
Noname manuscript No.
(will be inserted by the editor)

Fire Now, Fire Later: Alarm-Based Systems for
Prescriptive Process Monitoring

Stephan A. Fahrenkrog-Petersen · Niek
Tax · Irene Teinemaa · Marlon Dumas ·
Massimiliano de Leoni · Fabrizio Maria
Maggi · Matthias Weidlich

the date of receipt and acceptance should be inserted later

Abstract Predictive process monitoring is a family of techniques to analyze
events produced during the execution of a business process in order to predict
the future state or the final outcome of running process instances. Existing
techniques in this field are able to predict, at each step of a process instance,
the likelihood that it will lead to an undesired outcome. These techniques,
however, focus on generating predictions and do not prescribe when and how
process workers should intervene to decrease the cost of undesired outcomes.
This paper proposes a framework for prescriptive process monitoring, which
extends predictive monitoring with the ability to generate alarms that trig-
ger interventions to prevent an undesired outcome or mitigate its effect. The
framework incorporates a parameterized cost model to assess the cost-benefit

This research was performed while N. Tax was at Eindhoven University of Technology.

S. Fahrenkrog-Petersen · M. Weidlich
Humboldt-Universität zu Berlin, Berlin, Germany
E-mail: {stephan.fahrenkrog-petersen, matthias.weidlich}@hu-berlin.de

I. Teinemaa · M. Dumas
University of Tartu, Tartu, Estonia
E-mail: {irene.teinemaa, marlon.dumas}@ut.ee

N. Tax
Facebook, London, United Kingdom
E-mail: niek@fb.com

M. de Leoni
University of Padua, Padua, Italy
E-mail: deleoni@math.unipd.it

F. Maggi
Free University of Bozen-Bolzano, Bolzano, Italy
E-mail: maggi@inf.unibz.it

2 Stephan A. Fahrenkrog-Petersen et al.

trade-off of generating alarms. We show how to optimize the generation of
alarms given an event log of past process executions and a set of cost model
parameters. The proposed approaches are empirically evaluated using a range
of real-life event logs. The experimental results show that the net cost of un-
desired outcomes can be minimized by changing the threshold for generating
alarms, as the process instance progresses. Moreover, introducing delays for
triggering alarms, instead of triggering them as soon as the probability of an
undesired outcome exceeds a threshold, leads to lower net costs.

1 Introduction

Process mining is a family of techniques to discover, monitor and improve
business processes by extracting knowledge from logs of process executions
(herein called event logs) recorded by information systems [1]. In this context,
an event log is a set of event records (or events for short) such that each event
captures a state change in the execution of an activity that occurs within a
given instance of the process (herein called a case). For example, an event in
a log may capture the fact that a worker has completed an activity “Check
purchase order” as part of the execution of a case of an order-to-cash process.
Over the last ten years, such event logs have become more widely available due
to the adoption of standardized enterprise systems such as Enterprise Resource
Planning (ERP) or Customer Relationship Management (CRM) systems.

Predictive process monitoring [17,19] is a sub-family of process mining
techniques designed to predict the future state of ongoing cases of a busi-
ness process. A predictive monitoring technique may, for example, predict the
remaining execution time of each ongoing case, or the next activity to be ex-
ecuted in each case, or the final outcome of each ongoing case, with respect
to a set of possible case outcomes. This article is related to the latter type of
predictive process monitoring, which we call outcome-oriented [30]. For exam-
ple, in an order-to-cash process, an outcome-oriented technique may predict
whether a case will end in a timely and correct product delivery (desired
outcome) or not (undesired outcome). More specifically, an outcome-oriented
predictive process monitoring technique predicts, after each event of a case,
the probability that the case will end in an undesired outcome.

Prescriptive process monitoring techniques go beyond predictive ones. In-
stead of merely predicting future (undesired) states, prescriptive monitoring
techniques use such predictions to recommend or prescribe interventions de-
signed to prevent a case from reaching an undesired future state. A prescriptive
process monitoring technique is a function that maps a stream of events of on-
going cases to a stream of recommended or prescribed interventions that, if
executed, minimize a given net cost function (or equivalently to maximize a
utility function). This cost function depends on the number of cases that end
in a negative outcome as well as other parameters such as the cost of executing
the interventions, or the timing of such interventions.

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 3

A naive approach to turn a predictive process monitoring technique into
a prescriptive one is by triggering an alarm whenever the probability that a
case will lead to an undesired outcome is above a fixed threshold (e.g., 90%).
This alarm leads to an intervention, such as calling the customer, offering
a discount, etc. To distinguish between different types of interventions, the
alarms generated by a prescriptive system may be associated with a type. For
example, an alarm of type A may lead to one type of intervention (calling the
customer) whereas an alarm of type B may lead to a different type of inter-
vention (offering a discount). This naive approach may be far from optimal,
as it does not take into account the cost induced by each intervention (e.g.
the time spent by workers in the intervention or forgone revenue) nor its effect
(e.g. preventing the undesired outcome altogether or only partially mitigating
it). This cost and this effect is likely to be different depending on the type
of intervention (e.g. offering a discount might be more expensive than calling
the customer). Moreover, the cost and the effect of an intervention may vary
as the case advances. Late interventions may be less effective and more costly
than earlier interventions, in such a way that the net cost of intervening varies
(possibly non-monotonically) as the case advances.

This article proposes a prescriptive process monitoring approach based on
the above notions of predictions, alarms and interventions. An overview of the
proposed approach is provided in Figure 1. The starting point of the approach
is an event log of completed executions of a business process, together with a
function that assigns a boolean outcome (positive or negative) to every case in
the log. This labeled event log is used to train a predictive model (specifically,
an outcome estimator). An outcome estimator is a function that given given a
(partial) trace of a ongoing case, produces an estimate of the probability that
this ongoing case will be labeled with a negative outcome upon its completion.
This probability estimate is fed into an alarm system that decides whether or
not to send an alarm to a human worker or a software bot (or other automated
system) to prompt them to perform a given intervention. Each generated alarm
has a type, which determines which intervention will be performed. Alarms are
generated in a way that optimizes a net cost function, which depends on several
parameters such as the cost of an intervention and the cost of an undesired
outcome. These parameters are encapsulated in a cost model, which consists
of parameters that may be tuned by a manager to capture the cost structure
and business goals of the organization in which the process is executed. In this
setting, the goal of the proposed framework is to generate alarms in a way that
minimizes the expected net cost, given an event log, a set of ongoing cases,
and a cost model.

This article is an extended and revised version of a previous conference
paper [31]. The conference version focused on the scenario where there is a
single type of alarm leading to a single type of intervention (e.g. calling the
customer). This article enhances the scope of the framework to consider mul-
tiple alarm types, each one leading to a different intervention. For example,
one alarm type may lead to calling the customer while another one leads to
offering a discount by email. Additionally, this article considers further factors

4 Stephan A. Fahrenkrog-Petersen et al.

1

Labeled event log
(completed traces)

Predictive model
(outcome estimator)

Incomplete
trace

P()

Prediction
(negative outcome

probability)

Alarm
Alarm system

+/- -

- +

Cost model

Worker	
/	Bot

Manager

{	(AlarmType1,	Intervention1),		
(AlarmType2,	Intervention2),	…	
(AlarmTypeN,	InterventionN)}

(AlarmType,	
Intervention)

Fig. 1: Overview of the prescriptive process monitoring approach

that influence the effectiveness of alarms in practice. First, we add the pos-
sibility that the probability threshold above which an alarm is triggered may
vary depending on how far the case has progressed. Second, we introduce the
possibility of delaying the firing of an alarm to reduce false alarms stemming
from instability in the predictive model.

The article is structured as follows. Section 2 discusses related work. Next,
Section 3 presents the prescriptive process monitoring framework. Section 4
outlines the approach to optimize the alarm generation mechanism, while Sec-
tion 5 reports on an empirical evaluation of the proposed approach. Section 6
concludes the paper and spells out directions for future work.

2 Related Work

As stated above, a naive approach to turn a model for predicting undesired
process execution outcomes into a prescriptive model is to raise an alarm when-
ever the predictive model estimates that the probability of a negative outcome
is above a given threshold. This, in turn, raises the question of determining
an optimal alarm threshold. The problem of determining an optimal alarm
threshold with respect to a given cost function is closely related to the prob-
lem of cost-sensitive learning. Cost-sensitive learning seeks to find an optimal
prediction when different types of misclassifications have different costs and
different types of correct classifications have different benefits [10]. In [23],
the authors investigate cost-sensitive learning for predictive process monitor-
ing through assigning different (cost) weights to classes. A non-cost-sensitive
classifier can be turned into a cost-sensitive one by stratification (rebalancing
the ratio of positive and negative training samples) [10], by learning a meta-
classifier after relabeling the training samples according to their estimated
cost-minimizing class label [9], or via empirical thresholding [28]. In this ar-

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 5

ticle, we adopt the latter approach, which has been shown to perform better
than other cost-sensitive learning approaches [28].

