
Learning Features by Watching Objects Move

Deepak Pathak1,2,*, Ross Girshick1, Piotr Dollár1, Trevor Darrell2, and Bharath Hariharan1

1Facebook AI Research (FAIR)
2University of California, Berkeley

Abstract

This paper presents a novel yet intuitive approach to un-
supervised feature learning. Inspired by the human visual
system, we explore whether low-level motion-based group-
ing cues can be used to learn an effective visual represen-
tation. Specifically, we use unsupervised motion-based seg-
mentation on videos to obtain segments, which we use as
‘pseudo ground truth’ to train a convolutional network to
segment objects from a single frame. Given the extensive
evidence that motion plays a key role in the development of
the human visual system, we hope that this straightforward
approach to unsupervised learning will be more effective
than cleverly designed ‘pretext’ tasks studied in the litera-
ture. Indeed, our extensive experiments show that this is the
case. When used for transfer learning on object detection,
our representation significantly outperforms previous un-
supervised approaches across multiple settings, especially
when training data for the target task is scarce.

1. Introduction
ConvNet-based image representations are extremely ver-

satile, showing good performance in a variety of recogni-
tion tasks [9, 15, 19, 50]. Typically these representations
are trained using supervised learning on large-scale image
classification datasets, such as ImageNet [41]. In contrast,
animal visual systems do not require careful manual anno-
tation to learn, and instead take advantage of the nearly in-
finite amount of unlabeled data in their surrounding envi-
ronments. Developing models that can learn under these
challenging conditions is a fundamental scientific problem,
which has led to a flurry of recent work proposing methods
that learn visual representations without manual annotation.

A recurring theme in these works is the idea of a ‘pre-
text task’: a task that is not of direct interest, but can be
used to obtain a good visual representation as a byprod-
uct of training. Example pretext tasks include reconstruct-
∗Work done during an internship at FAIR.

Figure 1. Low-level appearance cues lead to incorrect grouping
(top right). Motion helps us to correctly group pixels that move
together (bottom left) and identify this group as a single object
(bottom right). We use unsupervised motion-based grouping to
train a ConvNet to segment objects in static images and show that
the network learns strong features that transfer well to other tasks.

ing the input [4, 20, 44], predicting the pixels of the next
frame in a video stream [17], metric learning on object track
endpoints [46], temporally ordering shuffled frames from a
video [29], and spatially ordering patches from a static im-
age [8, 30]. The challenge in this line of research lies in
cleverly designing a pretext task that causes the ConvNet
(or other representation learner) to learn high-level features.

In this paper, we take a different approach that is moti-
vated by human vision studies. Both infants [42] and newly
sighted congenitally blind people [32] tend to oversegment
static objects, but can group things properly when they move
(Figure 1). To do so, they may rely on the Gestalt principle
of common fate [34, 47]: pixels that move together tend
to belong together. The ability to parse static scenes im-
proves [32] over time, suggesting that while motion-based
grouping appears early, static grouping is acquired later,
possibly bootstrapped by motion cues. Moreover, experi-
ments in [32] show that shortly after gaining sight, human
subjects are better able to name objects that tend to be seen
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in motion compared to objects that tend to be seen at rest.
Inspired by these human vision studies, we propose to

train ConvNets for the well-established task of object fore-
ground vs. background segmentation, using unsupervised
motion segmentation to provide ‘pseudo ground truth’.
Concretely, to prepare training data we use optical flow to
group foreground pixels that move together into a single ob-
ject. We then use the resulting segmentation masks as au-
tomatically generated targets, and task a ConvNet with pre-
dicting these masks from single, static frames without any
motion information (Figure 2). Because pixels with differ-
ent colors or low-level image statistics can still move to-
gether and form a single object, the ConvNet cannot solve
this task using a low-level representation. Instead, it may
have to recognize objects that tend to move and identify
their shape and pose. Thus, we conjecture that this task
forces the ConvNet to learn a high-level representation.

