strategy for fault-tolerant
failover. We deployed and evaluated Fastpass in a portion of Face-
book’s datacenter network. Our results show that Fastpass achieves
high throughput comparable to current networks at a 240× reduc-
tion is queue lengths (4.35 Mbytes reducing to 18 Kbytes), achieves
much fairer and consistent flow throughputs than the baseline TCP
(5200× reduction in the standard deviation of per-flow throughput
with five concurrent connections), scalability from 1 to 8 cores in the
arbiter implementation with the ability to schedule 2.21 Terabits/s of
traffic in software on eight cores, and a 2.5× reduction in the number
of TCP retransmissions in a latency-sensitive service at Facebook.

1. INTRODUCTION
Is it possible to design a network in which: (1) packets experience

no queueing delays in the network, (2) the network achieves high
utilization, and (3) the network is able to support multiple resource
allocation objectives between flows, applications, or users?

Such a network would be useful in many contexts, but especially
in datacenters where queueing dominates end-to-end latencies, link
rates are at technology’s bleeding edge, and system operators have
to contend with multiple users and a rich mix of workloads. Meet-
ing complex service-level objectives and application-specific goals
would be much easier in a network that delivered these three ideals.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Current network architectures distribute packet transmission deci-
sions among the endpoints (“congestion control”) and path selection
among the network’s switches (“routing”). The result is strong fault-
tolerance and scalability, but at the cost of a loss of control over
packet delays and paths taken. Achieving high throughput requires
the network to accommodate bursts of packets, which entails the use
of queues to absorb these bursts, leading to delays that rise and fall.
Mean delays may be low when the load is modest, but tail (e.g., 99th
percentile) delays are rarely low.

Instead, we advocate what may seem like a rather extreme ap-
proach to exercise (very) tight control over when endpoints can send
packets and what paths packets take. We propose that each packet’s
timing be controlled by a logically centralized arbiter, which also
determines the packet’s path (Fig. 1). If this idea works, then flow
rates can match available network capacity over the time-scale of
individual packet transmission times, unlike over multiple round-trip
times (RTTs) with distributed congestion control. Not only will
persistent congestion be eliminated, but packet latencies will not rise
and fall, queues will never vary in size, tail latencies will remain
small, and packets will never be dropped due to buffer overflow.

This paper describes the design, implementation, and evaluation
of Fastpass, a system that shows how centralized arbitration of
the network’s usage allows endpoints to burst at wire-speed while
eliminating congestion at switches. This approach also provides
latency isolation: interactive, time-critical flows don’t have to suffer
queueing delays caused by bulk flows in other parts of the fabric.
The idea we pursue is analogous to a hypothetical road traffic control
system in which a central entity tells every vehicle when to depart
and which path to take. Then, instead of waiting in traffic, cars can
zoom by all the way to their destinations.

Fastpass includes three key components:
1. A fast and scalable timeslot allocation algorithm at the ar-

biter to determine when each endpoint’s packets should be
sent (§3). This algorithm uses a fast maximal matching to
achieve objectives such as max-min fairness or to approximate
minimizing flow completion times.

2. A fast and scalable path assignment algorithm at the arbiter
to assign a path to each packet (§4). This algorithm uses a
fast edge-coloring algorithm over a bipartite graph induced
by switches in the network, with two switches connected by
an edge if they have a packet to be sent between them in a
timeslot.

3. A replication strategy for the central arbiter to handle net-
work and arbiter failures, as well as a reliable control protocol
between endpoints and the arbiter (§5).

We have implemented Fastpass in the Linux kernel using high-
precision timers (hrtimers) to time transmitted packets; we achieve
sub-microsecond network-wide time synchronization using the
IEEE1588 Precision Time Protocol (PTP).

http://fastpass.mit.edu/

Figure 1: Fastpass arbiter in a two-tier network topology.

We conducted several experiments with Fastpass running in a
portion of Facebook’s datacenter network. Our main findings are:

1. High throughput with nearly-zero queues: On a multi-machine
bulk transfer workload, Fastpass achieved throughput only
1.6% lower than baseline TCP, while reducing the switch
queue size from a median of 4.35 Mbytes to under 18
Kbytes. The resulting RTT reduced from 3.56 ms to 230 µs.

2. Consistent (fair) throughput allocation and fast convergence:
In a controlled experiment with multiple concurrent flows start-
ing and ending at different times, Fastpass reduced the stan-
dard deviation of per-flow throughput by a factor over
5200× compared to the baseline with five concurrent TCP
connections.

3. Scalability: Our implementation of the arbiter shows nearly
linear scaling of the allocation algorithm from one to eight
cores, with the 8-core allocator handling 2.21 Terabits/s.
The arbiter responds to requests within tens of microseconds
even at high load.

4. Fine-grained timing: The implementation is able to synchro-
nize time accurately to within a few hundred nanoseconds
across a multi-hop network, sufficient for our purposes be-
cause a single 1500-byte MTU-sized packet at 10 Gbits/s has
a transmission time of 1230 nanoseconds.

5. Reduced retransmissions: On a real-world latency-sensitive
service located on the response path for user requests, Fast-
pass reduced the occurrence of TCP retransmissions by
2.5×, from between 4 and 5 per second to between 1 and 2
per second.

These experimental results indicate that Fastpass is viable, pro-
viding a solution to several specific problems observed in datacenter
networks. First, reducing the tail of the packet delay distribution,
which is important because many datacenter applications launch
hundreds or even thousands of request-response interactions to ful-
fill a single application transaction. Because the longest interaction
can be a major part of the transaction’s total response time, reducing
the 99.9th or 99.99th percentile of latency experienced by packets
would reduce application latency.

Second, avoiding false congestion: packets may get queued
behind other packets headed for a bottleneck link, delaying non-
congested traffic. Fastpass does not incur this delay penalty.

Third, eliminating incast, which occurs when concurrent requests
to many servers triggers concurrent responses. With small router
queues, response packets are lost, triggering delay-inducing retrans-
missions [26], whereas large queues cause delays to other bulk traffic.
Current solutions are approximations of full control, based on esti-
mates and assumptions about request RTTs, and solve the problem
only partially [28, 37].

And last but not least, better sharing for heterogeneous workloads
with different performance objectives. Some applications care about
low latency, some want high bulk throughput, and some want to
minimize job completion time. Supporting these different objec-
tives within the same network infrastructure is challenging using
distributed congestion control, even with router support. By contrast,

FCP
client

Host
networking

stack

Path
Selection

FCP
server

Timeslot
allocation

destination
and size

timeslots
and pathsNIC

Endpoint Arbiter

Figure 2: Structure of the arbiter, showing the timeslot allocator,
path selector, and the client-arbiter communication.

a central arbiter can compute the timeslots and paths in the network
to jointly achieve these different goals.

2. FASTPASS ARCHITECTURE
In Fastpass, a logically centralized arbiter controls all network

transfers (Fig. 2). When an application calls send() or sendto() on a
socket, the operating system sends this demand in a request message
to the Fastpass arbiter, specifying the destination and the number of
bytes. The arbiter processes each request, performing two functions:

1. Timeslot allocation: Assign the requester a set of timeslots
in which to transmit this data. The granularity of a timeslot
is the time taken to transmit a single MTU-sized packet over
the fastest link connecting an endpoint to the network. The
arbiter keeps track of the source-destination pairs assigned
each timeslot (§3).

2. Path selection. The arbiter also chooses a path through the
network for each packet and communicates this information
to the requesting source (§4).

Because the arbiter knows about all current and scheduled trans-
fers, it can choose timeslots and paths that yield the “zero-queue”
property: the arbiter arranges for each packet to arrive at a switch on
the path just as the next link to the destination becomes available.

The arbiter must achieve high throughput and low latency for both
these functions; a single arbiter must be able to allocate traffic for a
network with thousands of endpoints within a few timeslots.

Endpoints communicate with the arbiter using the Fastpass Con-
trol Protocol (FCP) (§5.3). FCP is a reliable protocol that conveys
the demands of a sending endpoint to the arbiter and the allocated
timeslot and paths back to the sender. FCP must balance conflicting
requirements: it must consume only a small fraction of network
bandwidth, achieve low latency, and handle packet drops and ar-
biter failure without interrupting endpoint communication. FCP
provides reliability using timeouts and ACKs of aggregate demands
and allocations. Endpoints aggregate allocation demands over a
few microseconds into each request packet sent to the arbiter. This
aggregation reduces the overhead of requests, and limits queuing at
the arbiter.

Fastpass can recover from faults with little disruption to the net-
work (§5). Because switch buffer occupancy is small, packet loss
is rare and can be used as an indication of component failure. End-
points report packet losses to the arbiter, which uses these reports
to isolate faulty links or switches and compute fault-free paths. The
arbiter itself maintains only soft state, so that a secondary arbiter can
take over within a few milliseconds if the primary arbiter fails.

To achieve the ideal of zero queueing, Fastpass requires precise
timing across the endpoints and switches in the network (§6.3).
When endpoint transmissions occur outside their allocated timeslots,
packets from multiple allocated timeslots might arrive at a switch
at the same time, resulting in queueing. Switch queues allow the
network to tolerate timing inaccuracies: worst-case queueing is no

larger than the largest discrepancy between clocks, up to 1.5 Kbytes
for every 1.2 µs of clock divergence at 10 Gbits/s.