While the above-cited cost-sensitive learning approaches provide a start-
ing point for turning prediction models (e.g., classifiers) for triggering alarms,
they are not designed to tackle the problem of prescriptive process monitoring.
In particular, the above approaches target the scenario where the predictions
made by a model are immediately used to make a decision (e.g., triggering an
intervention). In particular, these approaches do not consider the possibility
of delaying the decision. In this article, we deal with a different problem for-
mulation, where the costs may depend on the time when the decision is made,
i.e., one may delay the decision to accumulate further information.

Cost-sensitive learning for sequential decision-making has been approached
using reinforcement learning (RL) techniques [26]. This work differs from ours
in three ways. First, instead of making a sequence of decisions, we aim at
finding an optimal time to make a single decision (the decision to raise an
alarm). Second, RL assumes that actions affect the observed state once they
are triggered. In our case, there are two possible actions at each step: 1) raising
one of the available alarms, or 2) delaying the decision. In the latter case, we
will wait until we observe the next event. But this event is not at all affected
by the selected action (i.e., to “wait”). In other words, the environment is
not affected by the delay in the decision. Finally, we train our model only
based on observed data, while reinforcement learning requires the existence of
a simulator, that imitates the environment, in our case the business process.

Predictive and prescriptive process monitoring are also related to Early
Classification of Time Series (ECTS), which aims at accurate classification of
a (partial) time series as early as possible [34]. Common solutions for ECTS
find an optimal trigger function that decides on whether to output the predic-
tion or to delay the decision and wait for another observation in the time series.
To this end, the approach presented in [34] identifies the minimum prediction
length when the memberships assigned by the nearest neighbor classifier be-
come stable, the one presented in [25] estimates the probability that the label
assigned based on the current prefix is the same as the one assigned based on
the complete time series, and, similarly, the one presented in [21,22] compares
the accuracy achieved based on a prefix to the one achieved based on a com-
plete trace. Recently, a few non-myopic methods have been proposed [5,29].
Yet, these approaches assume a-priori knowledge of the length of the sequence,
which is not given in the context of traces of business processes. As such, the
problem is different, as delaying the decision comes with a risk that the case
will end before the next possible decision point. The methods outlined in [21,
22,5,29] are the only ECTS methods that try to balance accuracy-related and
earliness-related costs. However, they assume that predicting a positive class
early has the same effect on the cost function as predicting a negative class
early, which is not the case in typical business process monitoring scenarios,
where earliness matters only when an undesired outcome is predicted.

We are aware of five previous studies related to alarm-based prescriptive
process monitoring [18,7,20,14,15]. [18] study the effect of different likelihood

6 Stephan A. Fahrenkrog-Petersen et al.

thresholds on the total intervention cost (called adaptation cost) and the mis-
classification penalties. However, they assume that the alarms can only be
generated at one pre-determined point in the process that can be located as a
state in a process model. Hence, their approach is restricted to scenarios where:
(i) there is a process model that perfectly captures all cases; (ii) the costs and
rewards implied by alarms are not time-varying. Also, their approach relies
on a mechanism with a user-defined threshold, as opposed to our empirical
thresholding approach. The latter remark also applies to [7,20], which gener-
ate a prediction when the likelihood returned by a trace prefix classifier first
exceeds a given threshold. Also, the study proposed in [7] is not cost-sensitive,
whereas the one introduced in [20] is based on a static cost model that does not
change over time. [14] provide recommendations during the execution of busi-
ness processes to avoid a predicted performance deviation. Yet, this approach
does not take into account the notion of earliness, i.e., the fact that firing an
alarm earlier has a different effect than firing it at a later point. In the context
of prescriptive process monitoring, in [33], the authors, instead of alarms, as
addressed in this paper, provide recommendations in the form of actions to
be executed next. Finally, [15] propose a general architecture for prescriptive
process monitoring. However, this architecture does not incorporate an alarm
model nor does it propose a method for cost optimization.

3 Prescriptive Process Monitoring Framework

This section introduces a framework for an alarm-based prescriptive process
monitoring system. We first introduce the notion of event log in Section 3.1,
before turning to the cost model of our framework in Section 3.2. For the sake
of clarity, this model is first introduced for scenarios that allow for one type
of alarm. The latter assumption is dropped in Section 3.3 extending the cost
model to scenarios with multiple alarms. Finally, Section 3.4 builds on the
cost-model to formalize the concept of an alarm system.

3.1 Event Log

Executions of process instances (a.k.a. cases) are recorded in so-called event
logs. At the most abstract level, an event log can be represented in a tabular
form. Figure 2 shows an excerpt of an event log that refers to the execution
of the unemployment-benefit process in the Netherlands. Scenario 1 describes
how the process is usually executed, which serves for illustration in the re-
mainder of the paper. The description is the result of several interactions of
one of the authors (see, e.g., [6]) with the company’s stakeholders.

Scenario 1 (Unemployment Benefit) In the Netherlands, UWV is the in-
stitution that provides social-security insurances for Dutch residents. UWV
provides several insurances. One of the most relevant insurances is the provi-
sion of unemployment benefit. When residents (hereafter customers) become

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 7

Fig. 2: A fragment of an event log for two UWV’s customers, as explained
in Scenario 1. Each row is an event; events with the same customer id are
grouped into traces.

unemployed, they are usually entitled to monthly monetary benefits for a cer-
tain period of time. UWV executes a process to determine the amount of these
benefits, to manage the interaction with the customers, and to perform the
monthly payments. These payments are stopped when the customer reports that
he/she has found a new job or when the time period in which the customer is
entitled to unemployment benefits ends.

Each row in Figure 2 corresponds to an event. An event represents the execu-
tion of an activity for a case with a certain identifier that occurred at a specific
moment in time and was performed by a given resource. The case identifier
can vary depending on the process: for the example in question, it coincides
with the customer id. Events can be grouped by case identifier and ordered by
timestamp, thus obtaining a sequence of events, a.k.a. a trace.

Figure 2 shows that events can be associated with various properties,
namely the different columns of the event table; we assume that the activ-
ity name and the timestamp are properties that are always present. Given an
event e of a log, πT (e) and πA(e) return the timestamp and the activity name
of an event e, respectively. As an example, the trace of customer id 25879 in
Figure 2 is 〈e1, e2, . . . , en〉 where, e.g., it holds that πT (e1) = 2017-01-15 and
πA(e1) = ‘Initialize income form’. In the remainder, 〈〉 is the empty sequence,
and σ1 ·σ2 indicates the concatenation of sequence σ1 and σ2. Given a sequence
σ = 〈a1, a2, . . . , an〉, for any 0 < k ≤ n, hdk(σ) = 〈a1, a2, . . . , ak〉 is the prefix
of length k (0 < k < n) of sequences σ, and σ(k) = ak is the k-th event of σ.

With these concepts at hand, a trace is defined as a sequence of events,
and an event log as a set of traces:

Definition 1 (Trace, Event Log) Let E be the universe of all events. A trace
is a finite non-empty sequence of events σ ∈ E+ such that each event appears

8 Stephan A. Fahrenkrog-Petersen et al.

at most once and time is non-decreasing, i.e., for 1 ≤ i < j ≤ |σ| : σ(i) 6= σ(j)
and πT (σ(i)) ≤ πT (σ(j)). An event log is a set of traces L ⊂ E+ such that
each event appears at most once in the entire log.

3.2 Single-Alarm Cost Model

An alarm-based prescriptive process monitoring system (alarm system for
short) is a monitoring system that can raise an alarm in relation to a run-
ning case of a business process in order to indicate that the case is likely to
lead to some undesired outcome. These alarms are handled by process workers
who intervene in the process instance by performing an action (e.g., by call-
ing a customer or blocking a credit card), thereby preventing the undesired
outcome or mitigating its effect. These actions may have a cost, which we call
cost of intervention. When a case does end in a negative outcome, this leads
to the cost of undesired outcome. Clearly, intervening is beneficial if its cost is
lower than the cost of reaching an undesired outcome.

For many practical application scenarios, however, it is not sufficient to
consider solely a trade-off between the cost of intervention and the cost of un-
desired outcome. This happens when interventions that turn out to be super-
fluous induce further costs, ranging from financial damage to losing customers.
We capture these effects by a cost of compensation in case the intervention
was unnecessary, i.e., if the case was only suspected to lead to an undesired
outcome, but this suspicion was wrong.

