
Published as a conference paper at ICLR 2019

LEARNING EXPLORATION POLICIES FOR NAVIGATION

Tao Chen1 Saurabh Gupta2 Abhinav Gupta1,2
1Carnegie Mellon University
2Facebook AI Research

ABSTRACT

Numerous past works have tackled the problem of task-driven navigation. But,
how to effectively explore a new environment to enable a variety of down-stream
tasks has received much less attention. In this work, we study how agents can
autonomously explore realistic and complex 3D environments without the context
of task-rewards. We propose a learning-based approach and investigate different
policy architectures, reward functions, and training paradigms. We find that use
of policies with spatial memory that are bootstrapped with imitation learning and
finally finetuned with coverage rewards derived purely from on-board sensors can
be effective at exploring novel environments. We show that our learned explo-
ration policies can explore better than classical approaches based on geometry
alone and generic learning-based exploration techniques. Finally, we also show
how such task-agnostic exploration can be used for down-stream tasks. Videos
are available at: https://sites.google.com/view/exploration-for-nav/.

1 INTRODUCTION

Imagine your first day at a new workplace. If you are like most people, the first task you set for
yourself is to become familiar with the office so that the next day when you have to attend meetings
and perform tasks, you can navigate efficiently and seamlessly. To achieve that goal, you explore
your office without the task context of target locations you have to reach and build a generic un-
derstanding of space. This step of task-independent exploration is quite critical yet often ignored in
current approaches for navigation.

When it comes to navigation, currently there are two paradigms: (a) geometric reconstruction and
path-planning based approaches (Hartley & Zisserman, 2003; Thrun et al., 2005; LaValle, 2006), and
(b) learning-based approaches (Mirowski et al., 2017; Gupta et al., 2017; Savinov et al., 2018; Zhu
et al., 2017). SLAM-based approaches, first build a map and then use localization and path planning
for navigation. In doing this, one interesting question that is often overlooked is: How does one build
a map? How should we explore the environment to build this map? Current approaches either use a
human operator to control the robot for building the map (e.g. Thrun et al. (1999)), or use heuristics
such as frontier-based exploration (Yamauchi, 1997). On the other hand for approaches that use
learning, most only learn policies for specific tasks (Zhu et al., 2017; Mirowski et al., 2017; Gupta
et al., 2017), or assume environments have already been explored (Savinov et al., 2018). Moreover,
in context of such learning based approaches, the question of exploration is not only important at
test time, but also at train time. And once again, this question is largely ignored. Current approaches
either use sample inefficient random exploration or make impractical assumptions about full map
availability for generating supervision from optimal trajectories.

Thus, a big bottleneck for both these navigation paradigms is an exploration policy: a task-agnostic
policy that explores the environment to either build a map or sample trajectories for learning a navi-
gation policy in a sample-efficient manner. But how do we learn this task-independent policy? What
should be the reward for such a policy? First possible way is to not use learning and use heuris-
tic based approaches (Yamauchi, 1997). However, there are four issues with non-learning based
approaches: (a) these approaches are brittle and fail when there is noise in ego-estimation or local-
ization; (b) they make strong assumptions about free-space/collisions and fail to generalize when
navigation requires interactions such as opening doors etc.; (c) they fail to capture semantic priors
that can reduce search-space significantly; and (d) they heavily rely on specialized sensors such as
range scanners. Another possibility is to learn exploration policies on training environments. One
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way is to use reinforcement learning (RL) with intrinsic rewards. Examples of intrinsic rewards can
be “curiosity” where prediction error is used as reward signal or “diversity” which discourages the
agent from revisiting the same states. While this seems like an effective reward, such approaches are
still sample inefficient due to blackbox reward functions that can’t be differentiated to compute gra-
dients effectively. So, what would be an effective way to learn exploration policies for navigation?

In this paper, we propose an approach for learning policies for exploration for navigation. We ex-
plore this problem from multiple perspectives: (a) architectural design, (b) reward function design,
and (c) reward optimization. Specifically, from perspective of reward function and optimization,
we take the alternative paradigm and use supervision from human explorations in conjunction with
intrinsic rewards. We notice that bootstrapping of learning from small amount of human supervision
aids learning of semantics (e.g. doors are pathways). It also provides a good initialization for learn-
ing using intrinsic rewards. From the perspective of architecture design, we explore how to use 3D
information and use it efficiently while doing exploration. We study proxy rewards that characterize
coverage and demonstrate how this reward outperforms other rewards such as curiosity. Finally,
we show how experience gathered from our learned exploration policies improves performance at
down-stream navigation tasks.

