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ABSTRACT

Production of high fidelity spatial audio applications re-
quires individual head-related transfer functions (HRTFs).
As the acquisition of HRTF is an elaborate process, interest
lies in interpolating full length HRTF from sparse samples.
Ear-alignment is a recently developed pre-processing tech-
nique, shown to reduce an HRTF’s spherical harmonics or-
der, thus permitting sparse sampling over fewer directions.
This paper describes the application of two methods for
ear-aligned HRTF interpolation by sparse sampling: Orthog-
onal Matching Pursuit and Principal Component Analysis.
These methods consist of generating unique vector sets for
HRTF representation. The methods were tested over an
HRTF dataset, indicating that interpolation errors using small
sampling schemes may be further reduced by up to 5 dB in
comparison with spherical harmonics interpolation.

Index Terms— Spatial audio, head-related transfer func-
tions (HRTFs), spherical-harmonics, principal component
analysis, orthogonal matching pursuit.

1. INTRODUCTION

Spatial audio synthesis requires an accurate head-related
transfer function (HRTF) - the acoustic transfer function
from a sound source to a listener’s ear. Generic HRTFs such
as the ones measured on dummy heads are often used. How-
ever, generic HRTFs often produce poorer results in terms
of localization and externalization. Superior spatial audio
experiences require individual HRTFs, specifically acquired
for a single human listener over a large number of directions.
A disadvantage of individually measured HRTFs is their ac-
quisition, being an elaborate and timely process requiring an
expensive measurement setup [1–3].

The acquisition of HRTFs may be simplified by obtain-
ing a sparsely sampled HRTF over a few measurement points.
The full length HRTF is then interpolated from the samples.
One such prominent approach is representing the HRTF us-
ing a linear combination of spherical harmonics (SH). Most
of the energy is typically contained in the lower SH orders.
Thus, the representation may be truncated to include only a

small number of low orders, while still maintaining low inter-
polation errors [4–7]. Lower SH order required for the repre-
sentation, leads to fewer sparse directions required for mea-
surement. Once a representation is obtained, the HRTF may
be interpolated to any desired directions, or further estimated
by different methods [8].

Various pre-processing methods were proposed for SH or-
der reduction by concentrating most of the contained energy
at low orders [9, 10]. The recently developed ear-alignment
method was shown to be especially effective [11]. In this
method, the HRTF is phase corrected to each of the subject’s
ears, rather than the center of its head, as the reference loca-
tion. The effectiveness of the ear-alignment pre-processing
method provides an opportunity for the additional improve-
ment of HRTF sparse sampling.

This paper presents methods for further reducing the re-
quired sparse measurements of ear-aligned HRTFs. The first
method employs an Orthogonal Matching Pursuit (OMP) al-
gorithm over the SH domain. This method consists of repre-
senting the HRTF by any subset of the full series. The sec-
ond method consists of analyzing an existing HRTF dataset
by Principal Component Analysis (PCA). This analysis gen-
erates a unique set of spatial vectors which constitutes a best
fit to the dataset. The vectors are then used for representa-
tion and interpolation in place of spherical harmonics. Both
methods require a training phase in which the vector sets are
assembled. Early application of PCA to HRTF data was per-
formed by Kistler and Wightman, who also provide an exten-
sive overview of the method [12]. A recent overview of HRTF
interpolation by PCA is given by Xie [4]. Various studies had
found PCA to be effective in HRTF representation and esti-
mation [13–15]. Existing PCA applications to HRTF interpo-
lation involve non ear-aligned HRTFs.

The results presented here indicate that further reduction
of HRTFs sparse sample directions may be achieved. Signifi-
cant reduction is obtained by PCA, while OMP does not offer
an improvement in terms of sparse sampling. However, OMP
was found to have potential for an efficient representation.
Both methods may be integrated in existing HRTF measure-
ment processes by performing a training phase.