Fastpass requires no switch modifications, nor the use of any
advanced switch features. Endpoints require some hardware support
in NICs that is currently available in commodity hardware (§6.3),
with protocol support in the operating system. Arbiters can be
ordinary server-class machines, but to handle very large clusters, a
number of high-speed ports would be required.

2.1 Latency experienced by packets in Fastpass
In an ideal version of Fastpass, endpoints receive allocations as

soon as they request them: the latency of communication with the
arbiter and the time to compute timeslots and paths would be zero.
In this ideal case, the end-to-end latency of a packet transmission
would be the time until the allocated timeslot plus the time needed
for the packet to traverse the path to the receiver with empty queues
at all egress ports.

In moderately-loaded to heavily-loaded networks, ideal alloca-
tions will typically be several timeslots in the future. As long as the
Fastpass arbiter returns results in less than these several timeslots,
Fastpass would achieve the ideal minimum packet latency in practice
too.

In lightly-loaded networks, Fastpass trades off a slight degradation
in the mean packet latency (due to communication with the arbiter)
for a significant reduction in the tail packet latency.

2.2 Deploying Fastpass
Fastpass is deployable incrementally in a datacenter network.

Communication to endpoints outside the Fastpass boundary (e.g.,
to hosts in a non-Fastpass subnet or on the Internet) uses Fastpass
to reach the boundary, and is then carried by the external network.
Incoming traffic either passes through gateways or travels in a lower
priority class. Gateways receive packets from outside the boundary,
and use Fastpass to send them within the boundary. Alternatively,
incoming packets may use a lower-priority class to avoid inflating
network queues for Fastpass traffic.

This paper focuses on deployments where a single arbiter is re-
sponsible for all traffic within the deployment boundary. We discuss
larger deployments in §8.1.

3. TIMESLOT ALLOCATION
The goal of the arbiter’s timeslot allocation algorithm is to choose

a matching of endpoints in each timeslot, i.e., a set of sender-receiver
endpoint pairs that can communicate in a timeslot. For a simpler
exposition, we assume here that all endpoint links run at the same
rate. The demand for any given link in the network can exceed its
capacity; the arbiter selects sender-receiver pairs and assigns a path
to packets (described in §4) to ensure that traffic issued in a given
timeslot will not exceed any link’s bandwidth.

Networks are often organized into tiers, with each tier providing
network transport to components below it: top-of-rack switches
connect servers in a rack, aggregation switches connect racks into
clusters, core routers connect clusters. Fastpass requires that tiers
be rearrangeably non blocking (RNB) [14], networks where any
traffic that satisfies the input and output bandwidth constraints of the
network can be routed such that no queuing occurs.

The RNB property allows the arbiter to perform timeslot alloca-
tion separately from path selection: as long as the allocated matching
satisfies the bandwidth constraints in and out of each tier, path se-
lection is guaranteed to successfully assign paths on the physical
topology. Consequently, each tier can be abstracted as a single

switch for the purpose of timeslot allocation.1 The result is a tree
topology on which it is easy for timeslot allocation to check band-
width constraints, even when the physical network is oversubscribed
and has many paths between endpoints. Non-oversubscribed (full-
bisection bandwidth) topologies [4, 18, 27, 38] can be abstracted
further: we can view the entire network as a single switch.

Because the arbiter has knowledge of all endpoint demands, it can
allocate traffic according to global policies that would be harder to
enforce in a distributed setting. For instance, the arbiter can allocate
timeslots to achieve max-min fairness, to minimize flow completion
time, or to limit the aggregate throughput of certain classes of traffic.
When conditions change, the network does not need to converge to
a good allocation – the arbiter can change the allocation from one
timeslot to the next. As a result, the policy (e.g., fairness) can be
achieved even over short time scales.

How fast must a viable allocation algorithm be? At first glance,
endpoint link speeds determine the allowed allocator runtime, since
the arbiter’s processing rate must match endpoint link speed. This is
about one timeslot per microsecond for 10 Gbits/s links with 1500-
byte timeslots. However, parallelism can enable longer runtimes: if
the allocation of multiple timeslots can be run in parallel, allocation
of each timeslot can take longer while still maintaining the arbiter’s
processing rate.

A long runtime (compared to the minimum RTT between the
endpoints) is acceptable with some workloads, but not others. On
heavily-loaded endpoints, the time until the first available timeslot
can be tens to hundreds of microseconds, so traffic will observe
the ideal end-to-end latency (§2.1), even if allocation takes many
microseconds. On the other hand, traffic on lightly-loaded networks
doesn’t enjoy this masking of allocation latency; the algorithm must
finish promptly if a small end-to-end latency increase is desired.

Complete knowledge of all network demands thus becomes a
double-edged sword; in order to meet these latency and throughput
requirements, the timeslot allocator requires very fast algorithms.

Finding an allocation with the largest possible number of pairs
(a maximum matching) is expensive; switch algorithms (e.g., [34,
9, 24]) generally use heuristics to find good, but not maximum,
matchings. Fastpass uses a similar approach: as the arbiter processes
demands, it greedily allocates a source-destination pair if allocating
the pair does not violate bandwidth constraints.2 When the arbiter
finishes processing all demands, it has a maximal matching, a match-
ing in which none of the unallocated demands can be allocated while
maintaining the bandwidth constraints.

3.1 A pipelined allocator
The allocator takes a list of all network demands (how many

timeslots are waiting to be sent between each pair of endpoints), and
computes the allocated matching and the remaining demands after
the allocation. Figure 3 shows how Fastpass allocators are arranged
into a pipeline: the input to the allocator processing timeslot t is the
remaining demand after allocating timeslot t−1.

The arbiter implements different allocation policies by changing
the order in which demands are processed. For max-min fairness,
the arbiter orders demands by the last timeslot that was allocated
to the source-destination pair, “least recently allocated first”; for
minimizing flow completion time (min-FCT), the arbiter tracks the

1A switch where port capacity reflects the aggregate bandwidth in
and out of the tier to that component.
2In a non-oversubscribed network, the arbiter checks that neither the
source nor the destination have already been allocated to a different
pair. Oversubscribed topologies require the arbiter to additionally
check bandwidth constraints in and out of each network tier.

timeslot
allocator

t=100

remaining
demands

(from t=99)

newly
received
demands

remaining
demandstimeslot

allocator
t=101

list of
allocated
(src,dst)

...
remaining
demands

list of
allocated
(src,dst)

Figure 3: Pipelined timeslot allocation. The allocator for timeslot t
processes the demands not fully satisfied by the allocator for t−1

src dst
last

allocation
allocated
srcs & dsts

1 3 45 ✓

4 2 47 ✓

2 3 48 ✗

2 1 48 ✓

3 4 51 ✓

1

2

3

4

1

2

3

4

active flows
src dst

Figure 4: Timeslot allocation for the max-min fairness allocation
objective.

number of pending bytes (measured in MTU-sized chunks) and
performs "fewest remaining MTUs first".

Figure 4 demonstrates the allocation of one timeslot in a simple
network with four endpoints. The allocator orders the demands by
the last timeslot allocated to each pair, and processes them in that
order. On the right is the state used to track bandwidth constraints:
one bit for each source and for each destination. The first two de-
mands can be allocated because both the source and destination are
available, but the third demand cannot be allocated because destina-
tion 3 has already been allocated. The remaining two demands can
be allocated, yielding a maximal matching.

Each allocator in the pipeline receives a stream of demands. Ide-
ally, an allocator could process each demand as soon as it is produced
by the previous allocator. If demands can appear out of the desired
order, however, the allocator must reorder them first. In a worst-case
scenario, the last demand from the previous allocator should be
processed first. The allocator would have to wait until the previous
allocator produced all demands in the stream before it could start
processing, eliminating the concurrency gained by pipelining.

Fortunately, with both max-min fairness and min-FCT (and other
such objectives), demands can be kept in roughly the correct order
with only limited reordering. For example, in max-min fairness, the
allocator of timeslot t only changes the last allocated timeslot of a
source-destination pair if that pair is allocated, and will only change
it to t. Therefore, an allocator for timeslot t + 1 can process all
demands with last allocated timeslot strictly less than t immediately.
Only demands with last allocated timeslot equal to t need to be kept
until all demands are received.

To reduce the overhead of processing demands, the allocator
allocates a batch of 8 timeslots in one shot using a fast data structure,
the bitmap table. This table maintains a bitmap for each sender-
receiver pair in the network, with one bit per timeslot. A “1” in the
bitmap signifies that the pair is not scheduled to communicate in that
timeslot, while a “0” indicates otherwise. To find the first available
timeslot for a given packet, the allocator computes the bitwise AND
of the source and destination bitmaps, and then uses the “find first
set” operation (the bsf instruction on x86). Modern processors
perform this operation fast [2]. Pairs that have been allocated and
have remaining demand are kept, and the arbiter will attempt to

Figure 5: Path selection. (a) input matching (b) ToR graph (c)
edge-colored ToR graph (d) edge-colored matching.

allocate more batch timeslots to them; pairs that cannot be allocated
in this batch are sent to the next allocator in the pipeline.