2 RELATED WORK

Our work on learning exploration policies for navigation in real world scenes is related to active
SLAM in classical robotics, and intrinsic rewards based exploration in reinforcement learning. As
we study the problem of navigation, we also draw upon recent efforts that use learning for this
problem. We survey related efforts in these three directions.

Navigation in Classical Robotics. Classical approaches to navigation operate by building a map
of the environment, localizing the agent in this map, and then planning paths to convey the agent
to desired target locations. Consequently, the problems of mapping, localization and path-planning
have been very thoroughly studied (Hartley & Zisserman, 2003; Thrun et al., 2005; LaValle, 2006).
However, most of this research starts from a human-operated traversal of the environment, and
falls under the purview of passive SLAM. Active SLAM, or how to automatically traverse a new
environment for building spatial representations is much less studied. Cadena et al. (2016) present
an excellent review of active SLAM literature, we summarize some key efforts here. Past works have
formulated active SLAM as Partially Observable Markov Decision Processes (POMDPs) (Martinez-
Cantin et al., 2009), or as choosing actions that reduce uncertainty in the estimated map (Carrillo
et al., 2012). While these formulations enable theoretical analysis, they crucially rely on sensors
to build maps and localize. Thus, such approaches are highly susceptible to measurement noise.
Additionally, such methods treat exploration purely as a geometry problem, and entirely ignore
semantic cues for exploration such as doors.

Learning for Navigation. In order to leverage such semantic cues for navigation, recent works
have formulated navigation as a learning problem (Zhu et al., 2017; Gupta et al., 2017; Mirowski
et al., 2017; Savinov et al., 2018). A number of design choices have been investigated. For example,
these works have investigated different policy architectures for representing space: Zhu et al. (2017)
use feed-forward networks, Mirowski et al. (2017) use vanilla neural network memory, Gupta et al.
(2017) use spatial memory and planning modules, and Savinov et al. (2018) use semi-parametric
topological memory. Different training paradigms have also been explored: Gupta et al. (2017)
learn to imitate behavior of an optimal expert, Mirowski et al. (2017) and Zhu et al. (2017) use
extrinsic reward based reinforcement learning, Pathak et al. (2018) learn an inverse dynamics model
on the demonstrated trajectory way-points from the expert, while Savinov et al. (2018) use self-
supervision. In our work here, we build on insights from these past works. Our policy architecture
and reward definition use spatial memory to achieve long-horizon exploration, and we imitate human
exploration demonstrations to boot-strap policy learning. However, in crucial distinction, instead
of studying goal-directed navigation (either in the form of going to a particular goal location, or
object of interest), we study the problem of autonomous exploration of novel environments in a task-
agnostic manner. In doing so, unlike past works, we do not assume access to human demonstrations
in the given novel test environment like Savinov et al. (2018), nor do we assume availability of
millions of samples of experience or reward signals in the novel test environment like Zhu et al.
(2017) or Mirowski et al. (2017). Moreover, we do not depend on extrinsically defined reward
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Figure 1: Policy and Training Architecture: Our scheme for learning exploration policies for navigation.
We assume a mobile robot with an RGB-D camera and a bump sensor. We maintain a running estimate of its
position x̂t. These position estimates are used to stitch together an approximate map of the environment using
the depth images. The exploration policy πe is a recurrent network takes egocentric crops of this map at two
scales, and the current RGB image as input. The policy is trained using an intrinsic coverage reward that is
computed from the approximate map and a collision penalty obtained from the bump sensor.

signals for training. We derive them using on-board sensors. This makes our proposed approach
amenable to real world deployment. Learning based approaches (Gandhi et al., 2017; Sadeghi &
Levine, 2017) have also been used to learn low-level collision avoidance policies. While they do not
use task-context, they learn to move towards open space, without the intent of exploring the whole
environment. Zhang et al. (2017) uses a differentiable map structure to mimic the SLAM techniques.
Such works are orthogonal to our effort on exploration as our exploration policy can benefit from
their learned maps instead of only using reconstructed occupancy map.