We evaluate our proposal in two settings. First, we test
if a ConvNet can learn a good feature representation when
learning to segment from the high-quality, manually labeled
segmentations in COCO [27], without using the class labels.
Indeed, we show that the resulting feature representation is
effective when transferred to PASCAL VOC object detec-
tion. It achieves state-of-the-art performance for representa-
tions trained without any semantic category labels, perform-
ing within 5 points AP of an ImageNet pretrained model
and 10 points higher than the best unsupervised methods.
This justifies our proposed task by showing that given good
ground truth segmentations, a ConvNet trained to segment
objects will learn an effective feature representation.

Our goal, however, is to learn features without man-
ual supervision. Thus in our second setting we train with
automatically generated ‘pseudo ground truth’ obtained
through unsupervised motion segmentation on uncurated
videos from the Yahoo Flickr Creative Commons 100 mil-
lion (YFCC100m) [43] dataset. When transferred to object
detection, our representation retains good performance even
when most of the ConvNet parameters are frozen, signif-
icantly outperforming previous unsupervised learning ap-
proaches. It also allows much better transfer learning when
training data for the target task is scarce. Our representation
quality tends to increase logarithmically with the amount of
data, suggesting the possibility of outperforming ImageNet
pretraining given the countless videos on the web.

2. Related Work

Unsupervised learning is a broad area with a large vol-
ume of work; Bengio et al. [5] provide an excellent survey.
Here, we briefly revisit some of the recent work in this area.

Unsupervised learning by generating images. Classical
unsupervised representation learning approaches, such as
autoencoders [4, 20] and denoising autoencoders [44], at-

Figure 2. Overview of our approach. We use motion cues to seg-
ment objects in videos without any supervision. We then train a
ConvNet to predict these segmentations from static frames, i.e.
without any motion cues. We then transfer the learned representa-
tion to other recognition tasks.

tempt to learn feature representations from which the orig-
inal image can be decoded with a low error. An alter-
native to reconstruction-based objectives is to train gener-
ative models of images using generative adversarial net-
works [16]. These models can be extended to produce good
feature representations by training jointly with image en-
coders [10,11]. However, to generate realistic images, these
models must pay significant attention to low-level details
while potentially ignoring higher-level semantics.

Self-supervision via pretext tasks. Instead of producing
images, several recent studies have focused on providing
alternate forms of supervision (often called ‘pretext tasks’)
that do not require manual labeling and can be algorithmi-
cally produced. For instance, Doersch et al. [8] task a Con-
vNet with predicting the relative location of two cropped
image patches. Noroozi and Favaro [30] extend this by
asking a network to arrange shuffled patches cropped from
a 3×3 grid. Pathak et al. [35] train a network to per-
form an image inpainting task. Other pretext tasks include
predicting color channels from luminance [25, 51] or vice
versa [52], and predicting sounds from video frames [7,33].
The assumption in these works is that to perform these
tasks, the network will need to recognize high-level con-
cepts, such as objects, in order to succeed. We compare our
approach to all of these pretext tasks and show that the pro-
posed natural task of object segmentation leads to a quanti-
tatively better feature representation in many cases.

Learning from motion and action. The human visual
system does not receive static images; it receives a continu-
ous video stream. The same idea of defining auxiliary pre-
text tasks can be used in unsupervised learning from videos
too. Wang and Gupta [46] train a ConvNet to distinguish be-



tween pairs of tracked patches in a single video, and pairs
of patches from different videos. Misra et al. [29] ask a
network to arrange shuffled frames of a video into a tem-
porally correct order. Another such pretext task is to make
predictions about the next few frames: Goroshin et al. [17]
predict pixels of future frames and Walker et al. [45] predict
dense future trajectories. However, since nearby frames in a
video tend to be visually similar (in color or texture), these
approaches might learn low-level image statistics instead of
more semantic features. Alternatively, Li et al. [26] use mo-
tion boundary detection to bootstrap a ConvNet-based con-
tour detector, but find that this does not lead to good feature
representations. Our intuitions are similar, but our approach
produces semantically strong representations.

