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Abstract

Neural decoders were shown to outperform classical message passing techniques
for short BCH codes. In this work, we extend these results to much larger families of
algebraic block codes, by performing message passing with graph neural networks.
The parameters of the sub-network at each variable-node in the Tanner graph are
obtained from a hypernetwork that receives the absolute values of the current
message as input. To add stability, we employ a simplified version of the arctanh
activation that is based on a high order Taylor approximation of this activation
function. Our results show that for a large number of algebraic block codes, from
diverse families of codes (BCH, LDPC, Polar), the decoding obtained with our
method outperforms the vanilla belief propagation method as well as other learning
techniques from the literature.

1 Introduction

Decoding algebraic block codes is an open problem and learning techniques have recently been
introduced to this field. While the first networks were fully connected (FC) networks, these were
replaced with recurrent neural networks (RNNs), which follow the steps of the belief propagation
(BP) algorithm. These RNN solutions weight the messages that are being passed as part of the BP
method with fixed learnable weights.

In this work, we add compute to the message passing iterations, by turning the message graph into
a graph neural network, in which one type of nodes, called variable nodes, processes the incoming
messages with a FC network g. Since the space of possible messages is large and its underlying
structure random, training such a network is challenging. Instead, we propose to make this network
adaptive, by training a second network f to predict the weights θg of network g.

This “hypernetwork” scheme, in which one network predicts the weights of another, allows us to
control the capacity, e.g., we can have a different network per node or per group of nodes. Since
the nodes in the decoding graph are naturally stratified and since a per-node capacity is too high for
this problem, the second option is selected. Unfortunately, training such a hypernetwork still fails to
produce the desired results, without applying two additional modifications. The first modification
is to apply an absolute value to the input of network f , thus allowing it to focus on the confidence
in each message rather than on the content of the messages. The second is to replace the arctanh
activation function that is employed by the check nodes with a high order Taylor approximation of
this function, which avoids its asymptotes.

When applying learning solutions to algebraic block codes, the exponential size of the input space
can be mitigated by ensuring that certain symmetry conditions are met. In this case, it is sufficient
to train the network on a noisy version of the zero codeword. As we show, the architecture of the
hypernetwork we employ is selected such that these conditions are met.

Applied to a wide variety of codes, our method outperforms the current learning based solutions,
as well as the classical BP method, both for a finite number of iterations and at convergence of the
message passing iterations.
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2 Related Work

Over the past few years, deep learning techniques were applied to error correcting codes. This
includes encoding, decoding, and even, as shown recently in [11], designing new feedback codes.
The new feedback codes, which were designed by an RNN, outperform the well-known state of the
art codes (Turbo, LDPC, Polar) for a Gaussian noise channel with feedback.

Fully connected neural networks were used for decoding polar codes [7]. For short polar codes,
e.g., n = 16 bits, the obtained results are close to the optimal performance obtained with maximum
a posteriori (MAP) decoding. Since the number of codewords is exponential in the number of
information bits k, scaling the fully connected network to larger block codes is infeasible.

Several methods were introduced for decoding larger block codes (n > 100). For example in [17]
the belief propagation (BP) decoding method is unfolded into a neural network in which weights
are assigned to each variable edge. The same neural decoding technique was then extended to the
min-sum algorithm, which is more hardware friendly [16]. In both cases, an improvement is shown
in comparison to the baseline BP method.

Another approach was presented for decoding Polar codes [5]. The polar encoding graph is partitioned
into sub-blocks, and the decoding is performed to each sub-block separately. In [12] an RNN decoding
scheme is introduced for convolutional and Turbo codes, and shown to achieve close to the optimal
performance, similar to the classical convolutional codes decoders Viterbi and BCJR.

Our work decodes block codes, such as LDPC, BCH, and Polar. The most relevant comparison is
with [18], which improve upon [17]. A similar method was applied to Polar code in [21], and another
related work on Polar codes [5] introduced a non-iterative and parallel decoder. Another contribution
learns the nodes activations based on components from existing decoders (BF, GallagerB, MSA,
SPA) [22]. In contrast, our method learns the node activations from scratch.