Exploration for Navigation. A notable few past works share a similar line of thought, and in-
vestigate exploration in context of reinforcement learning (Schmidhuber, 1991; Stadie et al., 2015;
Pathak et al., 2017; Fu et al., 2017; Lopes et al., 2012; Chentanez et al., 2005). These works de-
sign intrinsic reward functions to capture novelty of states or state-action transitions. Exploration
policies are then learned by optimizing these reward functions using reinforcement learning. Our
work is most similar to these works. However, we focus on this problem in the specific context of
navigation in complex and realistic 3D environments, and propose specialized policy architectures
and intrinsic reward functions. We experimentally demonstrate that these specializations improve
performance, and how learning based exploration techniques may not be too far from real world
deployment. Jayaraman & Grauman (2018) use a related reward function (pixel reconstruction) to
learn policies to look around (and subsequently solve tasks). However, they do it in context of 360◦
images, and their precise reward can’t be estimated intrinsically. Xu et al. (2017) generate smooth
movement path for high-quality camera scan by using time-varying tensor fields. Bai et al. (2016)
propose an information-theoretic exploration method using Gaussian Process regression and show
experiments on simplistic map environments. Kollar & Roy (2008) assume access to the ground-
truth map and learn an optimized trajectory that maximizes the accuracy of the SLAM-derived map.
In contrast, our learning policy directly tells the action that the agent should take next and estimates
the map on the fly.

System Identification. Finally, the general idea of exploration prior to goal-driven behavior, is
also related to the classical idea of system identification (Ljung, 1987). Recent interest in this idea
with end-to-end learning (Yu et al., 2017; Duan et al., 2016; Mishra et al., 2018) has been shown to
successfully adapt to novel mazes. In comparison, we tackle navigation in complex and realistic 3D
environments, with very long spatio-temporal dependencies.

3 APPROACH

Let us consider a mobile agent that is equipped with an RGB-D camera and that can execute basic
movement macro-actions. This agent has been dropped into a novel environment that it has never
been in before. We want to learn an exploration policy πe that enables this agent to efficiently
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explore this new environment. A successful exploration of the new environment should enable the
agent to accomplish down-stream tasks in this new environment efficiently.

We formulate estimation of πe as a learning problem. We design a reward function that is esti-
mated entirely using on-board sensors, and learn πe using RL. Crucially, πe is learned on a set of
environments Etrain, and tested on a held-out set of environments Etest, i.e., Etrain

⋂
Etest = φ.

The key novelties in our work are: a) the design of the policy πe, b) the design of the reward function
R, and c) use of human demonstrations to speed up training of πe. The design of the policy and the
reward function depend on a rudimentary map of the environment that we maintain over time. We
first describe the map construction procedure, and then detail the aforementioned aspects.

3.1 MAP CONSTRUCTION

As the agent moves around, it uses its depth camera to build and update a map of the world around
it. This is done by maintaining an estimate of the agent’s location over time and projecting 3D points
observed in the depth image into an allocentric map of the environment.

More specifically, let us assume that the agent’s estimate of its current location at time step t is x̂t,
and that the agent starts from origin (i.e. x̂0 = 0). When the agent executes an action at at time step
t, it updates its position estimate through a known transition function f , i.e., x̂t+1 = f(x̂t, at).

The depth image observation at time step t+1, Dt+1 is back-projected into 3D points using known
camera intrinsic parameters. These 3D points are transformed using the estimate x̂t+1, and projected
down to generate a 2D map of the environment (that tracks what parts of space are known to be
traversable or known to be non-traversable or unknown). Note that, because of slippage in wheels
etc., x̂t+1 may not be the same as the true relative location of the agent from start of episode xt+1.
This leads to aliasing in the generated map. We do not use expensive non-linear optimization (bundle
adjustment) to improve our estimate x̂t+1, but instead rely on learning to provide robustness against
this mis-alignment. We use the new back-projected 3D points to update the current map Mt and to
obtain an updated map Mt+1.

3.2 POLICY ARCHITECTURE

Before we describe our policy architecture, let’s define what are the features that a good exploration
policy needs: (a) good exploration of a new environment requires an agent to meaningfully move
around by detecting and avoiding obstacles; (b) good policy also requires the agent to identify se-
mantic cues such as doors that may facilitate exploration; (c) finally, it requires the agent to keep
track of what parts of the environment have or have not been explored, and to estimate how to get to
parts of the environment that may not have been explored.

This motivates our policy architecture. We fuse information from RGB image observations and
occupancy grid-based maps. Information from the RGB image allows recognition of useful semantic
cues. While information from the occupancy maps allows the agent to keep track of parts of the
environment that have or have not been explored and to plan paths to unexplored regions without
bumping into obstacles.