Animals and robots can also sense their own motion
(proprioception), and a possible task is to predict this sig-
nal from the visual input alone [2, 14, 21]. While such cues
undoubtedly can be useful, we show that strong representa-
tions can be learned even when such cues are unavailable.

3. Evaluating Feature Representations
To measure the quality of a learned feature representa-

tion, we need an evaluation that reflects real-world con-
straints to yield useful conclusions. Prior work on unsuper-
vised learning has evaluated representations by using them
as initializations for fine-tuning a ConvNet for a particu-
lar isolated task, such as object detection [8]. The intuition
is that a good representations should serve as a good start-
ing point for task-specific fine-tuning. While fine-tuning for
each task can be a good solution, it can also be impractical.

For example, a mobile app might want to handle multiple
tasks on device, such as image classification, object detec-
tion, and segmentation. But both the app download size and
execution time will grow linearly with the number of tasks
unless computation is shared. In such cases it may be desir-
able to have a general representation that is shared between
tasks and task-specific, lightweight classifier ‘heads’.

Another practical concern arises when the amount of la-
beled training data is too limited for fine-tuning. Again, in
this scenario it may be desirable to use a fixed general rep-
resentation with a trained task-specific ‘head’ to avoid over-
fitting. Rather than emphasizing any one of these cases, in
this paper we aim for a broader understanding by evaluating
learned representations under a variety of conditions:

1. On multiple tasks: We consider object detection, im-
age classification and semantic segmentation.

2. With shared layers: We fine-tune the pretrained Con-
vNet weights to different extents, ranging from only
the fully connected layers to fine-tuning everything
(see [30] for a similar evaluation on ImageNet).

3. With limited target task training data: We reduce
the amount of training data available for the target task.

4. Learning Features by Learning to Group
The core intuition behind this paper is that training a

ConvNet to group pixels in static images into objects with-
out any class labels will cause it to learn a strong, high-
level feature representation. This is because such grouping
is difficult from low-level cues alone: objects are typically
made of multiple colors and textures and, if occluded, might
even consist of spatially disjoint regions. Therefore, to ef-
fectively do this grouping is to implicitly recognize the ob-
ject and understand its location and shape, even if it cannot
be named. Thus, if we train a ConvNet for this task, we
expect it to learn a representation that aids recognition.

To test this hypothesis, we ran a series of experiments us-
ing high-quality manual annotations on static images from
COCO [27]. Although supervised, these experiments help
to evaluate a) how well our method might work under ideal
conditions, b) how performance is impacted if the segments
are of lower quality, and c) how much data is needed. We
now describe these experiments in detail.

4.1. Training a ConvNet to Segment Objects

We frame the task as follows: given an image patch con-
taining a single object, we want the ConvNet to segment
the object, i.e., assign each pixel a label of 1 if it lies on the
object and 0 otherwise. Since an image contains multiple
objects, the task is ambiguous if we feed the ConvNet the
entire image. Instead, we sample an object from an image
and crop a box around the ground truth segment. However,
given a precise bounding box, it is easy for the ConvNet to
cheat: a blob in the center of the box would yield low loss.
To prevent such degenerate solutions, we jitter the box in
position and scale. Note that a similar training setup was
used for recent segmentation proposal methods [37, 38].

We use a straightforward ConvNet architecture that takes
as input a w × w image and outputs an s × s mask. Our
network ends in a fully connected layer with s2 outputs fol-
lowed by an element-wise sigmoid. The resulting s2 dimen-
sional vector is reshaped into an s×s mask. We also down-
sample the ground truth mask to s × s and sum the cross
entropy losses over the s2 locations to train the network.

4.2. Experiments

To enable comparisons to prior work on unsupervised
learning, we use AlexNet [24] as our ConvNet architecture.
We use s = 56 and w = 227. We use images and anno-
tations from the trainval set of the COCO dataset [27], dis-
carding the class labels and only using the segmentations.