The term hypernetworks is used to refer to a framework in which a network f is trained to predict
the weights θg of another network g. Earlier work in the field [14, 20] learned weights of specific
layers in the context of tasks that required a dynamic behavior. Fuller networks were trained to
predict video frames and stereo views [10]. The term itself was coined in [8], which employed such
meta-functions in the context of sequence modeling. A Bayesian formulation was introduced in a
subsequent work [15]. The application of hyper networks as meta-learners in the context of few-shot
learning was introduced in [2].

An application of hypernetworks for searching over the architecture space, where evaluation is done
with predicted weights conditioned on the architecture, rather than performing gradient descent with
that architecture was proposed in [4]. Recently, graph hypernetworks were introduced for searching
over possible architectures [23]. Given an architecture, a graph hypernetwork that is conditioned
on the graph of the architecture and shares its structure, generates the weights of the network with
the given architecture. In our work, a non-graph network generates the weights of a graph network.
To separate between the two approaches, we call our method hyper-graph-network and not graph
hypernetwork.

3 Background

We consider codes with a block size of n bits. It is defined by a binary generator matrix G of size
k × n and a binary parity check matrix H of size (n− k)× n.

The parity check matrix entails a Tanner graph, which has n variable nodes and (n− k) check nodes,
see Fig. 1(a). The edges of the graph correspond to the on-bits in each column of the matrix H . For
notational convenience, we assume that the degree of each variable node in the Tanner graph, i.e., the
sum of each column of H , has a fixed value dv .

The Tanner graph is unrolled into a Trellis graph. This graph starts with n variable nodes and is
then composed of two types of columns, variable columns and check columns. Variable columns
consist of variable processing units and check columns consist of check processing units. dv variable
processing units are associate with each received bit, and the number of processing units in the
variable column is, therefore, E = dvn. The check processing units are also directly linked to the
edges of the Tanner graph, where each parity check corresponds to a row of H . Therefore, the check
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(a) (b)

Figure 1: (a) The Tanner graph for a linear block code with n = 5, k = 2 and dv = 2. (b) The
corresponding Trellis graph, with two iteration.

columns also have E processing units each. The Trellis graph ends with an output layer of n variable
nodes. See Fig. 1(b).

Message passing algorithms operate on the Trellis graph. The messages propagate from variable
columns to check columns and from check columns to variable columns, in an iterative manner. The
leftmost layer corresponds to a vector of log likelihood ratios (LLR) l ∈ Rn of the input bits:

lv = log
Pr (cv = 1|yv)

Pr (cv = 0|yv)
,

where v ∈ [n] is an index and yv is the channel output for the corresponding bit cv , which we wish to
recover.

Let xj be the vector of messages that a column in the Trellis graph propagates to the next column. At
the first round of message passing j = 1, and similarly to other cases where j is odd, a variable node
type of computation is performed, in which the messages are added:

xje = xj(c,v) = lv +
∑

e′∈N(v)\{(c,v)}

xj−1e′ , (1)

where each variable node is indexed the edge e = (c, v) on the Tanner graph and N(v) =
{(c, v)|H(c, v) = 1}, i.e, the set of all edges in which v participates. By definition x0 = 0
and when j = 1 the messages are directly determined by the vector l.

For even j, the check layer performs the following computations:

xje = xj(c,v) = 2arctanh

 ∏
e′∈N(c)\{(c,v)}

tanh

(
xj−1e′

2

) (2)

where N(c) = {(c, v)|H(c, v) = 1} is the set of edges in the Tanner graph in which row c of the
parity check matrix H participates.

A slightly different formulation is provided by [18]. In this formulation, the tanh activation is moved
to the variable node processing units. In addition, a set of learned weights we are added. Note that
the learned weights are shared across all iterations j of the Trellis graph.

xje = xj(c,v) = tanh

1

2

lv +
∑

e′∈N(v)\{(c,v)}

we′x
j−1
e′

 , if j is odd (3)

xje = xj(c,v) = 2arctanh

 ∏
e′∈N(c)\{(c,v)}

xj−1e′

 if j is even (4)
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As mentioned, the computation graph alternates between variable columns and check columns, with
L layers of each type. The final layer marginalizes the messages from the last check layer with the
logistic (sigmoid) activation function σ, and output n bits. The vth bit output at layer 2L+ 1, in the
weighted version, is given by:

ov = σ

lv +
∑

e′∈N(v)

w̄e′x
2L
e′

 , (5)

where w̄e′ is a second set of learnable weights.