3.2 Theoretical guarantees
We prove in the appendix that in those topologies where timeslot

allocation and path selection can be separated, the average latency
with Fastpass is no worse than 2× the average latency of an optimal
scheduler with half as much network capacity on its worst-case
workload. The result upper-bounds the latency cost of using Fastpass
over any other solution. The bound, however, is not tight: Fastpass
achieves low latency even at much higher network loads (§7).

4. PATH SELECTION
Path selection assigns packets that have been allocated timeslots to

paths through the network that avoid queueing. Common datacenter
topologies (e.g., multi-rooted trees) include redundant paths between
endpoints. If the timeslot allocator admits traffic that utilizes the
full network bandwidth, and more packets attempt to traverse a link
than that link can sustain, queueing will result. To utilize the full
network bandwidth without queueing, path selection must balance
packet load across all available links.

Existing approaches for load balancing all have significant dis-
advantages. Equal-cost multi-path (ECMP, RFC 2992) routing can
result in multiple flows hashing onto the same path, causing sig-
nificant skew over short time scales. Hedera [5] is able to re-route
“elephant” flows for better load balance, but focuses only on such
flows; the load generated by small flows at finer scales is left unbal-
anced, and that could be substantial in practice.

The goal of path selection is to assign packets to paths such that
no link is assigned multiple packets in a single timeslot; this prop-
erty guarantees that there will be no queueing within the network.
Timeslot allocation guarantees that this property holds for the links
directly connected to each endpoint; path selection must provide this
guarantee for the remainder of the network. In a network with two
tiers, ToR and core, with each ToR connected directly to a subset of
core switches (Fig. 1) each path between two ToRs can be uniquely
specified by a core switch. Thus path selection entails assigning a
core switch to each packet such that no two packets (all of which
are to be sent in the same timeslot) with the same source ToR or
destination ToR are assigned the same core switch.

Edge-coloring. This assignment can be performed with graph edge-
coloring [21]. The edge-coloring algorithm takes as input a bipartite
graph and assigns a color to each edge such that no two edges of the
same color are incident on the same vertex. We model the network
as a bipartite graph where the vertices are ToR switches, edges are
the allocated packets, and colors represent core switches/paths. The
edge-coloring of this graph provides an assignment of packets to
paths such that no link is assigned multiple packets.

Figure 5 shows an example. The matching of packets to be trans-
mitted in a given timeslot (a) is transformed into a bipartite multi-

graph of ToRs (b), where the source and destination ToRs of every
packet are connected. Edge-coloring colors each edge ensuring that
no two edges of the same color are incident on the same ToR (c).
The assignment guarantees that at most one packet occupies the
ingress, and one occupies the egress, of each port (d).

Edge-coloring requires uniform link capacities; in networks with
heterogeneous link capacities, we can construct a virtual network
with homogeneous link capacities on which to assign paths. Here,
we replace each physical switch with high-capacity links with mul-
tiple switches with low capacity links that connect to the same
components as the physical switch (e.g., one switch with 40 Gbits/s
links would be replaced by four switches with 10 Gbits/s links). All
packets assigned a path through the duplicate switches in the virtual
topology would be routed through the single high-capacity switch
on the physical topology.

Edge-coloring also generalizes to oversubscribed networks and
networks with multiple tiers. Only traffic that passes through a
higher network tier is edge-colored (e.g., in a two-tier network, only
inter-rack traffic requires path selection). For a three-tier datacenter
with ToR, Agg, and Core switches (and higher-tier ones), paths
can be assigned hierarchically: the edge-coloring of the ToR graph
assigns Agg switches to packets, then an edge-coloring of the Agg
graph chooses Core switches [21, §IV].

Fast edge-coloring. A network with n racks and d nodes per rack
can be edge-colored in O(nd logd) time [12, 23]. Fast edge-coloring
algorithms invariably use a simple and powerful building block, the
Euler-split. An Euler-split partitions the edges of a regular graph
where each node has the same degree, 2d, into two regular graphs
of degree d. The algorithm is simple: (1) find an Eulerian cycle (a
cycle that starts and ends at the same node, and contains every edge
exactly once, though nodes may repeat) of the original graph, (2)
assign alternate edges of the cycle to the two new graphs, (3) repeat.

An Euler-split divides the edges into two groups that can be
colored separately. d−1 Euler-splits can edge-color a graph with
power-of-two degree d by partitioning it into d perfect matchings,
which can each be assigned a different color. Graphs with non-
power-of-two degree can be edge-colored using a similar method
that incorporates one search for a perfect matching, and has only
slightly worse asymptotic complexity [23].

The Fastpass path selection implementation maintains the bipartite
graph in a size-optimized bitmap-based data structure that can fit
entirely in a 32 KB L1 cache for graphs with up to 6,000 nodes.
This data structure makes the graph walks needed for Euler-split fast,
and yields sufficiently low latencies for clusters with a few thousand
nodes (§7.3).

5. HANDLING FAULTS
Three classes of faults can render a Fastpass network ineffective:

failures of in-network components (nodes, switches and links), fail-
ures of the Fastpass arbiter, and packet losses on the communication
path between endpoints and the arbiter.

5.1 Arbiter failures
Fastpass runs multiple arbiters, one primary and a few secondaries.

The arbiters all subscribe to a pre-determined IP multicast destination
address to which all requests from endpoints are sent (responses are
unicast to the endpoint). All the arbiters receive all requests (modulo
packet loss), but only the designated primary responds to all requests;
the secondaries drop the requests and generate no allocations.

The secondaries detect the failure of the primary as follows. The
primary sends out tiny watchdog packets on the multicast group
every Tw microseconds. If a secondary receives no watchdog packets
during an interval of time Td , that secondary assumes that the primary

has failed, and starts responding to client requests. If there is more
than one secondary, a pre-defined rank order determines the order in
which secondaries attempt to take over as the primary. Our current
implementation uses only one secondary.

In practice, arbiters can be aggressive about detecting and reacting
to failure, allowing recovery within 1–2 ms. An implementation can
use Tw = 100 microseconds and Td = 1 millisecond to achieve fast
failover, consuming under 10 Mbits/s.

Upon an arbiter failover, the new arbiter must obtain an updated
snapshot of all endpoint demands, so it can start allocating timeslots.
The Fastpass Control Protocol (described below) assumes only soft-
state at the arbiter, allowing endpoints to re-synchronize with the
new arbiter in 1–2 round-trip times.

The transition period between old and new arbiters needs careful
handling to prevent persistent queues from building up. For example,
if the old arbiter tells A to send to C at some timeslot, and the new
arbiter tells B to send to C at the same time, a queue will form at C’s
ingress until encountering a free timeslot.

Conservative timing can ensure that by the time an arbiter failure
is detected and the secondary takes over, no allocations made by
the failed arbiter remain in the network. In our implementation, the
arbiter allocates each timeslot 65 µs before the timeslot’s start time
to leave enough time for notifications to reach the endpoints; this
number is much smaller than the 1 millisecond before the secondary
takes over.

As a result, the old and new arbiters do not have to share informa-
tion to make the failover possible, simplifying the implementation:
the new arbiter just resynchronizes with endpoints and starts allocat-
ing.

5.2 Network failures
Arbiters need to know the network topology under their control,

so packets can successfully traverse the network in their allotted
timeslots. If links or switches become unavailable undetected, the
arbiter would continue to allocate traffic through them, causing
packet loss.

Because Fastpass maintains low queue occupancies, it can use
packet drops to detect network faults. Sporadic packet losses due
to bit flips in the physical layer still occur, but persistent, correlated
packet loss is almost surely due to component failure. The path each
packet traverses is known to the endpoints, which helps localize the
fault.

A network service performs fault isolation, separate from the
arbiter. Endpoints report packet drops to this fault isolation service,
which correlates reports from multiple endpoints to identify the
malfunctioning component. The faulty component is then reported
to the arbiter, which avoids scheduling traffic through the component
until the fault is cleared. Since packet errors can be detected quickly,
failure detection and mitigation times can be made extremely short,
on the order of milliseconds.

5.3 Fastpass Control Protocol (FCP)
Communication between endpoints and the arbiter is not sched-

uled and can experience packet loss. FCP must protect against such
loss. Otherwise, if an endpoint request or the arbiter’s response is
dropped, a corresponding timeslot would never be allocated, and
some packets would remain stuck in the endpoint’s queue.

TCP-style cumulative ACKs and retransmissions are not ideal for
FCP. At the time of retransmission, the old packet is out of date: for
a request, the queue in the endpoint might be fuller than it was; for
an allocation, an allocated timeslot might have already passed.

FCP provides reliability by communicating aggregate counts; to
inform the arbiter of timeslots that need scheduling, the endpoint
sends the sum total of timeslots it has requested so far for that

destination. The arbiter keeps a record of each endpoints’ latest
demands; the difference from the kept record and the new aggregate
demands specifies the amount of new timeslots to be allocated.