2. HRTF DECOMPOSITION AND INTERPOLATION

This section describes the interpolation of an HRTF using an
arbitrary vector basis. Consider an HRTF, H(k,Ω), where k
is the wave number, Ω = (θ, φ) is the angular direction, θ is
the elevation angle and φ is the azimuth angle. The HRTF
may be represented by a basis of complex spherical functions
{v1(Ω), v2(Ω), . . .}. It is now assumed that the HRTF is of
a limited order over the basis, and is densely sampled at Q
directions. The representation therefore consists of a sum of
L basis elements and is formulated in matrix form:

h = Vw, (1)

where h = [H(k,Ω1), . . . ,H(k,ΩQ)]
T is a Q × 1 vector

of HRTF samples over Q directions, w is the L × 1 HRTF
coefficients vector and V is a Q× L matrix consisting of the
first L basis elements evaluated at Q directions, defined by its
qth row as {V}q = [v1(Ωq), . . . , vL(Ωq)].

Provided that Q satisfies Q ≥ L, the coefficients w may
be calculated from the samples by multiplying Eq. (1) by the
pseudo-inverse of matrix V, defined as V† = (VHV)−1VH ,
where (·)H denotes the Hermitian operator:

w = V†h. (2)

For a sparsely sampled HRTF at Q̃ directions, h̃, assum-
ing Q̃ ≥ L, each of the column vectors in V are sparse sam-
pled to obtain Ṽ, a Q̃ × L sparse matrix. The coefficients ŵ
can be computed from the sparse samples:

ŵ = Ṽ†h̃. (3)

The HRTF may be interpolated back to Q directions by
reformulating Eq. (1):

ĥ = Vŵ, (4)

where ĥ is the interpolated HRTF. The interpolation error per
frequency is defined as:

ε(f) = 10 log10

‖h− ĥ‖2

‖h‖2
. (5)

The process of interpolation refers to the estimation of the
densely sampled h, given sparse samples h̃ and basis V. Note
that the interpolation may suffer from errors if the number of
basis vectors, L, or the number of sparse sample, Q̃, is too
small.

3. METHODS FOR HRTF INTERPOLATION

The following subsections describe methods for sparse HRTF
interpolation using different vector sets. Each method pro-
vides an alternative definition of matrix V for Eqs. (2)–(4).

3.1. Spherical Harmonics Truncation

Spherical harmonics are commonly used for HRTF represen-
tation. An HRTF of limited order N is represented by a finite
SH expansion. The representation is performed by Eq. (2).
The matrix V consists of L = (N + 1)2 vectors, defined
by its qth row as: {V}q = [Y 0

0 (Ωq), Y −11 (Ωq) . . . Y N
N (Ωq)],

where Y m
n (Ω) is the SH function of order n and degree m.

Typically, Q ≥ (N + 1)2 may no longer be satisfied at
high frequencies. In such cases, the HRTF’s representation is
truncated. The sparse representation is obtained by Eq. (3).

3.2. Orthogonal Matching Pursuit in the Spherical
Harmonics Domain

Orthogonal Matching Pursuit (OMP) is an iterative algo-
rithm for the sparse approximation of a signal by a set of
vectors [16]. Each iteration consists of selecting a new vec-
tor from the set. This vector is appended to all previously
selected vectors, termed “dictionary”, which are used to ap-
proximate the signal. With each successive iteration, the
dictionary expands and the approximation error decreases.

The OMP algorithm is used here to find the most efficient
representation of an HRTF by a limited number of SH. OMP
cherry-picks the SH of various non-consecutive orders and
degrees which best represent the signal. This is opposed to
SH truncation, described in Sec. 3.1, in which SH of all or-
ders and degrees are used up to a predefined order. The coef-
ficients are obtained by Eq. (2) using the matrix V defined by
its qth row as {V}q = [Y m1

n1
(Ωq), Y m2

n2
(Ωq) . . . Y mL

nL
(Ωq)],

where (n1,m1), . . . , (nL,mL) are the SH coefficients indices
selected by the algorithm.

3.3. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical method
for the efficient representation of a data set assumed to be
correlated [17]. The method generates a vector set in which
each consecutive element contributes the most to the remain-
ing data fit, while being orthogonal to all preceding elements.