Does training for segmentation yield good features?
Following recent work on unsupervised learning, we per-
form experiments on the task of object detection on PAS-
CAL VOC 2007 using Fast R-CNN [15].1 We use multi-

1https://github.com/rbgirshick/py-faster-rcnn

https://github.com/rbgirshick/py-faster-rcnn
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Figure 3. Our representation trained on manually-annotated seg-
ments from COCO (without class labels) compared to ImageNet
pretraining and context prediction (unsupervised) [8], evaluated
for object detection on PASCAL VOC 2007. ‘>cX’: all layers
above convX are fine-tuned; ‘All’: the entire net is fine-tuned.

scale training and testing [15]. In keeping with the motiva-
tion described in Section 3, we measure performance with
ConvNet layers frozen to different extents. We compare our
representation to a ConvNet trained on image classification
on ImageNet, and the representation trained by Doersch et
al. [8]. The latter is competitive with the state-of-the-art.
(Comparisons to other recent work on unsupervised learn-
ing appear later.) The results are shown in Figure 3.

We find that our supervised representation outperforms
the unsupervised context prediction model across all sce-
narios by a large margin, which is to be expected. Notably
though, our model maintains a fairly small gap with Ima-
geNet pretraining. This result is state-of-the-art for a model
trained without semantic category labels. Thus, given high-
quality segments, our proposed method can learn a strong
representation, which validates our hypothesis.

Figure 3 also shows that the model trained on context
prediction degrades rapidly as more layers are frozen. This
drop indicates that the higher layers of the model have be-
come overly specific to the pretext task [49], and may not
capture the high-level concepts needed for object recogni-
tion. This is in contrast to the stable performance of the
ImageNet trained model even when most of the network is
frozen, suggesting the utility of its higher layers for recog-
nition tasks. We find that this trend is also true for our rep-
resentation: it retains good performance even when most of
the ConvNet is frozen, indicating that it has indeed learned
high-level semantics in the higher layers.

Can the ConvNet learn from noisy masks? We next ask
if the quality of the learned representation is impacted by
the quality of the ground truth, which is important since the
segmentations obtained from unsupervised motion-based
grouping will be imperfect. To simulate noisy segments, we
train the representation with degraded masks from COCO.
We consider two ways of creating noisy segments: intro-
ducing noise in the boundary and truncating the mask.

Figure 4. We degrade ground truth masks to measure the impact
of segmentation quality on the learned representation. From left
to right, the original mask, dilated and eroded masks (boundary
errors), and a truncated mask (truncation can be on any side).
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Figure 5. VOC object detection accuracy using our supervised
ConvNet as noise is introduced in mask boundaries, the masks are
truncated, or the amount of data is reduced. Surprisingly, the rep-
resentation maintains quality even with large degradation.

Noise in the segment boundary simulates the foreground
leaking into the background or vice-versa. To introduce
such noise during training, for each cropped ground truth
mask, we randomly either erode or dilate the mask using
a kernel of fixed size (Figure 4, second and third images).
The boundaries become noisier as the kernel size increases.

Truncation simulates the case when we miss a part of the
object, such as when only part of the object moves. Specif-
ically, for each ground truth mask, we zero out a strip of
pixels corresponding to a fixed percentage of the bounding
box area from one of the four sides (Figure 4, last image).

We evaluate the representation trained with these noisy
ground truth segments on object detection using Fast R-
CNN with all layers up to and including conv5 frozen (Fig-
ure 5). We find that the learned representation is surpris-
ingly resilient to both kinds of degradation. Even with large,
systematic truncation (up to 50%) or large errors in bound-
aries, the representation maintains its quality.

How much data do we need? We vary the amount of
data available for training, and evaluate the resulting rep-
resentation on object detection using Fast-RCNN with all
conv layers frozen. The results are shown in the third plot
in Figure 5. We find that performance drops significantly as
the amount of training data is reduced, suggesting that good
representations will need large amounts of data.

In summary, these results suggest that training for seg-
mentation leads to strong features even with imprecise ob-
ject masks. However, building a good representation re-
quires significant amounts of training data. These observa-
tions strengthen our case for learning features in an unsu-
pervised manner on large unlabeled datasets.