The counts are idempotent: receiving the same count multiple
times does not cause timeslots to be allocated multiple times. Idem-
potency permits aggressive timeouts, leading to low allocation la-
tency even in the face of occasional packet loss. Endpoints detect
the loss of allocated timeslots using aggregate counts sent by the
arbiter, triggering a request for more timeslots.
Handling arbiter failure. When a secondary arbiter replaces a
failed primary, its aggregate counts are out of sync with the endpoints.
The mismatch is detected using a random nonce established when
the arbiter and endpoint synchronize. The nonce is incorporated
into the packet checksum, so when an arbiter is out of sync with an
endpoint, it observes a burst of failed checksums from an endpoint
that triggers a re-synchronization with that endpoint.

Upon re-synchronization, the arbiter resets its aggregate counts to
zeros, and the endpoint recomputes fresh aggregate counts based on
its current queues. The process takes one round-trip time: as soon
as the endpoint processes the RESET packet from the arbiter, it can
successfully issue new requests to the arbiter.

6. IMPLEMENTATION
We implemented the arbiter using Intel DPDK [1], a framework

that allows direct access to NIC queues from user space. On the
endpoints, we implemented a Linux kernel module that queues
packets while requests are sent to the arbiter. Our source code is at
http://fastpass.mit.edu/

6.1 Client
FCP is implemented as a Linux transport protocol (over IP). A

Fastpass qdisc (queueing discipline) queues outgoing packets before
sending them to the NIC driver, and uses an FCP socket to send
demands to and receive allocations from the arbiter.

The Fastpass qdisc intercepts each packet just before it is passed to
the NIC, and extracts the destination address from its packet header.3

It does not process transport protocol headers (e.g., TCP or UDP).
The Fastpass arbiter schedules network resources, obviating the

need for TCP congestion control. TCP’s congestion window (cwnd)
could needlessly limit flow throughput, but packet loss is rare, so
cwnd keeps increasing until it no longer limits throughput. At this
point, TCP congestion control is effectively turned off.

The current implementation does not modify TCP. The evaluated
system maintains long-lived flows, so flows are not cwnd-limited,
and we preferred not to risk introducing bugs into TCP. Neverthe-
less, modifying TCP’s congestion control would be worthwhile for
improving short-lived TCP flow performance.

The client is not limited to sending exactly one packet per timeslot.
Instead, it greedily sends packets while their total transmission time
is less than the timeslot length. This aggregation reduces the amount
of potentially wasted network bandwidth caused by many small
packets destined to the same endpoint.

6.2 Multicore Arbiter
The arbiter is made up of three types of cores: comm-cores com-

municate with endpoints, alloc-cores perform timeslot allocation,
and pathsel-cores assign paths.

The number of cores of each type can be increased to handle
large workloads: each comm-core handles a subset of endpoints, so
endpoints can be divided among more cores when protocol handling
becomes a bottleneck; alloc-cores work concurrently using pipeline
3On a switched network, MAC addresses could be used. However,
in the presence of routing, IP addresses are required.

1 batch of timeslots

alloc #1

time

precomputation

alloc #2

path-sel #1
path-sel #2
path-sel #3
path-sel #4

comm #1

Figure 6: Multicore allocation: (1) allocation cores assign packets
to timeslots, (2) path selection cores assign paths, and (3) communi-
cation cores send allocations to endpoints.

parallelism (§3); and pathsel-cores are “embarrassingly parallel”,
since path assignments for different timeslots are independent.

Fig. 6 shows communication between arbiter cores. Comm-cores
receive endpoint demands and pass them to alloc-cores (not shown).
Once a timeslot is completely allocated, it is promptly passed to a
pathsel-core. The assigned paths are handed to comm-cores, which
notify each endpoint of its allocations.

Performance measurements of each core type are presented in §7.

6.3 Timing
To keep queue occupancy low, end-node transmissions should

occur at the times prescribed by the arbiter. Otherwise, packets from
multiple endpoints might arrive at a switch’s egress port together,
resulting in queueing.

The amount of queueing caused by time-jitter is determined by the
discrepancy in clocks. For example, if all clocks are either accurate
or one timeslot fast, at most two packets will arrive at any egress:
one from an accurate node, the other from a fast node.

Clock synchronization. The deployment synchronizes end-node
time using the IEEE1588 Precision Time Protocol (PTP), which
achieves sub-microsecond clock synchronization by carefully mit-
igating causes of time-synchronization jitter. PTP-capable NICs
timestamp synchronization packets in hardware [29], thus avoiding
jitter due to operating system scheduling. NICs with PTP support
are widely available; the experiment used Intel 82599EB NICs.

Variable queueing delays inside the network also cause syn-
chronization inaccuracies, and PTP-supported switches report their
queueing delays so endpoints can compensate. However, Fastpass
keeps queue-length variability low, enabling high quality time syn-
chronization without PTP switch support.

Client timing. The client uses Linux high-resolution timers
(hrtimers), previously demonstrated to achieve microsecond-scale
precision when shaping flow throughput [33].

The client uses locks to synchronize access to the qdisc queues and
to allocation state. Because waiting for these locks when transmitting
packets causes variable delays, we allow the qdisc to send packets
after their scheduled times, up to a configurable threshold. Endpoints
re-request overly late allocations from the arbiter.

7. EVALUATION
The goal of Fastpass is to simultaneously eliminate in-network

queueing, achieve high throughput, and support various inter-flow or
inter-application resource allocation objectives in a real-world data-
center network. In this section, we evaluate how well Fastpass meets
these goals, compared to a baseline datacenter network running
TCP.

http://fastpass.mit.edu/

Summary of Results
§7.1 (A) Under a bulk transfer workload involving multiple

machines, Fastpass reduces median switch queue length
to 18 KB from 4351 KB, with a 1.6% throughput penalty.
(B) Interactivity: under the same workload, Fastpass’s
median ping time is 0.23 ms vs. the baseline’s 3.56 ms,
15.5× lower with Fastpass.

§7.2 (C) Fairness: Fastpass reduces standard deviations of
per-sender throughput over 1 s intervals by over 5200×
for 5 connections.

§7.3 (D) Each comm-core supports 130 Gbits/s of network
traffic with 1 µs of NIC queueing.
(E) Arbiter traffic imposes a 0.3% throughput overhead.
(F) 8 alloc-cores support 2.2 Terabits/s of network traffic.
(G) 10 pathsel-cores support >5 Terabits/s of network
traffic.

§7.4 (H) In a real-world latency-sensitive service, Fastpass
reduces TCP retransmissions by 2.5×.

Experimental setup. We conducted experiments on a single rack
of 32 servers, with each server connected to a top-of-rack (ToR)
switch with a main 10 Gbits/s Ethernet (GbE) network interface
card (NIC). Servers also have a 1 Gbit/s NIC meant for out-of-band
communication. The 10 GbE top-of-rack switch has four 10 GbE
uplinks to the four cluster switches [16]. Each server has 2 Intel
CPUs with 8 cores each (16 hyper-threads per CPU, for a total of 32
hyper-threads) and 148 GB RAM. One server is set aside for running
the arbiter. We turn off TCP segmentation offload (TSO) to achieve
better control over the NIC send queues.

7.1 Throughput, queueing, and latency
Experiment A: throughput and queueing. Our first experiment
compares the throughput and switch queue occupancy of Fastpass
to the baseline network. Four rack servers run iperf to generate
traffic (20 TCP flows per sender) to a single receiver. The experiment
lasts 20 minutes and is run twice—once with the baseline and once
with Fastpass.

Fastpass achieves throughput close to the baseline’s: 9.43 Gbits/s
in the baseline run versus 9.28 Gbits/s with Fastpass. At the same
time, Fastpass reduces the median switch queue occupancy from
4.35 Megabytes in the baseline to just 18 kilobytes with Fastpass, a
reduction of a factor of 242× (Fig. 7).

It isn’t just the median but also the tails of the queue-occupancy
distribution that are a lot lower, as shown here:

Median 90th %ile 99th 99.9th

Baseline (Kbytes) 4351 5097 5224 5239
Fastpass (Kbytes) 18 36 53 305

Most of the 1.6% difference in throughput can be attributed to
Fastpass reserving about 1% of the achieved throughput for FCP
traffic. The remainder is due to the client re-requesting timeslots
when packet transmissions were delayed more than the allowed
threshold (§6.3).

Switch queues are mostly full in the baseline because TCP con-
tinues to increase the sending rate until a packet is dropped (usually
due to a full queue). In contrast, Fastpass’s timeslot allocation keeps
queues relatively empty: the 99.9th percentile occupancy was 305
KB over the entire experiment. Although the design intends queues
to be strictly 0, the implementation does not yet achieve it because
of jitter in endpoint transmission times. We believe that queueing

Figure 7: Switch queue lengths sampled at 100ms intervals on the
top-of-rack switch. The diagram shows measurements from two
different 20 minute experiments: baseline (red) and Fastpass (blue).
Baseline TCP tends to fill switch queues, whereas Fastpass keeps
queue occupancy low.

0

5

10

15

0 1 2 3 4
Ping time (milliseconds)

D
en
si
ty fastpass

baseline

Figure 8: Histogram of ping RTTs with background load using
Fastpass (blue) and baseline (red). Fastpass’s RTT is 15.5× smaller,
even with the added overhead of contacting the arbiter.

can be further reduced towards the zero ideal by using finer-grained
locking in the kernel module.
Experiment B: latency. Next, we measure the round-trip latency of
interactive requests under high load. This experiment uses the same
setup as Experiment A, augmented with a fifth machine that sends a
small request to the receiving server every 10 ms, using ping.