A further aspect to consider is the mitigation effectiveness, i.e., the relative
benefit of raising an alarm at a certain point in time. Consider again the process
of handling unemployment benefits at UWV as detailed in Scenario 1. In case
of unlawful benefits, the longer UWV postpones an intervention, the lower its
effectiveness, since the amount paid already to the customer cannot always be
claimed back successfully.

Having introduced the various costs to consider when interfering in the
execution of a process instance, we need to clarify the granularity at which
these costs are modeled. In general, an alarm system is intended to continu-
ously monitor the cases of the business process. However, in many application
scenarios, such continuous monitoring is expensive (resources to interfere need
to be continuously available). Hence, an approximation may be employed that
assumes that significant cost changes are always correlated with the availabil-
ity of new events (i.e., new information) in a case. Following this line, alarms
can only be raised after the occurrence of an event.

In the remainder, each case is identified by a trace σ that is (eventually)
recorded in an event log. For a prefix of such a trace, the above characteristics
of an alarm, i.e., its cost of intervention, cost of compensation, and mitigation
effectiveness, are captured by an alarm model. These characteristics may de-
pend on the position in the case at which the alarm is raised and/or on other
cases being executed. Hence, they are defined as functions over the number of
already recorded events and the entire set of cases being executed, as follows:

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 9

Definition 2 (Alarm Model) An alarm model is a tuple (cin , ccom , eff)
consisting of:
– a function cin ∈ N × E+ × 2E

+ → R+
0 modeling the cost of intervention:

given a trace σ belonging to an event log L, cin(k, σ, L) indicates the cost
of an intervention for a running case with trace σ when the intervention
takes place after the k-th event;

– a function ccom ∈ E+ × 2E
+ → R+

0 modeling the cost of compensation:
given a trace σ belonging to an event log L, ccom(σ, L) indicates the cost
to be incurred in when the intervention was put in place for a running case
with trace σ that did not finally required it;

– a function eff ∈ N×E+×2E
+ → [0, 1] modeling the mitigation effectiveness

of an intervention: for a trace σ of an event log L, eff (k, σ, L) indicates the
mitigation effectiveness of an intervention in σ when the intervention takes
place after the k-th event.

Combining the above properties of an alarm with the cost of the undesired
outcome that shall be prevented, we define a single-alarm cost model.

Definition 3 (Single-Alarm Cost Model) A single-alarm cost model is a
tuple (cin , cout , ccom , eff) consisting of:
– an alarm model (cin , ccom , eff);

– a function cout ∈ E+ × 2E
+ → R+

0 to model the cost of undesired outcome:
for a trace σ of an event log L, cout(σ, L) is the cost associated with the un-
desired outcome for a running case with trace σ, if an effective intervention
was not put in place.

Next, we illustrate the above model with exemplary application scenarios.

Scenario 1 (Continued from p.6) While receiving unemployment benefits
at UWV, several customers omit to inform UWV about the fact that they
had found a job and, thus, keep receiving benefits that they are not entitled
to. If the salary of the new job is lower than the salary of the previous job,
then the customer is still entitled to a benefit proportional to the difference in
salary. In fact, customers often mistakenly declare the wrong salary for their
new job and are then expected to return a certain amount of received benefits.
In practice, however, this rarely happens. UWV would therefore benefit from
an alarm system that informs about customers who are likely to be receiving
unentitled benefits. The cost of an intervention stems from the hourly rate of
UWV’s employees; investigations using different IT systems and verifications
with the old and new employer of a customer take a significant amount of
time. The cost of undesired outcome is the monetary value of the benefits that
the customer received unlawfully.

Let unt(σ) denote the amount of unentitled benefits received in a case corre-
sponding to trace σ. Based on discussions with UWV, we designed the following
cost model.
Cost of intervention. For the intervention, an employee needs to check if the

customer is indeed receiving unentitled benefits and, if so, fill in the forms

10 Stephan A. Fahrenkrog-Petersen et al.

for stopping the payments. Thus, the cost of intervention is the total labour
cost of the employee for the amount of time they spend executing an inter-
vention. Let S be the employee’s average salary rate per time unit; let d be
the amount of time it takes for the employee to intervene. Then, the cost
of an intervention can be modeled as: cin(k, σ, L) = d · S.

Cost of undesired outcome. The amount of unentitled benefits that the cus-
tomer would obtain without stopping the payments, i.e.,cout(σ, L) = unt(σ).

Cost of compensation. The social security institution works in a situation of
monopoly, which means that the customer cannot be lost because of moving
to a competitor, i.e., there is no cost of compensation: ccom(σ, L) = 0.

Mitigation effectiveness. The proportion of unentitled benefits that will not be

paid thanks to the intervention, i.e., eff (k, σ, L) = unt(σ)−unt(hdk(σ))
unt(σ) .

Due to the lack of competition for public administration, the above example
does not include compensation costs. The following example from finance,
however, illustrates the importance of being able to incorporate the cost of
compensation.

Scenario 2 (Financial Institute) Suppose that the customers of a finan-
cial institute use their credit cards to make payments online. Each of such a
transaction is associated with a risk of fraud, e.g., through a stolen or cloned
card. In this scenario, an alarm system shall determine whether the card needs
to be blocked, due to a high risk of fraud. However, superfluous blocking of the
card causes discomfort to the customer, who may then switch to a different
financial institute.

Cost of intervention. The card is automatically blocked by the system. There-
fore, the intervention costs consists in those to manufacture and send a
new credit card to the customer by mail, so that cin(k, σ, L) is a constant
value.

Cost of undesired outcome. The total amount of money related to fraudulent
transactions that the bank would need to reimburse to the legitimate cus-
tomer, cout(σ, L) = value(σ).

Cost of compensation. It is defined as the expected asset of the customer that
would be lost, namely the actual asset multiplied by a certain probability
p ∈ [0, 1], which is the fraction of customers who left the institute within a
short time after the card was wrongly blocked. Denoting the asset value of a
customer (the amount of the investment portfolio, the account balance, etc.)
with asset(σ), the cost of compensation is estimated as: ccom = p ·asset(σ).

Mitigation effectiveness. The proportion of the total amount of fraudulent trans-
actions that does not need to be reimbursed by blocking the credit card after

k events have been executed, eff (k, σ, L) = value(σ)−value(hdk(σ))
value(σ) .

It is very important to highlight that the intervention is not modelled explicitly
because it is not relevant for the scope of the framework. Conversely, we model
its consequences in terms of alarm-cost models.

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 11

3.3 Multi-Alarm Cost Model

The above formalization of the cost model assumes that an alarm system sup-
ports a single type of alarm. For some processes, however, alternative alarms
exist, each associated to a different mitigation effectiveness and model of costs
of intervention and compensation.

Consider Scenario 2, the scenario of blocking a credit card to prevent fraud.
An alternative intervention is to call the credit card owner by phone to verify
the suspicious transaction. A phone call certainly has a higher cost of interven-
tion, in comparison to automatically blocking the credit card. Yet, a phone call
has a lower cost of compensation because, in case of falsely suspected fraud,
it prevents the inconvenience of unnecessarily blocking a card.

The choice of which alarm to employ might depend on the likelihood of
achieving an undesired outcome, if no action is put in place. For instance, for
the financial institute, if fraud is assessed to be a possibility, but not a near-
certainty, then it is preferable to call the customer. If it is assessed to be fraud
with near-certainty, it is safer to preventively block the card.

To handle scenarios with multiple alarms, the following definition general-
izes our earlier single-alarm cost model.

Definition 4 (Multi-Alarm Cost Model) Let C be the universe of alarm
models. An multi-alarm cost model is a tuple (A, cout) consisting of:
– a set A ⊂ C of alarm models,
– a function cout ∈ E+ × 2E

+ → R+
0 to model the cost of undesired outcome;

3.4 Alarm-Based Prescriptive Process Monitoring System

An alarm-based prescriptive process monitoring system is driven by the out-
come of the cases. In the remainder, the outcome of the cases is represented
by a function out : E+ → {true, false}: given a case identified by a trace σ, if
the case has an undesired outcome, out(σ) = true; otherwise, out(σ) = false.
In reality, during the execution of a case, its outcome is not yet known and
needs to be estimated based on past executions that are recorded in an event
log L ⊂ E+. The outcome estimator is a function ôutL : E+ → [0, 1] predicting
the likelihood ôutL(σ′) that the outcome of a case that starts with prefix σ′ is
undesired. We define an alarm system as a function that returns true or false
depending on whether an alarm is raised based on the predicted outcome.