Let the P ×Q matrix D be the data matrix, consisting of
a set of P HRTFs of length Q. The matrix is decomposed by
SVD as D = UΣVT , where the set of orthogonal column
vectors composing V are the PCA principal directions span-
ning the rows of D, and UΣ are the principal components.
Note that often Q � P , thus the set does not span the entire
CQ space.

The decomposition coefficients of a sparse sampled HRTF
h̃, are obtained by the truncated and sparse sampled V, as
described in Eq. (3). Interpolation to Q directions is then
performed by Eq. (4). Note that as common in PCA analysis,
matrix D is mean-centered, and so is ĥ. Therefore, the mean
vector should be added in Eq. (4).
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Fig. 1: Interpolation error averaged over 36 test set participants compared between the three methods, for both simulated (top)
and measured (bottom) HRTFs. Standard deviations are shown in shaded areas. The interpolation used Lebedev sampling
schemes of different sizes. Note that in some plots, SH truncation and OMP traces overlap.

4. SPARSE INTERPOLATION - PERFORMANCE
EVALUATION

This section presents a performance evaluation of interpo-
lation methods based on sparse sampling, compared to the
benchmark method of SH truncation.

4.1. Methodology

The evaluation was performed using simulated and measured
HRTFs of the HUTUBS dataset, using 90 human subjects
for whom anthropometric data was supplied. The simulated
HRTFs consist of a Q = 1730 Lebedev grid and the mea-
sured HRTFs consist of a Q = 440 non-standard grid as de-
scribed in [18]. The entire dataset was ear-aligned by pre-
processing [11], using the head width provided per subject.
The 90 subjects were divided to two groups: the training set,
containing 54 random subjects (60% of the entire dataset),
and the test set, containing the remaining 36 subjects.

The training set was used by OMP and PCA algorithms,
per frequency, for generating unique vector sets as described
in Secs. 3.2 and 3.3. In OMP, sets were created by obtaining
the coefficients using Eq. (2), averaging over the training set,
and selecting the SH with the largest average coefficient per
iteration. In PCA, the elements were generated and ordered
by the corresponding eigenvalue magnitude. For simple SH
truncation, no processing of the training set was required, as
the representation vector set is the standard SH basis.

Interpolation errors were calculated on the test set. Each
HRTF was down sampled from the original directions using
sparse Lebedev schemes of sizes Q̃ = 14 − 50. The coeffi-
cients ŵ were estimated for each vector set using Eq. (3), and

the HRTFs were interpolated to the original directions using
Eq. (4). The interpolation error may also be affected by the
number of elements, or basis vectors used. The number that
generated the lowest error was selected per each method and
sampling scheme.

4.2. Results

Average interpolation errors over the test set by all three meth-
ods are shown in Fig. 1. The total number of PCA elements is
limited by the training set size (here, 54), while the SH basis
is infinite. Thus, denser sampling schemes would have per-
mitted more SH elements but would not have affected PCA.

Fig. 1 shows that PCA interpolation consistently obtained
lower errors than SH truncation: the average PCA interpola-
tion errors over the 4− 12 kHz frequency range are 5− 6 dB
(simulations) and 2− 4 dB (measurements) lower. These dif-
ferences diminish at higher frequencies, and with denser sam-
pling schemes. Contrarily, OMP interpolation produces only
a negligible difference. In some cases of SH representation,
the standard sequential SH basis is actually the optimal, and
so SH truncation and OMP produce identical results.

4.3. Discussion

The results demonstrate that PCA may provide a more effec-
tive representation than SH, even with ear-alignment. Typi-
cally, each consecutive PCA element is of a lesser importance,
as opposed to SH representation, where significant energy can
be found at high orders. Subsequently, PCA’s advantage over
SH truncation may diminish as more sample points and el-
ements are used, as shown for the measured data in Fig. 1.