Fastpass reduces the end-to-end round-trip time (RTT) for in-
teractive traffic when the network is heavily loaded by a factor of
15.5×, from a median of 3.56 ms to 230 µs (Fig. 8). The tail of the
distribution observes significant reductions as well:

Median 90th %ile 99th 99.9th

Baseline (ms) 3.56 3.89 3.92 3.95
Fastpass (ms) 0.23 0.27 0.32 0.38

Note that with Fastpass ping packets are scheduled in both direc-
tions by the arbiter, but even with the added round-trips to the arbiter,
end-to-end latency is substantially lower because queues are much
smaller. In addition, Fastpass achieves low latency for interactive
traffic without requiring the traffic to be designated explicitly as
“interactive” or “bulk,” and without using any mechanisms for traffic
isolation in the switches: it results from the fairness properties of
the timeslot allocator.

7.2 Fairness and convergence
Experiment C: fairness and convergence. Here we examine how
fairly Fastpass allocates throughput to multiple senders, and how
quickly it converges to a fair allocation when a sender arrives or
departs. Five rack servers each send a bulk TCP flow to a sixth
receiving server. The experiment begins with one bulk flow; every

30 seconds, a new bulk flow arrives until all five are active for 30
seconds, and then one flow terminates every 30 seconds. The entire
experiment therefore lasts 270 seconds.

We calculate each connection’s throughput over 1-second inter-
vals. The resulting time series for the baseline TCP and for Fastpass
are shown in Figure 9.

The baseline TCPs exhibit much larger variability than Fastpass.
For instance, when the second connection starts, its throughput is
about 20-25% higher than the first connection throughout the 30-
second interval; similarly, when there are two senders remaining
between time 210 to 240 seconds, the throughputs “cross over” and
are almost never equal. With more connections, the variation in
throughput for TCP is more pronounced than with Fastpass.

To quantify this observation, we calculate the standard deviation
of the per-connection throughputs achieved in each 1-second interval,
in Mbits/s, when there are 3, 4, and 5 concurrent connections each
for the baseline TCP and Fastpass. We then compute the median
over all standard deviations for a given number of connections (a
median over 60 values when there are 3 or 4 connections and over
30 values when there are 5 connections). The results are:

#connections Baseline Fastpass Improvement
3 543.86 15.89 34.2×
4 628.49 0.146 4304.7×
5 459.75 0.087 5284.5×

These results show that Fastpass exhibits significantly lower vari-
ability across the board: its standard deviation of throughput is over
5200 times lower than the baseline when there are five concurrent
connections.

Fastpass’s pipelined timeslot allocation algorithm prioritizes flows
based on their last transmission time, so when a new flow starts, it
is immediately allocated a timeslot. From that point on, all flows
contending for the bottleneck will be allocated timeslots in sequence,
yielding immediate convergence and perfect fairness over intervals
as small as 1 MTU per flow (for 5 flows on 10 Gbits/s links, this
yields fairness at the granularity of 6 µs).

The benchmark shows low total throughput for one and two
senders because of packet processing overheads, which are usually
reduced by TSO. (In contrast, Experiments A and B use many more
connections, so they achieve high utilization). Fastpass senders also
require additional processing in the Fastpass qdisc, which is limited
to using one core; NIC support (§8.3) or a multicore implementation
will alleviate this bottleneck.

7.3 Arbiter performance
Experiment D: request queueing. To estimate how long requests
queue at the arbiter before they are processed, we measure the NIC
polling rate of the comm-core under increasing amounts of network
traffic. Every 10 seconds, a rack server starts a TCP transfer to an
unloaded server.

As the load increases, the arbiter spends more time processing
requests, the NIC polling rate decreases (Fig. 10), and requests are
delayed in the arbiter’s NIC queues. A deployment can control this
queueing delay by limiting the amount of traffic each comm-core
handles: 130 Gbits/s for 1 µs queueing, 170 Gbits/s for 10 µs, etc.

Experiment E: communication overhead. To determine the net-
work capacity requirements at the arbiter, we measure the total
amount of control traffic the arbiter receives and transmits in experi-
ment D. The network overhead of communication with the arbiter
is 1-to-500 for request traffic and 1-to-300 for allocations for the
tested workload (Fig. 11): to schedule as much as 150 Gbits/s, the
comm core receives less than 0.3 Gbits/s of requests and sends out
0.5 Gbits/s of allocations. When the NIC polling rate decreases

0

2

4

6

0

2

4

6

baseline
fastpass

0 50 100 150 200 250
Time (seconds)

P
er

−
co

nn
ec

tio
n

th
ro

ug
hp

ut
 (

G
bi

ts
/s

)

Sender

1

2

3

4

5

Figure 9: Each connection’s throughput, with a varying number
of senders. Even with 1s averaging intervals, baseline TCP flows
achieve widely varying rates. In contrast, for Fastpass (bottom),
with 3, 4, or 5 connections, the throughput curves are on top of one
another. The Fastpass max-min fair timeslot allocator maintains
fairness at fine granularity. The lower one- and two-sender Fastpass
throughput is due to Fastpass qdisc overheads (§7.2).

sufficiently, incoming request packets start getting dropped (seen
around 160 Gbits/s). The arbiter is still able to allocate all traffic
because FCP retransmissions summarize aggregate demands; hence,
not every demand packet needs to be received.

Experiment F: timeslot allocation cores. To determine the number
of arbiter cores necessary for timeslot allocation, we measure the
throughput of the max-min fair timeslot allocation implementation.
Requests are generated by a synthetic stress-test-core, rather than
received from a comm-core. The workload has Poisson arrivals,
senders and receivers chosen uniformly at random from 256 nodes,
and requests are for 10 MTUs. We vary the mean inter-arrival time
to produce different network loads.

2 cores 4 cores 6 cores 8 cores
Throughput (Gbits/s) 825.6 1545.1 1966.4 2211.8

Eight alloc-cores support over 2.21 Terabits/s of network traffic,
or 221 endpoints transmitting at a full 10 Gbits/s. This corresponds
to over 86% network utilization.

Experiment G: path selection cores. To determine the number
of arbiter cores needed for path selection, we measure the average
processing time per timeslot as load increases. We use the synthetic
workload described above with exponentially distributed request
sizes (with a mean of 10 MTUs). The chosen topology has 32
machines per rack and four paths between racks, with no over-
subscription (motivated in part by the “4-post” cluster topology [16]).
Note that non-oversubscribed topologies could be considered worst-
case topologies for path selection: over-subscription reduces the
amount of traffic leaving each rack and thus simplifies path-selection.

Fig. 12 shows that the processing time increases with network
utilization until many of the nodes reach full degree (32 in the tested
topology), at which point the cost of pre-processing4 the graph
decreases, and path selection runs slightly faster.

Because path-selection can be parallelized by having a different
core select paths for each timeslot, these measurements indicate how
many pathsel-cores are required for different topologies. For exam-

4Path selection adds dummy edges to the graph until all nodes have
the same degree (i.e., number of packets).

●

●●● ●● ●●● ●●●
●
●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●● ●●● ● ●●● ●●●
●