Definition 5 (Alarm-Based Prescriptive Process Monitoring System)
Given an event log L ⊂ E+, let ôutL be an outcome estimator built from

L. Let A be the set of alarms that can be raised. An alarm-based prescriptive
process monitoring system is a function alarm ôutL

: E+ → A ∪ {⊥} Given a
running case with current prefix σ′, alarm ôutL

(σ′) returns the alarm raised
after σ′, or ⊥ if no alarm is raised.

For simplicity, we omit subscript L from ôutL, and the entire subscript ôutL
from alarm ôutL

when it is clear from the context. An alarm system can only

12 Stephan A. Fahrenkrog-Petersen et al.

undesired outcome desired outcome
out(σ) = true out(σ) = false

alarm raised cin (iσ , σ, L) + (1− eff (iσ , σ, L))cout (σ, L) cin (iσ , σ, L) + ccom (σ, L)
alarm not raised cout (σ, L) 0

Table 1: Net cost of a case with trace σ based on its outcome and whether an
alarm was raised. If the alarm is raised, iσ indicates the index of σ when the
alarm occurred.

raise one of the alarms and only once per case because the first alarm is
expected to trigger an intervention by process actors.

Table 1 illustrates how the net cost of a case is determined based on a
cost model on the basis of a multi-alarm cost model (A, cout). In the table, iσ
indicates the index of the event in σ when the alarm was raised, namely the
smallest i ∈ [1, |σ|] such that alarm(hd iσ (σ)) ∈ A.

The above definition provides a framework for alarm-based prescriptive
process monitoring systems. Next, we turn to the problem of tuning a pre-
scriptive process monitoring system in order to optimize its net cost.

4 Alarm Systems and Empirical Thresholding

This section introduces four types of alarm systems. In Section 4.1, we in-
troduce a basic mechanism based on empirical thresholding. In Section 4.2,
we enhance this approach with the idea of delaying alarms. An enhancement
based on prefix-length-dependent thresholds is introduced in Section 4.3. Fi-
nally, multiple possible alarms are handled in Section 4.4.

4.1 Basic Alarm System

We first consider a basic alarm system, in which there is only one alarm a,
which is triggered as soon as the estimated probability of an undesired outcome
exceeds a given threshold τ . Given this simple alarm system, we aim at finding
an optimal value for the alarming threshold τ , which minimizes the net cost
on a log Lthres comprising historical traces such that Lthres ∩ Ltrain = ∅ with
respect to a given probability estimator ôutLtrain and alarm model a.

The total net cost of a mechanism to raise alarms alarm on a log L is defined
as cost(L, a, alarm) = Σσ∈Lcost(σ, L, a, alarm). Based thereon, we define an
optimal threshold as τ = arg minτ ′∈[0,1] cost(Lthres , a, alarmτ ′). Optimizing a
threshold τ on a separate thresholding set is called empirical thresholding [28].
The search for such a threshold τ wrt. a specified alarm model a and log Lthres

is done through any hyperparameter optimization technique, such as Tree-
structured Parzen Estimator (TPE) optimization [3]. The resulting approach
is a form of cost-sensitive learning, since the value τ depends on how the alarm
model a is specified.

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 13

4.2 Delayed Firing System

The basic alarm system introduced above fires an alarm as soon as the prob-
ability of an undesired outcome is higher than the threshold τ . This may lead
to firing an alarm too soon. Consider a scenario in which, after observing event
ei, the probability is above τ , whereas it drops below τ and stays below τ after
the subsequent event ei+1 has been recorded. The basic alarm system would
fire the alarm even if the probability of an undesired outcome is above τ for
one single event and then drops below τ in subsequent events in a case.

An alternative alarming system (herein called delayed firing) is to fire an
alarm only if the probability of a negative outcome remains above threshold
τ for κ consecutive events, where κ is the firing delay. One would expect this
delayed firing system to be more robust to instabilities in the predictive model
(e.g., robust to high levels of variations in the probability calculated by the
predictive model for consecutive events in a trace).

When building a delayed alarming mechanism, we need to consider both,
the firing delay κ as well as the threshold τ , for the hyperparameter optimiza-
tion. Note that the basic alarm system is a special case of the delayed firing
system with a firing delay of κ = 1.

4.3 Prefix-length-dependent Threshold System

To cope with scenarios with dynamic costs, we propose to not rely only on a
single global alarming threshold τ , but to use different thresholds depending on
the length of the prefix. That is, a separate threshold τk is optimized for each
prefix length k or, more generally, thresholds τa→b are optimized for certain
intervals of prefix lengths [a, b] for a, b ∈ N. For instance, τ1→4 denotes the
optimal threshold for prefix lengths 1 to 4, while τ5→∞ denotes the optimal
threshold from length 5 to the end of the trace. To divide the whole range of
prefix lengths into n non-overlapping intervals, we define n splitting prefixes
ρi, 1 ≤ i ≤ n, where ρi refers to the start point of interval i. For instance, in the
previous example, ρ1 = 1, ρ2 = 5. A single global threshold and prefix-length-
based thresholds can be seen as special cases of interval-based thresholds.

The splitting prefixes can either be user-defined or optimized over Ltrain . In
a system with multiple thresholds, all the thresholds can be optimized simul-
taneously. It is also possible to treat the splitting prefixes for prefix intervals
as hyperparameters and optimize them over the event log L together with the
thresholds. Prefix-length dependent thresholds τa→b may be combined with a
fire delay ε to build an alarm system. Then, the fire delay ε and the prefix-
length dependent thresholds τa→b are trained at the same time.

4.4 Multi-alarm systems

To optimize the decision of firing an alarm in a setting with multiple possible
alarms A we consider each alarm, as well as the option to not firing an alarm,

14 Stephan A. Fahrenkrog-Petersen et al.

as a potential decisions. Therefore we formulate the problem similar to a multi-
class classification task [32], with |A ∪ {⊥}| different classes: one class for no
alarm and one class per alarm. This might look like a traditional multi-class
classification task, however it is not. Because in such a task a perfect system
would assign multiple labels and therefore we would also use a training set with
multiple labels. In our scenario a perfect system would only fire the cheapest
alarm, with the lowest cost of intervention and/or mitigation effect, for all
cases that will end in an undesired outcome. For all other cases no alarm
would be fired. In conclusion a perfect solution would not require multiple
alarms and the training set would only consist of two labels. Therefore, our
can not be solved with a lot of multi-class classification techniques like one-
vs-all approaches.

However, one way of solving a multi-class classification problem is to break
it into several binary classification problems (i.e., the one-vs-one approach) [2].
Then, all classes are tested against each other with a binary classification
algorithm. The set of binary decisions leads to a number of votes, that are
assigned to the classes that won the binary classifications. The input data is
ascribed the class with the most votes. Our optimization problem can modelled
simultaneously like an one-vs-one approach.

Optimizing the alarms against the class of not firing an alarm is done by
applying the basic model to each alarm independently. In a scenario with two
possible alarms this gives us the thresholds τFalse−vs.−a1 and τFalse−vs.−a2 . All
alarms are then trained against each other with empirical thresholding. In our
example, that implies training the threshold τa1−vs.−a2 . However, for training
τa1−vs.−a2 , we use only the prefixes σ that have a higher likelihood probability
than both thresholds for these alarms (e.g., ôutLtrain (hdk(σ)) > τFalse−vs.−a1
and ôutLtrain (hdk(σ)) > τFalse−vs.−a2). While this might seem contrary to the
one-vs-one approach (the threshold is not trained over the whole dataset), it
is necessary for the following reasons. First, the question of ‘should we fire an
alarm?’ shall be separated from the question of ‘which alarm to fire?’. The
decision on the alarm is taken only over the subset of prefixes where alarming
was found necessary. Training the threshold over all prefixes would fit the
threshold to irrelevant prefixes. Also, it is more important to fire any alarm
for a case with an undesired outcome than to choose the best alarm. Since we
train the thresholds to decide between alarms in a hierarchical order, first the
alarm vs. no alarm thresholds and then the alarms against each other, we call
this approach hierarchical thresholding.

Figure 3 illustrates the general idea for a system with two alarms. It rep-
resents the probability of an undesired outcome on the horizontal axis. The
three aforementioned thresholds are visualized as vertical lines. Different col-
ors illustrate the slides of the likelihood probability that will lead to different
actions by the alarm system: firing no alarm, or firing one of the two alarms
a1, a2.

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 15

One Dimensional Decision?

No Alarm Alarm1Alarm 2

0 1Likelihood Probability

Fig. 3: Likelihood probability in hierarchical thresholding.