Figure 6. From left to right: a video frame, the output of uNLC
that we use to train our ConvNet, and the output of our ConvNet.
uNLC is able to highlight the moving object even in potentially
cluttered scenes, but is often noisy, and sometimes fails (last two
rows). Nevertheless, our ConvNet can still learn from this noisy
data and produce significantly better and smoother segmentations.

5. Learning by Watching Objects Move
We first describe the motion segmentation algorithm we

use to segment videos, and then discuss how we use the
segmented frames to train a ConvNet.

5.1. Unsupervised Motion Segmentation

The key idea behind motion segmentation is that if there
is a single object moving with respect to the background
through the entire video, then pixels on the object will move
differently from pixels on the background. Analyzing the
optical flow should therefore provide hints about which pix-
els belong to the foreground. However, since only a part of
the object might move in each frame, this information needs
to be aggregated across multiple frames.

We adopt the NLC approach from Faktor and Irani [12].
While NLC is unsupervised with respect to video segmenta-
tion, it utilizes an edge detector that was trained on labeled
edge images [39]. In order to have a purely unsupervised
method, we replace the trained edge detector in NLC with
unsupervised superpixels. To avoid confusion, we call our
implementation of NLC as uNLC. First uNLC computes a
per-frame saliency map based on motion by looking for ei-
ther pixels that move in a mostly static frame or, if the frame
contains significant motion, pixels that move in a direction
different from the dominant one. Per-pixel saliency is then
averaged over superpixels [1]. Next, a nearest neighbor
graph is computed over the superpixels in the video using
location and appearance (color histograms and HOG [6]) as
features. Finally, it uses a nearest neighbor voting scheme
to propagate the saliency across frames.

Figure 7. Examples of segmentations produced by our ConvNet on
held out images. The ConvNet is able to identify the motile object
(or objects) and segment it out from a single frame. Masks are not
perfect but they do capture the general object shape.

We find that uNLC often fails on videos in the wild.
Sometimes this is because the assumption of there being a
single moving object in the video is not satisfied, especially
in long videos made up of multiple shots showing differ-
ent objects. We use a publicly available appearance-based
shot detection method [40] (also unsupervised) to divide the
video into shots and run uNLC separately on each shot.

Videos in the wild are also often low resolution and
have compression artifacts, which can degrade the result-
ing segmentations. From our experiments using strong su-
pervision, we know our approach can be robust to such
noise. Nevertheless, since a large video dataset comprises
a massive collection of frames, we simply discard badly
segmented frames based on two heuristics. Specifically,
we discard: (1) frames with too many (>80%) or too few
(<10%) pixels marked as foreground; (2) frames with too
many pixels (>10%) within 5% of the frame border that are
marked as foreground. In preliminary tests, we found that
results were not sensitive to the precise thresholds used.

We ran uNLC on videos from YFCC100m [43], which
contains about 700,000 videos. After pruning, we ended
up with 205,000 videos. We sampled 5-10 frames per shot
from each video to create our dataset of 1.6M images, so we
have slightly more frames than images in ImageNet. How-
ever, note that our frames come from fewer videos and are
therefore more correlated than images from ImageNet.

We stress that our approach in generating this dataset
is completely unsupervised, and does not use any form of
supervised learning in any part of the pipeline. The code
for the segmentation and pruning, together with our auto-
matically generated dataset of frames and segments, will be
made publicly available soon.



Our motion segmentation approach is far from state-of-
the-art, as can be seen by the noisy segments shown in Fig-
ure 6. Nevertheless, we find that our representation is quite
resilient to this noise (as shown below). As such, we did not
aim to improve the particulars of our motion segmentation.

5.2. Learning to Segment from Noisy Labels

As before, we feed the ConvNet cropped images, jit-
tered in scale and translation, and ask it to predict the motile
foreground object. Since the motion segmentation output is
noisy, we do not trust the absolute foreground probabilities
it provides. Instead, we convert it into a trimap representa-
tion in which pixels with a probability <0.4 are marked as
negative samples, those with a probability >0.7 are marked
as positives, and the remaining pixels are marked as “don’t
cares” (in preliminary experiments, our results were found
to be robust to these thresholds). The ConvNet is trained
with a logistic loss only on the positive and negative pixels;
don’t care pixels are ignored. Similar techniques have been
successfully explored earlier in segmentation [3, 22].