●●●●●●●●●●●●●●●● ●●● ●● ●● ●●

●

●●●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●● ●

●●
● ●

●●●●●●●●● ●●●●● ●●●●●●●●●●
●●●

● ●●●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●
●●

●●●●
●●● ●●●●●●●

●●●●●●●●●
●●●

●●●●●
●
●●●●●●●●
●●●●

●●●
●

●●●●●●
●

●●●●●
●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●● ●●●
●●●●●●●●●

●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●

●
●●●
●●● ●●●●●●

●
● ●
●●●●●●●●●●●●●●
●●
●●●●●●●●●●

● ●●●
●●●●

●
●●●●●●●●
●●

●
●

●●●●●●
●

●
●●

●

●
●●●●●●
●●●●
●●
●●●

●
●

●
●●● ●

●●●●●●
●●
●●●●●●
●●●●●●●

●
●●●●●

●
●●

●●●●●●●●●●●●

●
●

●
●

●●● ●●●
●

●

●
●
●

●
●
●
●●
●

●●
●

●●
●

●
●●●●●●

●
●

●
●●

●

●●●
●
●●●

●
●●
●●●

●●●●
●
●●
●●

●●●●
●●●●●●

●
●

●●●
●

●●●●
●

●●

●
●●●●● ●
●●

●
●●

●●
●

●
●
●●

●●●●
●●●●
●

●●●●
●●●●●●●
●

●
●

●●●●
●●●
●

●
●

●

●
●
●

●
●●
●
●●●●●
●●●
●
●
●

●●
●●

●
●●

●●●●●●
●

●●
●●

●●
●●

●●●●●

● ●●●●●
●

●●●●●●●●●

●●
●

●●●●●●●
●●

●
●
●

●●
●●

●●

●●●●

●● ●●●●●

●

●
●●

●●
●

●
●

●
●●●●
●
●●●●
●
●
●
●●●●●

●
●

●

●
●●●
●
●●●
●

●●●●
●
●

●●
●
●●●●●●
●●
●
●

●●●●
●
●●●●
●●

●●●●●●

●

●

●
●●●

● ●

●

●
●●●●●

●
●

●
●● ●
●
●

●
●●●

●●●
●

●
●

●●

●
●●

●

●
● ●●●●
●●●●

● ●●●●
●

●
●●●●
●

●

●

●

●

●
●●●●●●●● ●

●
●

●
●●
●●
●●●●

●●
●●●●
●
●
●●●
●●●●●
●● ●●●

●●
●●
●●●
●
●●●●●●●●●●
●●

●●●●
●

●
●●
●●●
●
●●
●●
●
●●●●●

● ●
●●●●
●

●
●●●●

●●●●
●●●●
●

●●

●

●●●●
●
●●●
●●●●●●

●
●●●●●●

●

●
●●●●
●
●

●
●●

●●
●●●
●● ●

●● ●●
●

●
●●●●●

●
●●●●●●●●●
●
●●●●●●

●
●● ●

●●
●

●
● ● ●●●●●

●
●

●

●
●

●
● ●●

●

●
●

●

●

●

● ●
●

●

●
●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●●● ●●
●

●●●
●
●

●
●●

●
●●●
●●
●

●●

●
●

●●
●●

●●
●

●●●
●
●●● ●●●●●

●
●●●● ●●●●●

●●●
●●●●●
●●

●● ●●
●●●

●
●●●

●
●
●
●

●●
●
●●●●●●●

●●
●
●●●●●

●
●●●
●●●●●
●

●
●

●●●
●●

●

●
●

●●●●●
●

●
●
●● ●

● ●●●●
●

●●●
●

●●
●●●●●●

●
● ●●●

●
●●

●
●●

●

●
●●●●
●●

●●●●●●
●
●●●● ●
●

●
●●

●●

●
●●

●●
●

●●
●●

●
● ●●●●●
●●●●●●●

●●●
●

105

106

107

0 50 100 150 200
Network throughput (Gbits/s)

N
IC

 p
ol

lin
g

ra
te

 (
H

z)

Figure 10: As more requests are handled, the NIC polling rate de-
creases. The resulting queueing delay can be bounded by distributing
request-handling across multiple comm-cores.

●●
●●

●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●
●●● ●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
● ●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●

●●●●●
●●●●●●●●

●●●●●●
●●●
●

●●
●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●
●●● ●●●●●●●
●●●●●●●

●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●
●
●●● ●●●●●●●●

●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●
●●●

●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●
●●●

●●
●
●●●
●●●●
● ●●●
●
●●●●●●●●●●●●●●●●●●● ●
●●●●●● ●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●
● ● ●●● ● ●●●

●●●●
●● ●●●●● ●●●●●●●●●●

●●● ●
●●● ●●●●●

●●●●●●
●●●●●●●● ●●●●●●●●●
●
●●●●●●●●●●●●●●

●●● ●●●●●●
●

●●●●●
●●
●

●
●●●●●●

●
●●●●●
●●●●

●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●
●●
●●
●

●● ●●●●●
●

● ●●●●
●●●●●●

●
●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●
●● ●●●

● ●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●

●●
●
●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●

●●●●●●
●●●●●●●●●
●●●●●
●
●●
●
●
●

● ●●●●●●● ● ●●
●●
●
●●●●●

●●
●●●●●●●●●● ●●●●●●●●

●●●●●
● ●●● ●●●

●●● ●●●●●●●●●●●●
●
●●●●●●●●
●

●
●
●●●●●

●
● ●●●●

●●
●●●●●●●●●

●
●●● ●●
●●●

● ●●●●●●●●●●
●

●●●●●●●
●
●●●
●

●●●

●

●●●●●●●●●●●●
●●●
●

●
●●●
●● ●●●●●●●
●●●●
●●●●● ●●

●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●
●●●

● ●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●

●●●●●●
●●●●●●●●●●● ● ●●●●●

●●●● ●●●●●●●●●
●●●● ●● ●●●●●● ●●●●●●●●●●●●●

●●●●●
●●●●

●●●●●●●
●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●
●●●● ●● ●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●●●●
●

●●● ●●●●●●●●●●●●●
●●●●

●●●●●
●
●

●●●●●●●●●●●●●●
●●●●●

●●● ●● ●●●●●
●

●● ●● ●● ●●●●●●
●●●●●●●●
●●●●

●●●●●
●●

●●●●●
● ●

●●●●●●
●

● ●
●

●●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
● ●

●
●●●

●
●●●●●●●●● ●●●●●●●● ●●● ●●●●

●●●●
●

●●●●●●● ●●●●●
●
●●●● ●●
●●
● ●
●●●●●●● ●●●● ●●
●●● ●●●●●●●●●●

●●
●

●●●●●
●●●●●●●●●●●●●●●●●

●
● ●●●●●●●●●●●
●●●● ●●●
● ●●

●●●●●●●●● ●●●
●●●
●●●

●
●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●

●●
●●●●●● ●● ●●●

●●●●●● ●
●●●●●

●●●●●●●●●
●

0.0

0.2

0.4

0.6

0 50 100 150 200
Network throughput (Gbits/s)

A
rb

ite
r

th
ro

ug
hp

ut
 (

G
bi

ts
/s

)

●

TX

RX

Figure 11: The arbiter requires 0.5 Gbits/s TX and 0.3 Gbits/s RX
bandwidth to schedule 150 Gbits/s: around 0.3% of network traffic.

●
●

●
●

● ●
● ● ● ● ●

0

10

20

30

0 25 50 75 100
Network utilization (%)

P
ro

ce
ss

in
g

tim
e

pe
r

tim
es

lo
t (

µs
)

Racks

●

32

16

8

4

Figure 12: Path selection routes traffic from 16 racks of 32 endpoints
in <12 µs. Consequently, 10 pathsel-cores would output a routing
every <1.2 µs, fast enough to support 10 Gbits/s endpoint links.
Error bars show one standard deviation above and below the mean.

ple, path selection of 16 racks can be done in under 12 microseconds;
hence, for 1.2 microsecond timeslots, 10 pathsel-cores suffice.

7.4 Production experiments at Facebook

Workload. We deployed Fastpass on a latency-sensitive service
that is in the response path for user web requests. This service
has a partition-aggregate workload similar to common search work-
loads [10]. Each server runs both an aggregator and a leaf; when an
aggregator receives a query from a web server, it requests relevant
data from several leaves, processes them, and returns a reduced result.
Each rack of 30–34 aggregator-leaf servers works independently.

To maintain acceptable latency as traffic load changes during the
day, the service adjusts the number of internal queries generated
by each request; in aggregate, a rack handles between 500K and
200M internal queries per second. When load is low, the aggregator
considers more items and produces higher quality results. In times of
heavy load, when the 99th percentile latency increases, the number
of items considered per web request is reduced aggressively.

Cluster traffic is bursty, but most of the time utilizes a fraction
of network capacity (Fig. 13). We measure throughput over 100 µs
time intervals on one production server. 25% of these intervals have
no ingress traffic, 25% have no egress traffic, and only 10% of these
intervals have aggregate traffic exceeding 2 Gbits/s.

The production workload changes gently over time scales of tens
of minutes, enabling comparative testing when schemes are applied
in sequence. The live experiment ran for 135 minutes: the rack
started in baseline mode, switched to Fastpass at 30 minutes, and
back to baseline at 110 minutes.

0.00

0.25

0.50

0.75

1.00

10 Mbits/s 100 Mbits/s 1 Gbits/s 10 Gbits/s
Throughput per 100 µs interval

C
D

F

RX

TX

Figure 13: Distribution of the sending and receiving rates of one
production server per 100 microsecond interval over a 60 second
trace.

Experiment H: production results. Fig. 14 shows that the 99th
percentile web request service time using Fastpass is very similar to
the baseline’s. The three clusters pertain to groups of machines that
were assigned different load by the load-balancer. Fig. 15 shows
the cluster’s load as the experiment progressed, showing gentle
oscillations in load. Fastpass was able to handle the load without
triggering the aggressive load-reduction.

Fastpass reduced TCP retransmissions by 2–2.5× (Fig. 16). We
believe the remaining packet loss is due to traffic exiting the rack,
where Fastpass is not used to keep switch queues low. Extending the
Fastpass scheduling boundary should further reduce this packet loss.

8. DISCUSSION

8.1 Large deployments
A single arbiter should be able to handle hundreds to thousands of

endpoints. At larger scales, however, a single arbiter’s computational
and network throughput become bottlenecks, and several arbiters
would need to cooperate.

A hierarchical approach might be useful: an arbiter within each
cluster would send its demands for intra-cluster traffic to a core-
arbiter, which would decide which timeslots each cluster may use,
and what paths packets at these timeslots must follow. The cluster
arbiters would then pass on these allocations to endpoints.

A core arbiter would have to handle a large volume of traffic, so
allocating at MTU-size granularity would not be computationally
feasible. Instead, it could allocate timeslots in bulk, and trust cluster
arbiters to assign individual timeslots fairly among endpoints.

An alternative for large deployments could be the use of spe-
cialized hardware. An FPGA or ASIC implementation of timeslot
allocation and path selection algorithms would likely allow a single
arbiter to support much larger clusters.