4 Method

We suggest further adding learned components into the message passing algorithm. Specifically, we
replace Eq. 3 (odd j) with the following equation:

xje = xj(c,v) = g(lv, x
j−1
N(v, c), θ

j
g), (6)

where xjN(v, c) is a vector of length dv − 1 that contains the elements of xj that correspond to the
indices N(v) \ {(c, v)}, and θjg has the weights of network g at iteration j.

In order to make g adaptive to the current input messages at every variable node, we employ a
hypernetwork scheme and use a network f to determine its weights.

θjg = f(|xj−1|, θf ) (7)

where θf are the learned weights of network f . Note that g is fixed to all variable nodes at the same
column. We have also experimented with different weights per variable (further conditioning g on
the specific messages xj−1N(v, c) for the variable with index e = (v, c)). However, the added capacity
seems detrimental.

The adaptive nature of the hypernetwork allows the variable computation, for example to neglect part
of the inputs of g, in case the input message l contains errors.

Note that the messages xj−1 are passed to f in absolute value (Eq. 7). The absolute value of the
messages is sometimes seen as measure for the correctness, and the sign of the message as the value
(zero or one) of the corresponding bit [19]. Since we want the network f to focus on the correctness
of the message and not the information bits, we remove the signs.

The architecture of both f and g does not contain bias terms and employs the tanh activations. The
network g has p layers, i.e., θg = (W1, ...,Wp), for some weight matrices Wi. The network f ends
with p linear projections, each corresponding to one of the layers of network g. As noted above, if a
set of symmetry conditions are met, then it is sufficient to learn to correct the zero codeword. The link
between the architectural choices of the networks and the symmetry conditions is studied in Sec. 5.

Another modification is being done to the columns of the check variables in the Trellis graph. For
even values of j, we employ the following computation, instead of Eq. 4.

xje = xj(c,v) = 2

q∑
m=0

1

2m+ 1

 ∏
e′∈N(c)\{(c,v)}

xj−1e′

2m+1

(8)

in which arctanh is replaced with its Taylor approximation of degree q. The approximation is
employed as a way to stabilize the training process. The arctanh activation, has asymptotes in
x = 1,−1, and training with it often explodes. Its Taylor approximation is a well-behaved polynomial,
see Figure 2.

4.1 Training

In addition to observing the final output of the network, as given in Eq. 5, we consider the following
marginalization for each iteration where j is odd: ojv = σ

(
lv +

∑
e′∈N(v) w̄e′x

j
e′

)
. Similarly to [18],
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Figure 2: Taylor Approximation of the arctanh activation function.

we employ the cross entropy loss function, which considers the error after every check node iteration
out of the L iterations:

L = − 1

n

L∑
h=0

n∑
v=1

cv log(o2h+1
v ) + (1− cv) log(1− o2h+1

v ) (9)

where cv is the ground truth bit. This loss simplifies, when learning the zero codeword, to
− 1

n

∑L
h=0

∑n
v=1 log(1− o2h+1

v ).

The learning rate was 1e− 4 for all type of codes, and the Adam optimizer [13] is used for training.
The decoding network has ten layers which simulates L = 5 iterations of a modified BP algorithm.

5 Symmetry conditions

For block codes that maintain certain symmetry conditions, the decoding error is independent of the
transmitted codeword [19, Lemma 4.92]. A direct implication is that we can train our network to
decode only the zero codeword. Otherwise, training would need to be performed for all 2k words.
Note that training with the zero codeword should give the same results as training with all 2k words.

There are two symmetry conditions.

1. For a check node with index (c, v) at iteration j and for any vector b ∈ {0, 1}dv−1

Φ
(
b>xj−1N( v,c)

)
=

(
K∏
1

bk

)
Φ
(
xj−1N( v,c)

)
(10)

where xjN( v,c) is a vector of length dv − 1 that contains the elements of xj that correspond to
the indices N(c) \ {(c, v)} and Φ is the activation function used, e.g., arctanh or the truncated
version of it.