5 Evaluation

In this section, we report on an experimental evaluation of the proposed frame-
work. Specifically, our evaluation addresses the following research questions
related to the overall effectiveness of alarm-based prescriptive process moni-
toring. We first explore the effectiveness of the basic model that employs simple
empirical thresholding, considering the goodness of the identified thresholds
as well as the impact of the problem setting:

RQ1 How good are the thresholds identified by empirical thresholding in terms
of the reduction of the average processing cost for different alarm model
configurations?

RQ2 How does the mitigation effectiveness affect the benefit obtained by an
alarm system?

RQ3 How does the cost of compensation affect the benefit obtained by an alarm
system?

Moreover, we go beyond simple empirical thresholding and investigate the
effectiveness of the more elaborated models for thresholding. In particular,
our research questions relate to the aforementioned design choices involved
when deciding on when to fire an alarm: How is the average processing cost

per case affected:

RQ4 When training a parameter for the minimum number of events that ex-
ceed the threshold?

RQ5 When using more than one threshold interval?
RQ6 When increasing the number of prefix-length-dependent thresholds?
RQ7 When combining prefix-length dependent thresholds with a firing delay,

compared to the a single-alarm system?

Finally, we turn to the effectiveness of a system that supports multiple alarms.
Here, we compare such a multi-alarm system against one that features solely
a single alarm.

RQ8 How is the average processing cost per case affected when using multiple
alarms compared to the best system with only one alarm?

In the remainder, we first discuss the real-world datasets used in our evaluation
(Section 5.1), before turning to the experimental setup (Section 5.2). We then
report on our evaluation results in detail and close with an overview of our
answers to the above research questions (Section 5.3).

16 Stephan A. Fahrenkrog-Petersen et al.

Table 2: Dataset statistics

class min med (trunc.) max
dataset name traces ratio length length length events

bpic2017 refused 31 413 0.12 10 35 60 1 153 398
bpic2017 cancelled 31 413 0.47 10 35 60 1 153 398
traffic fines 129 615 0.46 2 4 5 445 959
unemployment 34 627 0.20 1 21 79 1 010 450

5.1 Datasets

We use the following real-world datasets to evaluate the alarm system:

BPIC2017. This log contains traces of a loan application process in a Dutch
bank.1 It was split into two sub-logs, denoted with bpic2017 refused and
bpic2017 cancelled. In the first one, the undesired cases refer to the process
executions in which the applicant has refused the final offer(s) by the fi-
nancial institution. In the second one, the undesired cases consist of those
cases where the financial institution has cancelled the offer(s).

Road traffic fines. This log originates from a Italian police unit and relates to
a process to collect traffic fines.2 The desired outcome is that a fine is paid,
while in the undesired cases the fine needs to be sent for credit collection.

Unemployment. This event log corresponds to the Unemployment Benefits
process run by the UWV in the Netherlands, introduced already as Sce-
nario 1 in Section 3. Due to privacy constraints, this event log is not pub-
licly available. The undesired outcome of the process is that a resident will
receive more benefits than entitled, causing the need for a reclamation.

Table 2 describes the characteristics of the event logs used. These logs cover
diverse evaluation settings, along several dimensions. The classes are well bal-
anced in bpic2017 cancelled and traffic fines, while the undesired outcome is
more rare in unemployment and bpic2017 refused. In traffic fines, the traces
are very short, while in the other datasets the traces are generally longer.

For each event log, we use all available data attributes as input to the
classifier. Additionally, we extract the event number, i.e., the index of the event
in the given case, the hour, weekday, month, time since case start, and time
since last event. Infrequent values of categorical attributes (occurring less than
10 times in the log) are replaced with value ‘other’, to avoid a massive blow-up
of the considered number of dimensions. Missing attributes are imputed with
the respective most recent (preceding) value of that attribute in the same trace
when available, otherwise with zero. Traces are cut before the labeling of the
case becomes trivially known and are truncated at the 90th percentile of all
case lengths to avoid bias from very long traces.

1 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
2 https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 17

5.2 Experimental Setup

We split the aforementioned datasets temporally, as follows. We order cases
by their start time and randomly select 80% of the first 80% of the cases (i.e.,
64% of the total) for Ltrain ; 20% of the first 80% of the cases (i.e., 16% of the
total) for Lthres ; and use the remaining 20% as the test set Ltest . The events in
cases in Ltrain and Lthres that overlap in time with Ltest are discarded in order
to not use any information that would not be available yet in a real setting.

Based on Ltrain , we build the classifier ôut using random forest (RF) and
gradient boosted trees (GBT). Both algorithms have been shown to work well
on a variety of classification tasks [13,24]. Features for a given prefix are ob-
tained using the aggregation encoding [16], which is known to be effective for
logs [30].

The configuration of the alarming mechanism depends on the setup chosen
for a specific research question. For RQ1 to RQ3, we rely on the basic model,
introduced in Section 4.1, and determine an optimal alarming threshold τ
based on Lthres . We employ TPE optimization [3] with 3-fold cross validation.
The resulting alarm system is then compared against several baselines: First,
we compare with the as-is situation, in which alarms are never raised. Second,
define a baseline with τ = 0, which enables us to compare with the situation
where alarms are always raised directly at the start of a case. Finally, setting
τ = 0.5, we consider a comparison with the cost-insensitive scenario that
simply raises alarms when an undesired outcome is expected.

To answer RQ4 to RQ7, we consider the advanced models introduced in
Section 4.2 and Section 4.3. Again, the parameters are optimized using TPE.
For RQ4, this includes the threshold τ and the firing delay κ ∈ {1, . . . , 7}. For
RQ5, we train two prefix-length-interval-based thresholds τ1→ρ, τρ→∞ and
optimize them together with parameter ρ. For RQ6, we define three different
systems with 1 to 3 prefix length intervals. We rely on user-defined intervals
for the prefix length, as follows. We set the length for each interval, except
for the last, to one prefix and put all intervals after each other staring at
prefix length 1. This results in three systems with {τ1→∞}, {τ1→2, τ2→∞}, and
{τ1→2, τ2→3, τ3→∞}. Finally, to test RQ7, we build an alarming mechanism by
training thresholds τ1→ρ, τρ→∞, the interval-section point ρ, and the firing
delay κ ∈ {1, . . . , 7}.

To explore RQ8, we derive a multi-alarm system that optimizes the alarm-
ing threshold τ , using TPE, for two different alarms independently (Sec-
tion 4.4). For these alarms, we multiply the factors given in Table 3 with
the cost of intervention cin and the cost of compensation ccom. We compare
the resulting system against a baseline that always uses one of the alarms, i.e.,
the one that is better in terms of average processing cost per case.

It is common in cost-sensitive learning to apply calibration techniques to
the resulting classifier [35]. Yet, we found that calibration using Platt scal-
ing [27] does not consistently improve the estimated likelihood of the undesired
outcome on our data and, thus, we did not apply calibration.

18 Stephan A. Fahrenkrog-Petersen et al.

Table 3: Factors for the different alarms, that are multiplied with the respective
costs

factor cin factor ccom

Alarm 1 1 1
Alarm 2 1.2 0.5

Table 4: Alarm model configurations

cout (σ, L) cin (k, σ, L) ccom (σ, L) eff (k, σ, L)

RQ1 1, 2, 3, 5, 10, 20 1 0 1− k/|σ|
RQ2 1, 2, 3, 5, 10, 20 1 0 0, 0.1, 0.2, . . . , 1
RQ3 1, 2, 3, 5, 10, 20 1 {0, 1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20} 1− k/|σ|

10 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5, 10, 15, 20 1
RQ4–RQ7 10 {1, 2, 3, 4, 5} · k/|σ| 0, 1, 2, 3, 4, 5, 10, 20 1− k/|σ|

10 {1, 2, 3, 4, 5} ∗ (1− min(a,k−1)
b

) {0, 1, 2, 3, 4, 5, 10, 20} ∗ (1− min(k−1,c)
d

) 1−min(
min(e,k−1)

f
)

RQ8 10 1, 2, 3, 4, 5 1, 2, 3, 4, 5, 10, 20, 30, 40 1

Next, we turn to the alarm models used in our evaluation, summarized in
Table 4. For RQ1, we vary the ratio between the cost of the undesired outcome
cout and the cost of intervention cin , keeping the cost of compensation ccom
and the mitigation effectiveness eff unchanged. The same is done for RQ2 and,
in addition, the mitigation effectiveness eff is varied. For RQ3, we vary two
ratios: the one between cout and cin , and the one between cin and ccom .