350

400

450

0 50000 100000 150000
Server throughput (queries per second)

99
th

 p
er

ce
nt

ile
 w

eb
 r

eq
ue

st
se

rv
ic

e
tim

e
(m

s)
baseline fastpass

Figure 14: 99th percentile web request ser-
vice time vs. server load in production traffic.
Fastpass shows a similar latency profile as
baseline.

0

50

100

150

200

0 2000 4000 6000
Time (seconds)

R
ac

k
th

ro
ug

hp
ut

(1
00

0s
 o

f q
ue

rie
s

pe
r

se
co

nd
)

Figure 15: Live traffic server load as a func-
tion of time. Fastpass is shown in the middle
with baseline before and after. The offered
load oscillates gently with time.

0

2

4

6

0 2000 4000 6000
Time (seconds)

M
ed

ia
n

pa
ck

et
 r

et
ra

ns
m

is
si

on
s

pe
r

no
de

 p
er

 s
ec

on
d

baseline fastpass

Figure 16: Median server TCP retransmis-
sion rate during the live experiment. Fast-
pass (middle) maintains a 2.5× lower rate of
retransmissions than baseline (left and right).

8.2 Routing packets along selected paths
Packets must be made to follow the paths allocated to them by the

arbiter. Routers typically support IP source routing only in software,
if at all, rendering it too slow for practical use. Static routing [38] and
policy based routing using VLANs are feasible, but could interfere
with existing BGP configurations, making them less suitable for
existing clusters. Tunneling (e.g. IP-in-IP or GRE) entails a small
throughput overhead, but is supported in hardware by many switch
chipsets making it a viable option [18].

Finally, routing along a specific path can be achieved by what
we term ECMP spoofing. ECMP spoofing modifies fields in the
packet header (e.g., source port) to specific values that will cause
each switch to route the packet to the desired egress, given the other
fields in the packet header and the known ECMP hash function. The
receiver can then convert the modified fields to their original values,
stored elsewhere in the packet.

8.3 Scheduling support in NICs
Fastpass enqueues packets into NIC queues at precise times, using

high resolution timers. This frequent timer processing increases
CPU overhead, and introduces operating-system jitter (e.g., due to
interrupts). These timers would not be necessary if NICs implement
support for precise packet scheduling: packets could be enqueued
when Fastpass receives an allocation. A “send-at” field in the packet
descriptor would indicate the desired send time.

8.4 Small packet workloads
A current limitation of Fastpass is that it allocates at the granularity

of timeslots, so if an endpoint has less than a full timeslot worth
of data to send, network bandwidth is left unused. This waste is
reduced or eliminated when an endpoint sends many small packets to
the same destination, which are batched together (§6.1). Workloads
that send tiny amounts of data to a large number of destinations still
waste bandwidth. A possible mitigation is for the arbiter to divide
some timeslots into smaller fragments and allocate these fragments
to the smaller packets.

9. RELATED WORK
Several systems use centralized controllers to get better load bal-

ance and network sharing, but they work at “control-plane” granular-
ity, which doesn’t provide control over packet latencies or allocations
over small time scales.

Hedera [5] discovers elephant flows by gathering switch statistics,
then reroutes elephants for better load balancing. It aims for high
throughput, and has no mechanism to reduce network latency.

Datacenter TDMA [35] and Mordia [17] use gathered statistics
to estimate future demand, then compute a set of matchings that are
applied in sequence to timeslots of duration on the order of 100 µs.
Both schemes target elephant flows; short flows are delegated to
other means.

Orchestra [11] coordinates transfers in the shuffle stage of MapRe-
duce/Dryad so all transfers finish roughly together, by assigning
weights to each transfer. Orchestra is an application-level mecha-
nism; the actual transfers use TCP.

SWAN [19] frequently reconfigures the network’s data plane to
match demand from different services. All non-interactive services
coordinate with the central SWAN controller, which plans paths
and bandwidth and implements those paths by updating forwarding
tables in network devices.

Distributed approaches usually set out to solve a restricted data-
center problem: minimizing Flow Completion Time (FCT), meeting
deadlines, balancing load, reducing queueing, or sharing the net-
work. To our knowledge, no previous scheme provides a general
platform to support all these features, and some schemes perform
sub-optimally because they lack complete knowledge of network
conditions.

DCTCP [6] and HULL [7] reduce switch queueing, but increase
convergence time to a fair-share of the capacity, and do not eliminate
queueing delay.

In MATE [15] and DARD [38], ingress nodes reroute traffic self-
ishly between paths until converging to a configuration that provides
good load balance across paths.

In multi-tenant datacenters, Seawall [32] provides weighted fair
sharing of network links, and EyeQ [22] enforces traffic constraints.

Schemes such as pFabric [8] and PDQ [20] modify the switches to
reduce flow completion time, while D3 [36] and PDQ minimize flow
completion times to meet deadlines. These switch modifications
raise the barrier to adoption because they need to be done across the
network. PDQ and pFabric use a distributed approximation of the
shortest remaining flow first policy, which Fastpass can implement
in the arbiter.

Differentiated Services (DiffServ, RFC2474) provides a dis-
tributed mechanism for different classes of traffic to travel via distinct
queues in routers. The number of DiffServ Code Points available
is limited, and in practice operational concerns restrict the number
of classes even further. Most commonly, there are classes for bulk
traffic and latency-sensitive traffic, but not a whole lot more.

10. CONCLUSION
We showed how to design and implement a datacenter network

in which a centralized arbiter determines the times at which each
packet should be transmitted and the path it should take. Our results
show that compared to the baseline network, the throughput penalty
is small but queueing delays reduce dramatically, flows share re-
sources more fairly and converge quickly, and the software arbiter
implementation scales to multiple cores and handles an aggregate
data rate of 2.21 Terabits/s.

Even with such a seemingly heavy-handed approach that incurs a
little extra latency to and from the arbiter, tail packet latencies and
the number of retransmitted packets reduce compared to the status
quo, thanks to the global control exerted by the arbiter. Our results
show that Fastpass opens up new possibilities for high-performance,
tightly-integrated, predictable network applications in datacenters,
even with commodity routers and switches.

We hope we have persuaded the reader that centralized control at
the granularity of individual packets, achieved by viewing the entire
network as a large switch, is both practical and beneficial.

Acknowledgements
We are grateful to Omar Baldonado and Sanjeev Kumar of Facebook
for their enthusiastic support of this collaboration, Petr Lapukhov
and Doug Weimer for their generous assistance with the Facebook
infrastructure, Garrett Wollman and Jon Proulx at MIT CSAIL for
their help and efforts in setting up environments for our early ex-
periments, and David Oran of Cisco for his help. We thank John
Ousterhout, Rodrigo Fonseca, Nick McKeown, George Varghese,
Chuck Thacker, Steve Hand, Andreas Nowatzyk, Tom Rodeheffer,
and the SIGCOMM reviewers for their insightful feedback. This
work was supported in part by the National Science Foundation grant
IIS-1065219. Ousterhout was supported by a Jacobs Presidential
Fellowship and a Hertz Foundation Fellowship. We thank the indus-
trial members of the MIT Center for Wireless Networks and Mobile
Computing for their support and encouragement.

11. REFERENCES
[1] Packet processing on intel architecture.

http://www.intel.com/go/dpdk.
[2] Intel 64 and IA-32 Architectures Optimization Reference

Manual. Number 248966-029. March 2014.
[3] M. Ajmone Marsan, E. Leonardi, M. Mellia, and F. Neri. On

the stability of input-buffer cell switches with speed-up. In
INFOCOM, 2000.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In SIGCOMM,
2008.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data Center
Networks. In NSDI, 2010.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, M. Sridharan, C. Faster, and
D. Maltz. DCTCP: Efficient Packet Transport for the
Commoditized Data Center. In SIGCOMM, 2010.

[7] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less is More: Trading a Little Bandwidth for
Ultra-Low Latency in the Data Center. In NSDI, 2012.

[8] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker. Deconstructing Datacenter Packet Transport.
In HotNets, 2012.

[9] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker.
High-Speed Switch Scheduling for Local-Area Networks.
ACM Trans. on Comp. Sys., 11(4):319–352, 1993.

[10] L. A. Barroso, J. Dean, and U. Holzle. Web Search for a
Planet: The Google Cluster Architecture. IEEE Micro,
23(2):22–28, 2003.

[11] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Stoica.
Managing Data Transfers in Computer Clusters with
Orchestra. In SIGCOMM, 2011.

[12] R. Cole, K. Ost, and S. Schirra. Edge-Coloring Bipartite
Multigraphs in O(E logD) Time. Combinatorica, 21(1):5–12,
2001.

[13] J. Dai and B. Prabhakar. The throughput of data switches with
and without speedup. In INFOCOM, 2000.

[14] J. Duato, S. Yalamanchili, and L. Ni. Interconnection
Networks. Morgan Kaufmann, 2003.

[15] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: MPLS
Adaptive Traffic Engineering. In INFOCOM, 2001.

[16] N. Farrington and A. Andreyev. Facebook’s Data Center
Network Architecture. In IEEE Optical Interconnects Conf.,
2013.