2. For a variable node with index (c, v) at iteration j, which performs computation Ψ

Ψ
(
−lv,−xj−1N(v, c)

)
= −Ψ

(
lv, x

j−1
N(v, c)

)
(11)

In the proposed architecture, Ψ is a FC neural network (g) with tanh activations and no bias
terms.

Our method, by design, maintains the symmetry condition on both the variable and the check nodes.
This is verified in the following lemmas.

Lemma 1. Assuming that the check node calculation is given by Eq. (8) then the proposed architecture
satisfies the first symmetry condition.
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Proof. In our case the activation function Φ is Taylor approximation of arctanh. Let the input
message at j be xjN( v,c) =

(
xj1, . . . , x

j
K

)
for K = dv − 1. We can verify that:

xj(b1x
j−1
1 , ..., bKx

j−1
K ) = 2

q∑
m=0

1

2m+ 1
(

K∏
k=1

bkx
j−1
k )2m+1 = 2(

K∏
k=1

bk)

q∑
m=0

1

2m+ 1
(

K∏
k=1

xj−1k )2m+1

= (

K∏
k=1

bk)xj(x
j−1
1 , ..., xj−1K )

where the second equality holds since 2m+ 1 is odd.

Lemma 2. Assuming that the variable node calculation is given by Eq. (6) and Eq. (7), g does not
contain bias terms and employs the tanh activation, then the proposed architecture satisfies the
variable symmetry condition.

Proof. Let K = dv − 1 and xjN(v, c) =
(
xj1, . . . , x

j
K

)
. In the proposed architecture for any odd

j > 0, Ψ is given as

g
(
lv, x

j−1
1 , . . . , xj−1K , θjg

)
= tanh

(
W>p ... tanh

(
W>2 tanh

(
W>1

(
lv, x

j−1
1 , . . . , xj−1K

))))
(12)

where p is the number of layers and the weights W1, ...,Wp constitute θjg = f(|xj−1|, θf ).

For real valued weights θlhsg and θrhsg , since tanh(x) is an odd function for any real value input, if

θlhsg = θrhsg then g
(
lv, x

j−1
1 , . . . , xj−1K , θlhsg

)
= −g

(
−lv,−xj−11 , . . . ,−xj−1K , θrhsg

)
. In our case,

θlhsg = f(|xj−1|, θf ) = f(| − xj−1|, θf ) = θrhsg .

6 Experiments

In order to evaluate our method, we train the proposed architecture with three classes of
linear block codes: Low Density Parity Check (LDPC) codes [6], Polar codes [1] and
Bose–Chaudhuri–Hocquenghem (BCH) codes [3]. All generator matrices and parity check ma-
trices are taken from [9].

Training examples are generated as a zero codeword transmitted over an additive white Gaussian
noise. For validation, we use the generator matrix G, in order to simulate valid codewords. Each
training batch contains examples with different Signal-To-Noise (SNR) values.

The hyperparameters for each family of codes are determined by practical considerations. For Polar
codes, which are denser than LDPC codes, we use a batch size of 90 examples. We train with SNR
values of 1dB, 2dB, .., 6dB, where from each SNR we present 15 examples per single batch. For
BCH and LDPC codes, we train for SNR ranges of 1− 8dB (120 samples per batch). In our results
we report, the test error up to an SNR of 6dB, since evaluating the statistics for higher SNRs in a
reliable way requires the evaluation of a large number of test samples (recall that in train, we only
need to train on a noisy version of a single codeword). However, for BCH codes, which are the focus
of the current literature, we extend the tests to 8dB in some cases.

In our experiments, the order of the Taylor series of arctanh is set to q = 1005. The network f has
four layers with 32 neurons at each layer. The network g has two layer with 16 neurons at each layer.
For BCH codes, we also tested a deeper configuration in which the network f has four layers with
128 neurons at each layer.

The results are reported as bit error rates (BER) for different SNR values (dB). Fig. 3 shows the
results for sample codes, and Tab. 1 lists results for more codes. As can be seen in the figure for
Polar(128,96) code with five iteration of BP we get an improvement of 0.48dB over [18]. For LDPC
MacKay(96,48) code, we get an improvement of 0.15dB. For the BCH(63,51) with large f we get
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Table 1: A comparison of the negative natural logarithm of Bit Error Rate (BER) for three SNR
values of our method with literature baselines. Higher is better.