In the experiments related to RQ4-RQ7, we consider three types of con-
figurations, each corresponding to one row in Table 4. We vary the cost of
intervention cin and the cost of compensation ccom from values that render
them insignificant compared to cout, to values that yield a significant impact.
Specifically, the first type of alarm model, coined constant cost configurations,
assigns constant costs over the whole trace. A second type, linear cost configu-
rations, assigns costs that increase with longer trace prefixes. The third type,
non-monotonic cost configurations, changes costs non-linearly over the length
of the trace. Constants for this setting are introduced as listed in Table 5.
We assign values similar to the minimum case length to constants used as a
numerator and values similar to the medium case length for constants used as
a divisor. This yields a non-monotonic cost development over the trace length
for most cases. For instance, for traffic fines, with a = 3 and b = 5 (Table 5),
the cost of intervention cin(k, σ, L) under this cost model (Table 4), assumes

values from (1− min(3,k−1)
5) to 5 ∗ (1− min(3,k−1)

5).

For RQ8, we largely follow the same setup. However, we define our test
scenarios such that the alarm that is more expensive for true positives is at
least 10% cheaper for false positives compared to the other alarm. Thereby,
both alarms show a certain difference in the induced cost trade-off.

To evaluate the success of prescriptive process monitoring, we measure
the average cost per case using the test set Ltest derived for each dataset as
discussed above. This cost shall be minimal. Moreover, we measure the benefit
of the alarm system, i.e., the reduction in the average cost of a case when using
the alarm system compared to the average cost when not using it.

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 19

Table 5: Constants for non-monotonic cost configurations

Dataset a b c d e f

bpic2017 cancelled 10 35 13 32 18 40
bpic2017 refused 8 33 15 34 20 35
traffic fines 3 5 2 5 3 4

bpic2017_cancelled bpic2017_refused traffic_fines unemployment

3:1 10:1 20:1 3:1 10:1 20:1 3:1 10:1 20:1 3:1 10:1 20:1

0.1
0.2
0.3
0.4
0.5

c_out : c_inA
v
g
.
c
o
s
t
p
e
r

c
a
s
e

method always alarm never alarm optimized tau=0.5

Fig. 4: Cost over different ratios of cout and cin (GBT)

Additionally, we use the f-score to test the accuracy of our systems, in terms
of how often they fire an alarm correctly. It is calculated as the harmonic mean
of precision and recall and ranges from 0 (worst) to 1 (best).

The above experimental setup has been implemented in Python based on
Scikit-Learn and LightGBM, with the prototype being publicly available on-
line.3

5.3 Results

We evaluate our basic model of an alarming system that is based on empirical
thresholding by exploring whether it consistently reduces the average process-
ing cost under different alarm models (RQ1). Figure 4 shows the average cost
per case when varying the ratio of cout and cin . We only present the results
obtained with GBT, which slightly outperform those with RF. When the ra-
tio between the two costs is balanced, the minimal cost is obtained by never
alarming. When cout � cin , one shall always raise an alarm. However, when
cout is slightly higher than cin , the best strategy is to sometimes raise an alarm
based on ôut. We found that the optimized τ always outperforms the baselines.
An exception is ratio 2:1 for the traffic fines dataset, where never alarming is
slightly better.

The impact of the threshold for firing an alarm is further explored in Fig-
ure 5. The optimized threshold is marked with a red cross and each line repre-
sents one particular cost ratio. While the optimized threshold generally obtains
minimal costs, there sometimes exist multiple optimal thresholds for a given
alarm model. For instance, for the 5:1 ratio in bpic2017 cancelled, all thresh-
olds between 0 and 0.4 are cost-wise equivalent. Hence, empirical thresholding
consistently finds a threshold that yields the lowest cost for a given log and
cost model configuration.

3 https://github.com/samadeusfp/alarmBasedPrescriptiveProcessMonitoring/

https://github.com/samadeusfp/alarmBasedPrescriptiveProcessMonitoring/

20 Stephan A. Fahrenkrog-Petersen et al.

bpic2017_cancelled bpic2017_refused traffic_fines unemployment

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

0.1
0.2
0.3
0.4
0.5

Threshold (τ)A
v
g
.
c
o
s
t
p
e
r

c
a
s
e

c_out : c_in 1:1 2:1 5:1 20:1

Fig. 5: Cost over different thresholds (τ is marked with a red cross)

bpic2017_cancelled unemployment

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1:1
2:1
3:1
5:1

10:1
20:1

mitigation effectiveness (eff)

c
_
o
u
t
:
c
_
in

(a) Varying eff

bpic2017_cancelled unemployment

1:0 10:1 5:1 2:1 1:1 1:2 1:5 1:10 1:0 10:1 5:1 2:1 1:1 1:2 1:5 1:10

c_in : c_com

benefit
0.0
0.1
0.2
0.3
0.4

(b) Varying ccom

Fig. 6: Benefits achieved by a basic empirical thresholding systems over no
alarm system for different alarm model configurations

Turning to RQ2, we evaluate how the mitigation effectiveness influences
the results. Figure 6a shows the benefit of having an alarm system com-
pared to not having it for different (constant) effectiveness values. As the
results are similar for logs with similar class ratios, hereinafter, we show the
results for bpic2017 cancelled (balanced classes) and unemployment (imbal-
anced classes). As expected, the benefit increases both with higher eff and
with higher cout : cin ratios. For bpic2017 cancelled, the alarm system yields a
benefit when cout : cin is high and eff > 0. Also, a benefit is always obtained
when eff > 0.5 and cout > cin . In the case of the unemployment dataset,
the average benefits are smaller, since there are fewer cases with undesired
outcome and, therefore, the number of cases where cout can be prevented
by alarming is lower. In this case, a benefit is obtained when both eff and
cout : cin are high. We conducted analogous experiments with a linear decay
in effectiveness, varying the maximum possible effectiveness (at the start of
the case), which confirmed that the observed patterns remain the same. As
such, we have confirmed empirically that an alarm system yields a benefit over
different values of mitigation effectiveness.

Next, we consider the influence of the cost of compensation (RQ3). As
above, the benefit of the alarm system is plotted in Figure 6b across differ-
ent ratios of cout : cin and cin : ccom . When the cost of compensation ccom
is high, the benefit decreases due to false alarms. For bpic2017 cancelled, a
benefit is obtained almost always, except when cout : cin is low (e.g., 2:1) and
ccom is high (i.e., higher than cin). For unemployment, fewer configurations
are beneficial, e.g., when cout : cin = 5 : 1 and ccom is smaller than cin . We
conducted analogous experiments with a linearly increasing cost of interven-
tion, varying the maximum possible cost, which confirmed the above trends.
In sum, we confirmed empirically that the alarm system achieves a benefit if

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 21

traffic_fines

const

traffic_fines

linear

traffic_fines

nonmonotonic

bpic2017_refused

const

bpic2017_refused

linear

bpic2017_refused

nonmonotonic

bpic2017_cancelled

const

bpic2017_cancelled

linear

bpic2017_cancelled

nonmonotonic

0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

c_com

c_
ou

t :
 c

_i
n

≤ 0.75
1.0

≥ 1.25

Ratio

Fig. 7: Ratio of the average processing costs for a systems with fiiring delay
compared to a system without firing delay

the cost of the undesired outcome is sufficiently higher than the cost of the
intervention and/or the cost of the intervention is sufficiently higher than the
cost of compensation.

Next, we evaluate the design choices involved when deciding on when to
fire an alarm. We explore the reduction in the average processing cost under a
firing delay, the use of multiple threshold intervals or prefix-length-dependent
thresholds, and the combination of the latter thresholds and a firing delay.

To answer RQ4 on the effectiveness of a firing delay, we calculated the
ratio of the average cost per case for the system with the firing delay as an
additional hyperparameter, divided by the system without a firing delay. Fig-
ure 7 shows nearly no cost settings, in which the system that fires immediately
outperforms the system with the firing delay (red cells). Many times, the firing
delay reduces the costs (green cells), especially for the non-monotonic scenar-
ios. Sometimes the costs are reduced by 20% or more. However, in the vast
majority of cases, both systems produce the same results. This is due to the
firing delay parameter being set to 1 in many scenarios. In addition to the
ratio, we also visualized the benefit in terms of f-score that the system with
firing delay delivers, see Figure 8. The results provide evidence for our hypoth-
esis that waiting a certain number of events before firing an alarm improves
the classification of traces. Overall, our results suggest the following answer to
RQ4: The firing delay parameter may reduce the average processing cost per
case.