The policy architecture is shown in Fig. 1. We describe it in detail here:

1. Information from RGB images: RGB images are processed through a CNN. We use a ResNet-
18 CNN that has been pre-trained on the ImageNet classification task, and can identify semantic
concepts in images.

2. Information from Occupancy Maps: We derive an occupancy map from past observations (as
described in Sec. 3.1), and use it with a ResNet-18 CNN to extract features. To simplify learning,
we do not use the allocentric map, but transform it into an egocentric map using the estimated
position x̂t (such that the agent is always at the center of the map, facing upwards). This map
canonicalization aids learning. It allows the CNN to not only detect unexplored space but to also
locate it with respect to its current location. Additionally, we use two such egocentric maps, a
coarse map that captures information about a 40m × 40m area around the agent, and a detailed
map that describes a 4m × 4m neighborhood. Some of these design choices were inspired by
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recent work from Gupta et al. (2017), Parisotto & Salakhutdinov (2018) and Henriques & Vedaldi
(2018), though we make some simplifications.

3. Recurrent Policy: Information from the RGB image and maps is fused and passed into an RNN.
Recurrence can allow the agent to exhibit coherent behavior.

3.3 COVERAGE REWARD

We now describe the intrinsic reward function that we use to train our exploration policy. We derive
this intrinsic rewards from the map Mt, by computing the coverage. Coverage C(Mt) is defined as
the total area in the map that is known to be traversable or known to be non-traversable. Reward
Rcov

int (t) at time step t is obtained via gain in coverage in the map: C(Mt+1) − C(Mt). Intuitively,
if the current observation adds no obstacles or free-space to the map then it adds no information and
hence no reward is given. We also use a collision penalty, that is estimated using the bump sensor,
Rcoll

int (t) = −Bump(t + 1), where Bump(t + 1) denotes if a collision occurred while executing
action at. Rcov

int and Rcoll
int are combined to obtain the total reward.

3.4 TRAINING PROCEDURE

Finally, we describe how we optimize the policy. Navigating in complex realistic 3D houses, re-
quires long-term coherent behavior over multiple time steps, such as exiting a room, going through
doors, going down hallways. Such long-term behavior is hard to learn using reinforcement learn-
ing, given sparsity in reward. This leads to excessively large sample complexity for learning. To
overcome this large sample complexity, we pre-train our policy to imitate human demonstrations
of how to explore a new environment. We do this using trajectories collected from AMT workers
as they were answering questions in House3D (Das et al., 2018). We ignore the question that was
posed to the human, and treat these trajectories as a proxy for how a human will explore a previosuly
unseen environment. After this phase of imitation learning, πe is further trained via policy gradients
(Williams, 1992) using proximal policy optimization (PPO) from Schulman et al. (2017).

4 EXPERIMENTS

The goal of this paper is to build agents that can autonomously explore novel complex 3D environ-
ments. We want to understand this in context of the different choices we made in our design, as
well as how our design compares to alternate existing techniques for exploration. While coverage
of the novel environment is a good task-agnostic metric, we also design experiments to addition-
ally quantify the utility of generic task-agnostic exploration for downstream tasks of interest. We
first describe our experimental setup that consists of complex realistic 3D environments and empha-
sizes the study of generalization to novel environments. We then describe experiments that measure
task-agnostic exploration via coverage. And finally, we present experiments where we use different
exploration schemes for downstream navigation tasks.

4.1 EXPERIMENTAL SETUP

We conducted our experiments on the House3D simulation environment Wu et al. (2018). House
3D is based on realistic apartment layouts from the SUNCG dataset Song et al. (2017) and simulates
first-person observations and actions of a robotic agent embodied in these apartments. We use 20
houses each for training and testing. These sets are sampled from the respective sets in House 3D,
and do not overlap. That is, testing is done on a set of houses not seen during training. This allows
us to study generalization, i.e., how well our learned policies perform in novel, previously unseen
houses. We made one customization to the House 3D environment: by default doors in House 3D
are rendered but not used for collision checking. We modified House 3D to also not render doors, in
addition to not using them for collision checking.

Observation Space. We assume that the agent has an RGB-D camera with a field of view of 60◦,
and a bump sensor. The RGB-D camera returns a regular RGB image and a depth image that records
the distance (depth information is clipped at 3m) of each pixel from the camera. The bump sensor
returns if a collision happened while executing the previous action.