Despite the steps we take to get good segments, the
uNLC output is still noisy and often grossly incorrect, as
can be seen from the second column of Figure 6. However,
if there are no systematic errors, then these motion-based
segments can be seen as perturbations about a true latent
segmentation. Because a ConvNet has finite capacity, it will
not be able to fit the noise perfectly and might instead learn
something closer to the underlying correct segmentation.

Some positive evidence for this can be seen in the output
of the trained ConvNet on its training images (Fig. 6, third
column). The ConvNet correctly identifies the motile object
and its rough shape, leading to a smoother, more correct
segmentation than the original motion segmentation.

The ConvNet is also able to generalize to unseen images.
Figure 7 shows the output of the ConvNet on frames from
the DAVIS [36], FBMS [31] and VSB [13] datasets, which
were not used in training. Again, it is able to identify the
moving object and its rough shape from just a single frame.
When evaluated against human annotated segments in these
datasets, we find that the ConvNet’s output is significantly
better than the uNLC segmentation output as shown below:

Metric uNLC ConvNet (unsupervised)

Mean IoU (%) 13.1 24.8
Precision (%) 15.4 29.9
Recall (%) 45.8 59.3

These results confirm our earlier finding that the Con-
vNet is able to learn well even from noisy and often incor-
rect ground truth. However, the goal of this paper is not
segmentation, but representation learning. We evaluate the
learned representation in the next section.

6. Evaluating the Learned Representation
6.1. Transfer to Object Detection

We first evaluate our representation on the task of object
detection using Fast R-CNN. We use VOC 2007 for cross-
validation: we pick an appropriate learning rate for each
method out of a set of 3 values {0.001, 0.002 and 0.003}.
Finally, we train on VOC 2012 train and test on VOC 2012
val exactly once. We use multi-scale training and testing
and discard difficult objects during training.

We present results with the ConvNet parameters frozen
to different extents. As discussed in Section 3, a good repre-
sentation should work well both as an initialization to fine-
tuning and also when most of the ConvNet is frozen.

We compare our approach to ConvNet representations
produced by recent prior work on unsupervised learn-
ing [2, 8, 10, 30, 33, 35, 46, 51]. We use publicly available
models for all methods shown. Like our ConvNet represen-
tation, all models have the AlexNet architecture, but differ
in minor details such as the presence of batch normalization
layers [8] or the presence of grouped convolutions [51].

We also compare to two models trained with strong
supervision. The first is trained on ImageNet classifica-
tion. The second is trained on manually-annotated segments
(without class labels) from COCO (see Section 4).

Results are shown in Figure 8(a) (left) and Table 1 (left).
We find that our representation learned from unsupervised
motion segmentation performs on par or better than prior
work on unsupervised learning across all scenarios.

As we saw in Section 4.2, in contrast to ImageNet super-
vised representations, the representations learned by previ-
ous unsupervised approaches show a large decay in perfor-
mance as more layers are frozen, owing to the representa-
tion becoming highly specific to the pretext task. Similar
to our supervised approach trained on segmentations from
COCO, we find that our unsupervised approach trained on
motion segmentation also shows stable performance as the
layers are frozen. Thus, unlike prior work on unsupervised
learning, the upper layers in our representation learn high-
level abstract concepts that are useful for recognition.

It is possible that some of the differences between our
method and prior work are because the training data is from
different domains (YFCC100m videos vs. ImageNet im-
ages). To control for this, we retrained the model from [8]
on frames from our video dataset (see Context-videos in Ta-
ble 1). The two variants perform similarly: 33.4% mean AP
when trained on YFCC with conv5 and below frozen com-
pared to 33.2% for the ImageNet version. This confirms
that the different image sources do not explain our gains.