Method BP [18] Ours Ours deeper f

4 5 6 4 5 6 4 5 6 4 5 6

— after five iterations —
Polar (63,32) 3.52 4.04 4.48 4.14 5.32 6.67 4.25 5.49 7.02 — — —
Polar (64,48) 4.15 4.68 5.31 4.77 6.12 7.84 4.91 6.48 8.41 — — —
Polar (128,64) 3.38 3.80 4.15 3.73 4.78 5.87 3.89 5.18 6.94 — — —
Polar (128,86) 3.80 4.19 4.62 4.37 5.71 7.19 4.57 6.18 8.27 — — —
Polar (128,96) 3.99 4.41 4.78 4.56 5.98 7.53 4.73 6.39 8.57 — — —
LDPC (49,24) 5.30 7.28 9.88 5.49 7.44 10.47 5.76 7.90 11.17 — — —
LDPC (121,60) 4.82 7.21 10.87 5.12 7.97 12.22 5.22 8.29 13.00 — — —
LDPC (121,70) 5.88 8.76 13.04 6.27 9.44 13.47 6.39 9.81 14.04 — — —
LDPC (121,80) 6.66 9.82 13.98 6.97 10.47 14.86 6.95 10.68 15.80 — — —
MacKay (96,48) 6.84 9.40 12.57 7.04 9.67 12.75 7.19 10.02 13.16 — — —
CCSDS (128,64) 6.55 9.65 13.78 6.82 10.15 13.96 6.99 10.57 15.27 — — —
BCH (31,16) 4.63 5.88 7.60 4.74 6.25 8.00 5.05 6.64 8.80 4.96 6.63 8.80
BCH (63,36) 3.72 4.65 5.66 3.94 5.27 6.97 3.96 5.35 7.20 4.00 5.42 7.34
BCH (63,45) 4.08 4.96 6.07 4.37 5.78 7.67 4.48 6.07 8.45 4.41 5.91 7.91
BCH (63,51) 4.34 5.29 6.35 4.54 5.98 7.73 4.64 6.08 8.16 4.67 6.19 8.22

— at convergence —
Polar (63,32) 4.26 5.38 6.50 4.22 5.59 7.30 4.59 6.10 7.69 — — —
Polar (64,48) 4.74 5.94 7.42 4.70 5.93 7.55 4.92 6.44 8.39 — — —
Polar (128,64) 4.10 5.11 6.15 4.19 5.79 7.88 4.52 6.12 8.25 — — —
Polar (128,86) 4.49 5.65 6.97 4.58 6.31 8.65 4.95 6.84 9.28 — — —
Polar (128,96) 4.61 5.79 7.08 4.63 6.31 8.54 4.94 6.76 9.09 — — —
LDPC (49,24) 6.23 8.19 11.72 6.05 8.34 11.80 6.23 8.54 11.95 — — —
MacKay (96,48) 8.15 11.29 14.29 8.66 11.52 14.32 8.90 11.97 14.94 — — —
BCH (63,36) 4.03 5.42 7.26 4.15 5.73 7.88 — — — 4.29 5.91 8.01
BCH (63,45) 4.36 5.55 7.26 4.49 6.01 8.20 — — — 4.64 6.27 8.51
BCH (63,51) 4.58 5.82 7.42 4.64 6.21 8.21 — — — 4.80 6.44 8.58

an improvement of 0.45dB and with small f we get a similar improvement of 0.43dB. Furthermore,
for every number of iterations, our method obtains better results then [18]. We can also observe
that our method with 5 iteration achieve the same results as [18] with 50 iteration, for BCH(63,51)
and Polar(128,96) codes. Similar improvements were also observe for other BCH and Polar codes.
Fig. 3(e) provides experiments for large and non-regular LDPC codes - WARN(384, 256) and TU-
KL(96, 48). As can be seen, our method improves the results, even in non-regular codes where the
degree varies. Note that we learned just one hypernetwork g, which corresponds to the maximal
degree and we discard irrelevant outputs for nodes with lower degrees. In Tab. 1 we present the
negative natural logarithm of the BER. For the 15 block codes tested, our method get better results
then the BP and [18] algorithms. This results stay true for the convergence point of the algorithms,
i.e. when we run the algorithms with 50 iteration.