[17] N. Farrington, G. Porter, Y. Fainman, G. Papen, and A. Vahdat.
Hunting Mice with Microsecond Circuit Switches. In HotNets,
2012.

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In SIGCOMM,
2009.

[19] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer. Achieving High Utilization
with Software-Driven WAN. In SIGCOMM, 2013.

[20] Hong, C. Y. and Caesar, M. and Godfrey, P. Finishing Flows
Quickly with Preemptive Scheduling. SIGCOMM, 2012.

[21] F. Hwang. Control Algorithms for Rearrangeable Clos
Networks. IEEE Trans. on Comm., 31(8):952–954, 1983.

[22] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, and
C. Kim. EyeQ: Practical Network Performance Isolation for
the Multi-Tenant Cloud. In HotCloud, 2012.

[23] A. Kapoor and R. Rizzi. Edge-coloring bipartite graphs.
Journal of Algorithms, 34(2):390–396, 2000.

[24] N. McKeown. The iSLIP Scheduling Algorithm for
Input-Queued Switches. IEEE/ACM Trans. on Net.,
7(2):188–201, 1999.

[25] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand.
Achieving 100% Throughput in an Input-Queued Switch.
IEEE Trans. Comm., 47(8):1260–1267, 1999.

[26] D. Nagle, D. Serenyi, and A. Matthews. The Panasas
ActiveScale Storage Cluster: Delivering Scalable High
Bandwidth Storage. In Supercomputing, 2004.

[27] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In SIGCOMM, 2009.

[28] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, et al.
Scaling memcache at facebook. In NSDI, 2013.

[29] P. Ohly, D. N. Lombard, and K. B. Stanton. Hardware
Assisted Precision Time Protocol. Design and Case Study. In
LCI Intl. Conf. on High-Perf. Clustered Comp., 2008.

[30] D. Shah. Maximal matching scheduling is good enough. In
GLOBECOM, 2003.

[31] D. Shah, N. Walton, and Y. Zhong. Optimal Queue-Size
Scaling in Switched Networks. In SIGMETRICS, 2012.

http://www.intel.com/go/dpdk

[32] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha.
Sharing the Data Center Network. In NSDI, 2011.

[33] R. Takano, T. Kudoh, Y. Kodama, and F. Okazaki.
High-Resolution Timer-Based Packet Pacing Mechanism on
the Linux Operating System. IEICE Trans. on Comm., 2011.

[34] Y. Tamir and H.-C. Chi. Symmetric crossbar arbiters for VLSI
communication switches. IEEE Trans. Par. Dist. Sys.,
4(1):13–27, 1993.

[35] B. C. Vattikonda, G. Porter, A. Vahdat, and A. C. Snoeren.
Practical TDMA for Datacenter Ethernet. In EuroSys, 2012.

[36] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
Never Than Late: Meeting Deadlines in Datacenter Networks.
In SIGCOMM, 2011.

[37] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast
Congestion Control for TCP in Data Center Networks. In
CoNext, 2010.

[38] X. Wu and X. Yang. DARD: Distributed Adaptive Routing for
Datacenter Networks. In ICDCS, 2012.

Appendix: Theoretical Properties of the Timeslot
Allocator
System model. We consider a network with N endpoints denoted
by 1, . . . ,N, with each endpoint potentially having requests for any
other endpoint. Time is slotted; in a unit timeslot each endpoint
can transmit at most one MTU-sized packet to any other endpoint
and receive at most one packet from any other endpoint. New
requests arrive at an endpoint i for endpoint j with probability pi j
in each timeslot. An arriving request brings a random number of
packets, distributed according to a distribution Gi j and independent
of everything else.

Let E[Gi j] = gi j. Thus, on average λi j = pi jgi j packets arrive
at endpoint i for endpoint j per timeslot. The matrix Λ = [λi j]
denotes the net average data traffic between endpoints arriving in
each timeslot. We assume a non-oversubscribed (also called full
bisection bandwidth) network: the network can support any traffic
where each node is paired to at most one other node per timeslot.

In the above setup, all traffic matrices, Λ, that can be served by
any system architecture, must be doubly sub-stochastic. That is,

N

∑
k=1

λik < 1, for all i and
N

∑
k=1

λk j < 1, for all j. (1)

By the celebrated result of Birkhoff and von Neumann, all doubly
stochastic matrices can be decomposed as a weighted sum of permu-
tation matrices (i.e., matchings) with the sum of the weights being
at most 1. Therefore, non-oversubscribed networks can support
all doubly stochastic traffic matrices. A traffic matrix Λ is called
admissible if and only if ρ(Λ)< 1 where, the system load ρ(Λ) is
defined as

ρ(Λ) = max
i, j

(N

∑
k=1

λik,
N

∑
k=1

λk j

)
. (2)

Finally, let Qi j(t) denote the total number of packets (potentially
across different requests) waiting to be transferred from endpoint i
to endpoint j at time t. This setup is similar to that used in literature
on input-queued switches [25], enabling us to view the network as a
big input-queued switch with Qi j(t) the Virtual Output Queue sizes.
Main result. The arbiter’s timeslot allocation algorithm of §3 is
equivalent to the following: each queue (i, j) has a “priority score”
associated with it. In the beginning of each timeslot, the arbiter starts
processing queues in non-decreasing order of these priority scores.
While processing, the arbiter allocates a timeslot to queue (i, j) if

the arbiter has not already allocated another packet starting from i or
destined to j in this timeslot. Therefore, at the end of processing the
timeslot, the allocations correspond to a maximal matching between
endpoints in the bipartite graph between endpoints, where an edge
is present between (i, j) if there are packets waiting at endpoint i
destined for j. From the literature on input-queued switches, it is
well-known that any maximal matching provides 50% throughput
guarantees [13, 3]. Building upon these results as well as [30], we
state the following property of our algorithm.

THEOREM 1. For any ρ < 1, there exists Λ with ρ(Λ) = ρ such
that for any allocator,

liminf
t

E
[
∑
i j

Qi j(t)
]
≥ Nρ

2(1−ρ)
. (3)

Further, let V ≥ 1 be such that E[G2
i j]≤VE[Gi j] for all i, j (bounded

Gi j); if we allow the Fastpass arbiter to schedule (as well as transmit
through the network) twice per unit timeslot,5 then the induced
average queue-size

limsup
t

E
[
∑
i j

Qi j(t)
]
≤ Nρ(ρ +V)

2(1−ρ)
. (4)

Proof Sketch. To establish the lower bound (3) for any scheduling
algorithm, it is sufficient to consider a specific scenario of our setup.
Concretely, let the traffic matrix be uniform, i.e., Λ = [λi j] with
λi j =

ρ

(N−1) for all i 6= j and 0 when i = j; pi j = 1 for all i 6= j; and
let Gi j be Poisson variables with parameter λi j. The network can
be viewed as unit-sized packets arriving at each endpoint according
to a Poisson arrival process of rate ρ and processed (transferred by
the network) at unit rate. That is, the queue-size for each endpoint j
is bounded below by that of an M/D/1 queue with load ρ , which
is known to be bounded below by ρ

(2(1−ρ))
[31]. Therefore, the

network-wide queue-size is bounded below by Nρ

(2(1−ρ))
.

To establish an upper bound, we use the fact that the algorithm
effectively achieves a maximal matching in the weighted bipartite
graph between endpoints in each timeslot. Given this fact, and under
the assumption that Fastpass can schedule as well as transfer data
at twice the speed, this is effectively a speedup of 2 in the classical
terminology of switch scheduling. Therefore, for the Lyapunov
function (cf. [13]),

L(t) = ∑
i, j

Qi j(t)[Qi·(t)+Q· j(t)]

it can be shown using calculations similar to [30] that

E[L(t +1)−L(t)|Q(t)]≤ 4(ρ−1)
(
∑
i, j

Qi j(t)
)
+2Nρ

2 +2V Nρ.

Telescoping this inequality for t ≥ 0 and using the fact that the
system reaches equilibrium due to ergodicity, we obtain the desired
result. g

Implications. Equation (3) says that there is some (worst case) input
workload for which any allocator will have an expected aggregate
queue length at least as large as Nρ

2(1−ρ)
. Equation (4) says that with a

speedup of 2 in the network fabric, for every workload, the expected
aggregate queue length will be no larger than Nρ(ρ+V)

2(1−ρ)
. Here V is

effectively a bound on burst size; if it is small, say 1, then it is within
a factor of 2 of the lower bound! There is, however, a gap between
theory and practice here, as in switch scheduling; many workloads
observed in practice seem to require only small queues even with no
speedup.
5Equivalent to having to double the network fabric bandwidth.

	Introduction
	Fastpass Architecture
	Latency experienced by packets in Fastpass
	Deploying Fastpass

	Timeslot Allocation
	A pipelined allocator
	Theoretical guarantees

	Path Selection
	Handling Faults
	Arbiter failures
	Network failures
	Fastpass Control Protocol (FCP)

	Implementation
	Client
	Multicore Arbiter
	Timing

	Evaluation
	Throughput, queueing, and latency
	Fairness and convergence
	Arbiter performance
	Production experiments at Facebook

	Discussion
	Large deployments
	Routing packets along selected paths
	Scheduling support in NICs
	Small packet workloads

	Related Work
	Conclusion
	References