6.2. Low-shot Transfer

A good representation should also aid learning when
training data is scarce, as we motivated in Section 3. Fig-



Full train set 150 image set
Method All >c1 >c2 >c3 >c4 >c5 All >c1 >c2 >c3 >c4 >c5 #wins

Supervised
Imagenet 56.5 57.0 57.1 57.1 55.6 52.5 17.7 19.1 19.7 20.3 20.9 19.6 NA
Sup. Masks (Ours) 51.7 51.8 52.7 52.2 52.0 47.5 13.6 13.8 15.5 17.6 18.1 15.1 NA

Unsupervised
Jigsaw‡ [30] 49.0 50.0 48.9 47.7 45.8 37.1 5.9 8.7 8.8 10.1 9.9 7.9 NA
Kmeans [23] 42.8 42.2 40.3 37.1 32.4 26.0 4.1 4.9 5.0 4.5 4.2 4.0 0
Egomotion [2] 37.4 36.9 34.4 28.9 24.1 17.1 – – – – – – 0
Inpainting [35] 39.1 36.4 34.1 29.4 24.8 13.4 – – – – – – 0
Tracking-gray [46] 43.5 44.6 44.6 44.2 41.5 35.7 3.7 5.7 7.4 9.0 9.4 9.0 0
Sounds [33] 42.9 42.3 40.6 37.1 32.0 26.5 5.4 5.1 5.0 4.8 4.0 3.5 0
BiGAN [10] 44.9 44.6 44.7 42.4 38.4 29.4 4.9 6.1 7.3 7.6 7.1 4.6 0
Colorization [51] 44.5 44.9 44.7 44.4 42.6 38.0 6.1 7.9 8.6 10.6 10.7 9.9 0
Split-Brain Auto [52] 43.8 45.6 45.6 46.1 44.1 37.6 3.5 7.9 9.6 10.2 11.0 10.0 0
Context [8] 49.9 48.8 44.4 44.3 42.1 33.2 6.7 10.2 9.2 9.5 9.4 8.7 3
Context-videos† [8] 47.8 47.9 46.6 47.2 44.3 33.4 6.6 9.2 10.7 12.2 11.2 9.0 1
Motion Masks (Ours) 48.6 48.2 48.3 47.0 45.8 40.3 10.2 10.2 11.7 12.5 13.3 11.0 9

Table 1. Object detection AP (%) on PASCAL VOC 2012 using Fast R-CNN with various pretrained ConvNets. All models are trained on
train and tested on val using consistent Fast R-CNN settings. ‘–’ means training didn’t converge due to insufficient data. Our approach
achieves the best performance in the majority of settings. †Doersch et al. [8] trained their original context model using ImageNet images.
The Context-videos model is obtained by retraining their approach on our video frames from YFCC. This experiment controls for the
effect of the distribution of training images and shows that the image domain used for training does not significantly impact performance.
‡Noroozi et al. [30] use a more computationally intensive ConvNet architecture (>2× longer to finetune) with a finer stride at conv1,
preventing apples-to-apples comparisons. Nevertheless, their model works significantly worse than our representation when either layers
are frozen or in case of limited data and is comparable to ours when network is finetuned with full training data.
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Figure 8. Results on object detection using Fast R-CNN. (a) VOC 2012 object detection results when the ConvNet representation is frozen
to different extents. We compare to other unsupervised and supervised approaches. Left: using the full training set. Right: using only
150 training images (note the different y-axis scales). (b) Variation of representation quality (mean AP on VOC 2007 object detection with
conv5 and below frozen) with number of training frames. A few other methods are also shown. Context-videos [8] is the representation of
Doersch et al. [8] retrained on our video frames. Note that most other methods in Table 1 use ImageNet as their train set.

ure 8(a) (right) and Table 1 (right) show how we compare
to other unsupervised and supervised approaches on the task
of object detection when we have few (150) training images.
We observe that in this scenario it actually hurts to fine-
tune the entire network, and the best setup is to leave some
layers frozen. Our approach provides the best AP overall
(achieved by freezing all layers up to and including conv4)
among all other representations from recent unsupervised
learning methods by a large margin.