To evaluate the contribution of the various components of our method, we ran an ablation analysis.
We compare (i) our complete method, (ii) a method in which the parameters of g are fixed and g
receives and additional input of |xj−1|, (iii) a similar method where the number of hidden units in g
was increased to have the same amount of parameters of f and g combined, (iv) a method in which f
receives the xj−1 instead of the absolute value of it, (v) a variant of our method in which arctanh
replaces its Taylor approximation, and (vi) a similar method to the previous one, in which gradient
clipping is used to prevent explosion. The results, reported in Tab. 2 demonstrate the advantage of
our complete method. We can observe that without hypernetwork and without the absolute value in
Eq. 7, the results degrade below those of [18]. We can also observe that for (ii), (iii) and (iv) the
method reaches the same low quality performance. For (v) and (vi), the training process explodes
and the performance is equal to a random guess. In (vi), we train our method while clipping the
arctanh at multiple threshold values (TH = 0.5, 1, 2, 4, 5, applied to both the positive and negative
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Table 2: Ablation analysis. The negative natural logarithm of BER results of our complete method
are compared with alternative methods. Higher is better.

Code BCH (31,16) BCH (63,45) BCH (63,51)

Variant/SNR 4 6 4 6 4 6

(i) Complete method 4.96 8.80 4.41 7.91 4.67 8.22
(ii) No hypernetwork 2.94 3.85 3.54 4.76 3.83 5.18
(iii) No hypernetwork, higher capacity 2.94 3.85 3.54 4.76 3.83 5.18
(iv) No abs in Eq. 7 2.86 3.99 3.55 4.77 3.84 5.20
(v) Not truncating arctanh 0.69 0.69 0.69 0.69 0.69 0.69
(vi) Gradient clipping 0.69 0.69 0.69 0.69 0.69 0.69

[18] 4.74 8.00 3.97 7.10 4.54 7.73
[18] with truncated arctanh 4.78 8.24 4.34 7.34 4.53 7.84

sides, multiple block codes BCH(31,16), BCH(63,45), BCH(63,51), LDPC (49,24), LDPC (121,80),
POLAR(64,32), POLAR(128,96), L = 5 iterations). In all cases, the training exploded, similar to the
no-threshold vanilla arctanh (v). In order to understand this, we observe the values when arctanh is
applied at initialization for our method and for [17, 18]. In [17, 18], which are initialized to mimic the
vanilla BP, the activations are such that the maximal arctanh value at initialization is 3.45. However
in our case, in many of the units, the value explodes at infinity. Clipping does not help, since for any
threshold value, the number of units that are above the threshold (and receive no gradient) is large.
Since we employ hypernetworks, the weights θjg of the network g are dynamically determined by the
network f and vary between samples, making it challenging to control the activations g produces.
This highlights the critical importance of the Taylor approximation for the usage of hypernetworks in
our setting. The table also shows that for most cases, the method of [18] slightly benefits from the
usage of approximated arctanh.

7 Conclusions

We presents graph networks in which the weights are a function of the node’s input, and demonstrate
that this architecture provides the adaptive computation that is required in the case of decoding block
codes. Training networks in this domain can be challenging and we present a method to avoid gradient
explosion that seems more effective, in this case, than gradient clipping. By carefully designing our
networks, important symmetry conditions are met and we can train efficiently. Our results go far
beyond the current literature on learning block codes and we present results for a large number of
codes from multiple code families.

Acknowledgments

We thank Sebastian Cammerer and Chieh-Fang Teng for the helpful discussion and providing code for
deep polar decoder. The contribution of Eliya Nachmani is part of a Ph.D. thesis research conducted
at Tel Aviv University.

8



(a) (b)
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(e)

Figure 3: BER for various values of SNR for various codes. (a) Polar (128,96), (b) LDPC
MacKay(96,48), (c) BCH (63,51), (d) BCH(63,51) with a deeper network f , (e) Large and non-regular
LDPC codes: WRAN(384,256) and TU-KL(96,48).
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