To visualize relative benefits of multiple threshold intervals (RQ5), we cal-
culate the ratio of the average processing costs between our baseline, a system
based on the basic model, and our system with two threshold intervals. In
Figure 9, we plot this ratio for all used cost configurations. Green and red
coloring represents an improvement by using interval-based thresholds or by

22 Stephan A. Fahrenkrog-Petersen et al.

traffic_fines

const

traffic_fines

linear

traffic_fines

nonmonotonic

bpic2017_refused

const

bpic2017_refused

linear

bpic2017_refused

nonmonotonic

bpic2017_cancelled

const

bpic2017_cancelled

linear

bpic2017_cancelled

nonmonotonic

0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

c_com

c_
ou

t :
 c

_i
n

≤ − 0.5
0.0

≥ 0.5

fscore

Fig. 8: Absolute F-score benefit of a system with firing delay over a system
without firing delay

traffic_fines

const

traffic_fines

linear

traffic_fines

nonmonotonic

bpic2017_refused

const

bpic2017_refused

linear

bpic2017_refused

nonmonotonic

bpic2017_cancelled

const

bpic2017_cancelled

linear

bpic2017_cancelled

nonmonotonic

0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

c_com

c_
ou

t :
 c

_i
n

≤ 0.9
1.0

≥ 1.1

Ratio

Fig. 9: Ratio of average processing costs of a systems with single threshold
compared to a system with two thresholds

using a single global threshold, respectively. Contrary to our expectation, in
some scenarios the system with a global threshold outperforms a system with
intervals. However, improvements are observed for most scenarios.

Consistent improvements materialize for scenarios with non-monotonic chang-
ing costs and the cost of compensation being lower than the cost of undesired
outcome. The improvements are the highest for the traffic fines dataset, that
has the shortest traces. This leads also to shorter intervals. The smallest im-
provement in this group is seen in the bpic2017 refused dataset, which shows
the lowest ratio of traces with an undesired outcome. Due to this low class

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 23

traffic_fines

const

traffic_fines

linear

traffic_fines

nonmonotonic

bpic2017_refused

const

bpic2017_refused

linear

bpic2017_refused

nonmonotonic

bpic2017_cancelled

const

bpic2017_cancelled

linear

bpic2017_cancelled

nonmonotonic

0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

c_com

c_
ou

t :
 c

_i
n

−0.5
0.0
0.5

Correlation
 coefficient

Fig. 10: Correlation coefficient between number of intervals for thresholds in
an alarm system and the average cost per case

ratio, the potential room for improvement is also the smallest, because for a
smaller number of cases it is necessary to intervene.

Moreover, we observe consistent improvements for the two bpic2017 datasets
for linear changing costs and constant costs.

The traffic fines dataset with linear costs is an interesting outlier. It shows
nearly no improvement for scenarios, in which the cost of compensation is lower
than the cost of undesired outcome. If the cost of undesired outcome has the
same value as the cost of compensation the system with threshold intervals
performs significantly better than the system with a global threshold. If the
cost of compensation is higher than the cost of undesired outcome, the system
with a single global threshold is significantly better. We investigated why the
interval systems performs worse than the single threshold system and found
out that, in the linear scenario, the single threshold system set the threshold
to such a high level, that the threshold is never reached and no alarm is
fired. However, this is not true for the system with two threshold intervals,
this system fire alarms in a variety of cases. This approach underperforms
here compared to not firing an alarm at all. The reason for this seems to be
overfitting.

In general, considering RQ5, our results indicate that prefix-length depen-
dent thresholds based on intervals may improve a prescriptive alarm system.

We further consider the use of several prefix-length-dependent thresholds.
Figure 10 depicts the ranking correlation between the number of thresholds
a system has in ascending order and the corresponding average cost per case
in descending order. As in the previous experiment, an increasing number of
thresholds should not lead to a higher, average cost per case. If there is no
benefit to additional thresholds, all thresholds could just be set to the same
value. This is not the case in our experiments, though, which we attribute to

24 Stephan A. Fahrenkrog-Petersen et al.

traffic_fines

const

traffic_fines

linear

traffic_fines

nonmonotonic

bpic2017_refused

const

bpic2017_refused

linear

bpic2017_refused

nonmonotonic

bpic2017_cancelled

const

bpic2017_cancelled

linear

bpic2017_cancelled

nonmonotonic

0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20 0 1 2 3 4 5 10 20

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

10:1
10:2
10:3
10:4
10:5

c_com

c_
ou

t :
 c

_i
n

≤ 0.75

1.0

≥ 1.25

Ratio

Fig. 11: Ratio for system that fires immediately and global threshold divided
by system with firing delay and prefix-length dependent threshold

overfitting. An example for overfitting are situations, where the basic model
does not fire an alarm for any case, while the prefix-length dependent approach
uses the second or third threshold to fire alarms for lengthy traces. This leads
to better results on the training set, but not on the test set.

In the light of RQ6, the above results do not generally suggest that there is
a positive influence of an increased number of prefix-length-dependent thresh-
olds. However, we see consistent improvements or at least no declines for the
non-monotonic versions of the datasets bpic2017 cancelled and traffic fines.
These datasets have both a balanced class ratio, whereas the dataset bpic2017
refused has an imbalanced class ratio (see Table 2). This leads to the conclu-
sion that it is possible to improve the average cost per case with an increasing
number of thresholds for datasets with a balanced class ratio in non-monotonic
cost scenarios. A limitation to this is that we only observe improvements if
the cost of an undesired outcome is larger than the cost of compensation.
As expected, the improvements in the traffic fines dataset are higher. Since
this dataset has shorter traces, multiple thresholds imply a high coverage of
possible prefix-lengths.

As mentioned in RQ7, we also investigate, if the combination of prefix-
length dependent thresholds and a firing delay is better than the basic model.
To this end, we first check, if the combined approach outperforms a system
with a global threshold and without firing delay. The results in Figure 11
confirm that the proposed approach leads to equivalent or better ratios of
average processing cost under nearly all tested cost configurations. However,
for three cost configurations in the traffic fines dataset, we observe negative
results. Exploring these experiments in more detail, we found the negative
results for two of them being due to overfitting. In these scenarios, the basic
model approach builds a system that never fires an alarm, while the proposed

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 25

bpic2017_cancelled bpic2017_refused traffic_fines

1 2 3 4 5 10 20 30 40 1 2 3 4 5 10 20 30 40 1 2 3 4 5 10 20 30 40

10:1

10:2

10:3

10:4

10:5

c_com

c_
ou

t :
 c

_i
n

0.9
1.0
1.1

ratio

Fig. 12: Ratio of average processing cost for a system with multiple alarm
based on hierarchical thresholding and the best single alarm system

approach builds a system that fires an alarm for some traces. In the third case,
the sophisticated approach sets the fire delay to 1 and sets the later prefix-
length dependent threshold to 1 and the first threshold to a similar value like
the threshold of the basic approach. With more training runs, therefore, the
sophisticated approach would probably end up with the same behavior as the
basic model.

Finally, we turn to the evaluation of a multi-alarm system (RQ8). Our
results in Figure 12 indicate that hierarchical thresholding may, but does not
necessarily outperform the best single-alarm system. Specifically, we observe
a stair-like border for scenarios with high compensation cost, in which hier-
archical thresholding outperforms the best-single alarm system. This aligns
with the relative benefit for false positive for alarm 1 compared to alarm 2.
We visualize this benefit by calculating the ratio of firing alarm 1 for false pos-
itive and alarm 2 in Figure 13. Based thereon, we conclude that a multi-alarm
system using hierarchical thresholding can outperform the best single-alarm
system for scenarios in which the more expensive alarm, in terms of cost of
intervention, has a huge cost benefit in the case of a false alarm, compared to
a cheaper alarm.

A summary of the experimental findings is given in Table 6.

6 Conclusion

This article presented a prescriptive process monitoring framework that ex-
tends existing approaches for predictive process monitoring with a mechanism
to raise alarms, and hence trigger interventions, to prevent or mitigate the
effects of undesired outcomes. The framework incorporates a cost model to
capture the trade-offs between the cost of intervention, the benefit of miti-
gating or preventing undesired outcomes, and the cost of compensating for

26 Stephan A. Fahrenkrog-Petersen et al.

10:1

10:2

10:3

10:4

10:5

1 2 3 4 5 10 20 30 40

c_com

c_
ou

t :
 c

_i
n

1.0
1.5
2.0

ratio

Fig. 13: Ratio of false positives of alarm 1 and alarm 2

Research Question Answer

1 How good are the thresholds identified by em-
pirical thresholding in terms of the reduction
of the average processing cost for different
alarm model configurations?