Note that in spite of its strong performance relative to

prior unsupervised approaches, our representation learned
without supervision on video trails both the strongly super-
vised mask and ImageNet versions by a significant margin.
We discuss this in the following subsection.

6.3. Impact of Amount of Training Data

The quality of our representation (measured by Fast
R-CNN performance on VOC 2007 with all conv layers
frozen) grows roughly logarithmically with the number of
frames used. With 396K frames (50K videos), it is already
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Figure 9. Results on image (object) classification on VOC 2007, single-image action classification on Stanford 40 Actions, and semantic
segmentation on VOC 2011. Results shown with ConvNet layers frozen to different extents (note that the metrics vary for each task).

better than prior state-of-the-art [8] trained on a million Im-
ageNet images, see Figure 8(b). With our full dataset (1.6M
frames) accuracy increases substantially. If this logarithmic
growth continues, our representation will be on par with one
trained on ImageNet if we use about 27M frames (or 3 to 5
million videos, the same order of magnitude as the number
of images in ImageNet). Note that frames from the same
video are very correlated. We expect this number could be
reduced with more algorithmic improvements.

6.4. Transfer to Other Tasks

As discussed in Section 3, a good representation should
generalize across tasks. We now show experiments for two
other tasks: image classification and semantic image seg-
mentation. For image classification, we test on both object
and action classification.

Image Classification. We experimented with image clas-
sification on PASCAL VOC 2007 (object categories) and
Stanford 40 Actions [48] (action labels). To allow compar-
isons to prior work [10, 51], we used random crops during
training and averaged scores from 10 crops during testing
(see [10] for details). We minimally tuned some hyper-
parameters (we increased the step size to allow longer train-
ing) on VOC 2007 validation, and used the same settings for
both VOC 2007 and Stanford 40 Actions. On both datasets,
we trained with different amounts of fine-tuning as before.
Results are in the first two plots in Figure 9.

Semantic Segmentation. We use fully convolutional net-
works for semantic segmentation with the default hyper-
parameters [28]. All the pretrained ConvNet models are
finetuned on union of images from VOC 2011 train set and
additional SBD train set released by Hariharan et al. [18],
and we test on the VOC 2011 val set after removing over-
lapping images from SBD train. The last plot in Figure 9
shows the performance of different methods when the num-
ber of layers being finetuned is varied.

Analysis. Like object detection, all these tasks require se-
mantic knowledge. However, while in object detection the

ConvNet is given a tight crop around the target object, the
input in these image classification tasks is the entire image,
and semantic segmentation involves running the ConvNet in
a sliding window over all locations. This difference appears
to play a major role. Our representation was trained on ob-
ject crops, which is similar to the setup for object detection,
but quite different from the setups in Figure 9. This mis-
match may negatively impact the performance of our repre-
sentation, both for the version trained on motion segmenta-
tion and the strongly supervised version. Such a mismatch
may also explain the low performance of the representation
trained by Wang et al. [46] on semantic segmentation.

Nevertheless, when the ConvNet is progressively frozen,
our approach is a strong performer. When all layers un-
til conv5 are frozen, our representation is better than other
approaches on action classification and second only to col-
orization [51] on image classification on VOC 2007 and
semantic segmentation on VOC 2011. Our higher perfor-
mance on action classification might be due to the fact that
our video dataset has many people doing various actions.

7. Discussion

We have presented a simple and intuitive approach to
unsupervised learning by using segments from low-level
motion-based grouping to train ConvNets. Our experiments
show that our approach enables effective transfer especially
when computational or data constraints limit the amount
of task-specific tuning we can do. Scaling to larger video
datasets should allow for further improvements.

We noted in Figure 6 that our network learns to refine
the noisy input segments. This is a good example of a sce-
nario where ConvNets can learn to extract signal from large
amounts of noisy data. Combining the refined, single-frame
output from the ConvNet with noisy motion cues extracted
from the video should lead to better pseudo ground truth,
and can be used by the ConvNet to bootstrap itself. We
leave this direction for future work.
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