5



Published as a conference paper at ICLR 2019

Action Space. We followed the same action space as in EmbodiedQA (Das et al., 2018), with
6 motion primitives: move forward 0.25m, move backward 0.25m, strafe left 0.25m, strafe right
0.25m, turn left 9◦, and turn right 9◦.

Extrinsic Environmental Reward. We do not use any externally specified reward signals from the
environment: Rext(t) = 0.

Intrinsic Reward. As described in Sec. 3.3, the intrinsic reward of the agent is based upon the map
that it constructs as it moves around (as described in Sec. 3.1), and readings from the bump sensor.
RewardRint(t) = αRcov

int(t)+βR
coll
int(t). HereRcov

int is the coverage reward, andRcoll
int is the collision

reward. α, β are hyper-parameters to trade-off how aggressive the agent is.

Training. As described in Sec. 3.4, we train policies using imitation of human trajectories and RL.

1. Imitation from Human Exploration Trajectories. We leverage human exploration trajectories
collected from AMT workers as they answered questions for the EmbodiedQA task (Das et al.,
2018). We ignore the question that was posed to the AMT worker, and train our policy to simply
mimic the actions that the humans took. As the humans were trying to answer these questions
in previously unseen environments, we assume that these trajectories largely exhibit exploration
behavior. We used a total of 693 human trajectories for this imitation.

2. Reinforcement Learning: After learning via imitation, we further train the policy using rein-
forcement learning on the training houses. We use PPO (Schulman et al., 2017) to optimize the
intrinsic reward defined above. At the start of each episode, the agent is initialized at a random
location inside one of the training houses. Each episode is run for 500 time-steps. We run a total
of 6400 episodes which amounts to a total of 3.2M steps of experience.

Baselines. We next describe the various baseline methods that we experimented with. We imple-
mented a classical baseline that purely reasons using geometry, and a learning baseline that uses
curiosity for exploration.

1. Frontier-based Exploration. As a classical baseline, we experimented with frontier-based explo-
ration (Yamauchi, 1997; Dornhege & Kleiner, 2013). This is a purely geometric method that
utilizes the built map Mt. Every iteration, it samples a point in currently unexplored space, and
plans a path towards it from the current location (unobserved space is assumed to be free). As
the plan is executed, both the map and the plan are updated. Once the chosen point is reached,
this process is repeated.

2. Curiosity-based Exploration. The next baseline we tried was curiosity-based exploration. In
particular, we use the version proposed by Pathak et al. (2017) that uses prediction error of a
forward model as reward. We use the modifications proposed by Burda et al. (2019), and only
train a forward model. We prevent degeneracy in forward model by learning it in the fixed feature
space of a ResNet-18 model that has been pre-trained on the ImageNet classification task.

4.2 COVERAGE QUALITY

We first measure exploration by itself, by measuring the true coverage of the agent. We compute the
true coverage using the map as described in Sec. 3.1, except for using the true location of the agent
rather than the estimated location (i.e. xt instead of x̂t). We study the following three scenarios:

Without Estimation Noise: We first evaluate the performance of the agent that is trained and tested
without observation noise, that is, x̂t = xt. Note that this setting is not very realistic as there is
always observation error in an agent’s estimate of its location. It is also highly favorable to the
frontier-based exploration agent, which very heavily relies on the accuracy of its maps. Fig. 2(left)
presents the performance of different policies for this scenario. We first note that the curiosity based
agent (IL + RL with Curiosity) explores better than a random exploration policy (that executes a
random action at each time step). Straight is a baseline where the agent moves along a straight
line and executes a random number of 9◦ turns when a collision occurs, which is a strategy used
by many robot vacuums. Such strategy does not require RGB or depth information, and performs
better than the curiosity based agent. However, both policies are worse than an RGB only version
of our method, an RGB only policy that is trained with our coverage reward (IL + RL with RGB).
Our full system (IL + RL with Map + RGB) that also uses maps as input performs even better.
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Figure 2: Coverage Performance. Policies are tested on 100 exploration runs (5 random start locations each
on 20 testing houses). Left figure plots average coverage as a function of number of time steps in the episode.
Center figure studies impact of noise in state estimation. We plot average coverage at end of episode as a
function of amount of noise. Right figure studies the case when there is a mis-match between geometry and
affordance, and plots average coverage as a function of time steps in episode. All plots report mean performance
over 3 runs, and the shaded area represents the minimum and maximum performance.