5 10 15

Frequency [kHz]

-30

-20

-10

0
0 

[d
B

]

SH
OMP

Fig. 2: Interpolation error averaged over the test set, calcu-
lated with a 302 points Lebedev grid and limited to 121 re-
construction basis vectors. Standard deviations are shown in
shaded areas. OMP was trained up to SH order 16.

Rather than using more elements, PCA performance may be
further improved using larger training sets. Additional inter-
polation error reductions were observed in preliminary exper-
iments with training sets expanded from 50 to 80 participants.

Despite obtaining lower interpolation errors, PCA has
several disadvantages. The interpolation is limited to the
original directions acquired for the training set, as these are
the locations in which the PCA elements are evaluated. This
is opposed to SH interpolation, where the elements may be
evaluated numerically in any direction. Theoretically, this
limitation may be overcome by interpolating the elements to
additional directions, an approach not attempted here. Fur-
thermore, PCA requires a training phase, as opposed to SH
truncation. From a computational perspective, training the
PCA’s algorithm is negligible. However, several dozens of
full length HRTFs must be acquired for the training. There-
fore, integrating PCA in a measurement process is worthwhile
only if a large number of HRTFs is planned to be acquired. In
addition, the compatibility of PCA components to different
datasets was not explored. In case PCA elements may not
be used across different sets, a separate training process is
required for each. Lastly, the standard deviation of the PCA
interpolation error was ∼ 0.5 − 1 dB higher than that of SH
truncation. This is to be expected, as per definition PCA is
most effective for correlated data, and less effective for out-
liers. Therefore, PCA may not be suitable for measurement
processes where great variability among subjects is expected.

Note that this study only applied PCA across listeners in
the frequency domain. PCA application to ear-aligned HRTFs
across frequencies and across directions may also be worth
exploring.

The interpolation errors obtained by OMP using sparse
sampling schemes do not offer a significant improvement
over SH truncation. It is only with much larger sampling
schemes that an improvement is apparent. Interpolation er-
rors obtained by OMP and SH truncation using a 302 points
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Fig. 3: Average spherical harmonics spectrum for the mea-
sured test set at 10 kHz, SH truncation (left) and SH selected
by OMP (right). The representation was limited to 121 ele-
ments. SH are arranged in a 2D grid, with Y 0

0 at center top.
The standard representation consists of all SH up to order 10
(red line). In OMP representation, higher SH orders were se-
lected in place of lower order SH.

Lebedev sampling scheme are shown in Fig. 2. The average
OMP error is 1.5 dB lower over the 4 − 12 kHz frequency
range. This reduction is achieved due to OMP’s ability to
select specific elements best representing the data. Fig. 3
shows the selection of 121 SH for the representation of the
entire measured test set at 10 kHz. The SH truncation repre-
sentation (left) uses all SH up to order 10. In contrast, OMP
(right) skips some low order elements, mostly in the more
extreme degrees. These elements are substituted by SH of
higher orders, with degrees closer to m = 0.

The results indicate that OMP is most likely ineffective
for sparse interpolation purposes. However, OMP may be of
interest in applications such as HRTF prediction, which re-
quire representation with a reduced number of elements.

5. CONCLUSION

This paper investigated two methods for interpolation of ear-
aligned HRTFs from sparse samples using vector sets selected
by Orthogonal Matching Pursuit or generated by Principal
Component Analysis. The methods were evaluated by the
representation and interpolation of simulated and measured
HRTF datasets. PCA representation showed a significant re-
duction of interpolation errors over spherical harmonics trun-
cation with sparse sampling schemes. OMP showed no im-
provement with sparse sampling schemes, and a mild im-
provement with denser sampling schemes. Each method may
be incorporated into existing HRTF measurement configura-
tions by acquiring a set of full length HRTFs and training the
algorithms. While the results presented here rely only on ob-
jective comparisons, subjective evaluations are necessary for
verifying the results, and are suggested as future work. In ad-
dition, PCA’s observed advantages merit further investigation,
examining the optimal size of the training set, and exploring
methods tailored for spatial data such as GLRAM and T-SVD.
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