Thresholds yield a consistent
benefit for virtually all configu-
rations

2 How does the mitigation effectiveness affect
the benefit obtained by an alarm system?

Consistent benefit, largely inde-
pendent of the mitigation effec-
tiveness

3 How does the cost of compensation affect the
benefit obtained by an alarm system?

Consistent benefit, largely inde-
pendent of the cost of compen-
sation

How is the average processing cost per case affected:
4 When training a parameter for the minimum

number of events that exceed the threshold?
Benefit for virtually all configu-
rations

5 When using more than one threshold interval? Benefit for most configurations
6 When increasing the number of prefix-length-

dependent thresholds?
Benefit for some configurations,
depends on class ratio and costs

7 When combining prefix-length dependent
thresholds with a firing delay, compared to the
a single-alarm system?

Consistent benefit for virtually
all configurations

8 How is the average processing cost per case
affected when using multiple alarms compared
to the best system with only one alarm?

Benefit for large cost differences
of alarms

Table 6: Summary of our findings with respect to the research questions

unnecessary interventions. We also showed how to optimize the threshold(s)
for generating alarms, with respect to a given configuration of the alarm model
and event log.

An empirical evaluation on real-life logs showed significant benefits in op-
timizing the alarm threshold, relative to the baseline case where an alarm is
raised when the likelihood of a negative outcome exceeds a pre-determined
value. We also highlighted that under some conditions, it is preferable to use

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 27

multiple alarm thresholds. Finally, it became apparent that additional cost
reductions can be obtained, in some configurations, by delaying the firing of
an alarm. These findings provide insights into how alarm-based systems for
prescriptive process monitoring shall be configured in practice.

Our work opens various directions for future research. We plan to lift the
assumption of an alarm always triggering an intervention (regardless of, for
example, the workload of process workers). To this end, our framework shall be
extended with notions of resource capacity and utilization, possibly drawing on
our previous work on risk-aware resource allocation across concurrent cases [4].
We also strive for incremental tuning of the alarming mechanism based on
feedback about the alarm relevance and the intervention effectiveness. We
foresee that active learning methods could be applied in this context. Our
work could also be integrated with approaches like the ones presented in [11,
12] or those reviewed in [8] in the case where there is an abstraction gap
between the low-level events recorded in the log and the high-level activities
performed during the process enactments.

Acknowledgement

This work was supported by the Estonian Research Council (grant PRG1226).

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of machine learning research 1(Dec), 113–141
(2000)

3. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter op-
timization. In: Proc. of NIPS, pp. 2546–2554 (2011)

4. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M., ter Hofstede, A.H.: A
recommendation system for predicting risks across multiple business process instances.
Decision Support Systems 69, 1–19 (2015)

5. Dachraoui, A., Bondu, A., Cornuéjols, A.: Early classification of time series as a non
myopic sequential decision making problem. In: ECML PKDD, pp. 433–447. Springer
(2015)

6. Dees, M., de Leoni, M., Mannhardt, F.: Enhancing process models to improve busi-
ness performance: A methodology and case studies. In: Proc. of CoopIS, pp. 232–251.
Springer (2017)

7. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based pre-
dictive process monitoring. IEEE Trans. Services Computing (2017)

8. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and abstraction
of event data for process mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
10(3) (2020). DOI 10.1002/widm.1346. URL https://doi.org/10.1002/widm.1346

9. Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In:
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 155–164. ACM (1999)

10. Elkan, C.: The foundations of cost-sensitive learning. In: Proc. of IJCAI, pp. 973–978.
Morgan Kaufmann (2001)

11. Fazzinga, B., Flesca, S., Furfaro, F., Masciari, E., Pontieri, L.: Efficiently interpreting
traces of low level events in business process logs. Inf. Syst. 73, 1–24 (2018)

https://doi.org/10.1002/widm.1346

28 Stephan A. Fahrenkrog-Petersen et al.

12. Fazzinga, B., Folino, F., Furfaro, F., Pontieri, L.: An ensemble-based approach to the
security-oriented classification of low-level log traces. Expert Syst. Appl. 153, 113,386
(2020)

13. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of
classifiers to solve real world classification problems. JMLR 15(1), 3133–3181 (2014)

14. Gröger, C., Schwarz, H., Mitschang, B.: Prescriptive analytics for recommendation-
based business process optimization. In: Proc. of BIS, pp. 25–37. Springer (2014)

15. Krumeich, J., Werth, D., Loos, P.: Prescriptive control of business processes. BISE
58(4), 261–280 (2016)

16. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for
correlating, predicting and clustering dynamic behavior based on event logs. Information
Systems 56, 235–257 (2016)

17. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring
of business processes. In: Proc. of CAiSE, pp. 457–472. Springer (2014)

18. Metzger, A., Föcker, F.: Predictive business process monitoring considering reliability
estimates. In: Proc. of CAiSE, pp. 445–460. Springer (2017)

19. Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M., Dustdar,
S., Pohl, K.: Comparing and combining predictive business process monitoring tech-
niques. IEEE Trans. Systems, Man, and Cybernetics: Systems 45(2), 276–290 (2015)

20. Metzger, A., Neubauer, A., Bohn, P., Pohl, K.: Proactive process adaptation using deep
learning ensembles. In: Advanced Information Systems Engineering - 31st International
Conference, CAiSE 2019, Rome, Italy, June 3-7, 2019, Proceedings, pp. 547–562 (2019)

21. Mori, U., Mendiburu, A., Dasgupta, S., Lozano, J.A.: Early classification of time series
by simultaneously optimizing the accuracy and earliness. IEEE transactions on neural
networks and learning systems (99), 1–10 (2017)

22. Mori, U., Mendiburu, A., Keogh, E., Lozano, J.A.: Reliable early classification of time
series based on discriminating the classes over time. Data Mining and Knowledge Dis-
covery 31(1), 233–263 (2017)

23. Nguyen, A., Chatterjee, S., Weinzierl, S., Schwinn, L., Matzner, M., Eskofier, B.M.:
Time matters: Time-aware lstms for predictive business process monitoring. In: S.J.J.
Leemans, H. Leopold (eds.) Process Mining Workshops - ICPM 2020 International
Workshops, Padua, Italy, October 5-8, 2020, Revised Selected Papers, Lecture Notes
in Business Information Processing, vol. 406, pp. 112–123. Springer (2020)

24. Olson, R.S., La Cava, W., Mustahsan, Z., Varik, A., Moore, J.H.: Data-driven advice
for applying machine learning to bioinformatics problems. In: Proc. of Biocomputing,
pp. 192–203. World Scientific (2017)

25. Parrish, N., Anderson, H.S., Gupta, M.R., Hsiao, D.Y.: Classifying with confidence from
incomplete information. The Journal of Machine Learning Research 14(1), 3561–3589
(2013)

26. Pednault, E., Abe, N., Zadrozny, B.: Sequential cost-sensitive decision making with
reinforcement learning. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 259–268. ACM (2002)

27. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers 10(3), 61–74 (1999)

28. Sheng, V.S., Ling, C.X.: Thresholding for making classifiers cost-sensitive. In: AAAI,
pp. 476–481 (2006)

29. Tavenard, R., Malinowski, S.: Cost-aware early classification of time series. In: ECML
PKDD, pp. 632–647. Springer (2016)

30. Teinemaa, I., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive process
monitoring: Review and benchmark. ACM Trans. Knowl. Discov. Data 13(2), 17:1–
17:57 (2019)

31. Teinemaa, I., Tax, N., de Leoni, M., Dumas, M., Maggi, F.M.: Alarm-based prescriptive
process monitoring. In: Proceedings of the Business Process Management Forum (BPM
Forum), pp. 91–107. Springer (2018)

32. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Jour-
nal of Data Warehousing and Mining (IJDWM) 3(3), 1–13 (2007)

33. Weinzierl, S., Dunzer, S., Zilker, S., Matzner, M.: Prescriptive business process mon-
itoring for recommending next best actions. In: D. Fahland, C. Ghidini, J. Becker,

Fire Now, Fire Later: Alarm-Based Systems for Prescriptive Process Monitoring 29

M. Dumas (eds.) Business Process Management Forum - BPM Forum 2020, Seville,
Spain, September 13-18, 2020, Proceedings, Lecture Notes in Business Information
Processing, vol. 392, pp. 193–209. Springer (2020)

34. Xing, Z., Pei, J., Philip, S.Y.: Early classification on time series. KAIS 31(1), 105–127
(2012)

35. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabilities
are both unknown. In: Proc. of KDD, pp. 204–213. ACM (2001)

	Introduction
	Related Work
	Prescriptive Process Monitoring Framework
	Alarm Systems and Empirical Thresholding
	Evaluation
	Conclusion