Frontier-based exploration (Frontier-based Explr) has the best performance in this scenario. As
noted, this is to expect as this method gets access to perfect, fully-registered maps, and employs
optimal path planning algorithm to move from one place to another. It is also worth noting that, it is
hard to use such classical techniques in situations where we only have a RGB images. In contrast,
learning allows us to easily arrive at policies that can explore using only RGB images at test time.

With Estimation Noise: We next describe a more realistic scenario that has estimation noise, i.e.
x̂t+1 is estimated using a noisy dynamics function. In particular, we add truncated Gaussian noise
to the transition function f at each time step. The details of the noise generation is elaborated in
Appendix C.4. The noise compounds over time. Even though such a noise model leads to com-
pounding errors over time (as in the case of a real robot), we acknowledge that this simple noise
model may not perfectly match noise in the real world. Fig. 2(center) presents the coverage area at
the end of episode (1000 time steps) as a function of the amount of noise introduced1. When the
system suffers from sensor noise, the performance of the frontier-based exploration method drops
rapidly. In contrast, our learning-based agent that wasn’t even trained with any noise continues to
performs well. Even at relatively modest noise of 4% our learning based method already does better
than the frontier-based agent. We additionally note that our agent can even be trained when the
intrinsic reward estimation itself suffers from state estimation noise: for instance performance with
10% estimation noise (for intrinsic reward computation and map construction) is 98.9m2, only a
minor degradation from 117.4m2 (10% estimation noise for map construction at test time only).

Geometry and Affordance Mismatch: Next, to emphasize the utility of learning for this task, we
experiment with a scenario where we explicitly create a mismatch between geometry and affordance
of the environment. We do this by rendering doors, but not using them for collision checking (i.e.
the default House 3D environment). This setting helps us investigate if learning based techniques
go beyond simple geometric reasoning in any way. Fig. 2(right) presents performance curves. We
see that there is a large drop in performance for the frontier-based agent. This is because it is not
able to distinguish doors from other obstacles, leading to path planning failures. However, there is a
relatively minor drop in performance of our learning-based agent. This is because it can learn about
doors (how to identify them in RGB images and the fact that they can be traversed) from human
demonstrations and experience during reinforcement learning.

4.2.1 ABLATION STUDY

We also conducted ablations of our method to identify what parts of our proposed technique con-
tribute to the performance. We do these ablations in the setting without any estimation noise, and
use coverage as the metric.

Imitation Learning: We check if pre-training with imitation learning is useful for this task. We test
this by comparing to the models that were trained only with RL using the coverage reward. The left
two plots in Fig. 3 shows performance of agents with following combinations: RL: policy trained

1A noise of η means we sample perturbations from a truncated Gaussian distribution with zero-mean, η
standard deviation, and a total width of 2η. This sampled perturbation is scaled by the step length (25cm for
x, y and 9◦ for azimuth θ) and added to the state at each time step.
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Figure 3: Ablation Study: We report average coverage as a function of time step in episode. As before we
plot mean over 3 runs and minimum and maximum performance. Left figure shows that using the RGB image
helps improve performance, center figure shows that using the map helps improve performance. We can also
see that imitation learning improves coverage and reduces the variance in performance. Right figure shows the
comparison between different reward design. We can see that our intrinsic reward enables the agent to explore
more efficiently in the testing time.

with PPO only, IL: policy trained with imitation learning, Map: policy uses constructed maps as
input, RGB: policy uses RGB images as input. In all settings, pre-training with imitation learning
helps improve performance, though training with RL improves coverage further. Also, policies
trained using RL have a fairly large variance. Imitation learning also helps reduce the variance.

RGB Observations and Map: Fig. 3 (left) and Fig. 3 (center) respectively show that both RGB
images and map inputs improve performance.

Intrinsic Reward: We also compare our intrinsic reward design with extrinsic reward design, as
shown in Fig. 3 (right). The extrinsic reward is setup as follows: we randomly generated a number
of locations evenly distributed across the traversable area of the houses, where the agent will get a
positive reward if the agent is close to any of these locations. Once the agent gets a reward from a
location, this location will be no longer taken into account for future reward calculation. We tried
two settings where we place 1 or 4 reward-yielding objects per m2. We can see that our coverage
map reward provides a better reward signal and in fact can be estimated intrinsically without needing
to instrument the environment.

4.3 USING EXPLORATION FOR DOWNSTREAM TASK
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Figure 4: Exploration for down-
stream tasks. We evaluate utility of
exploration for the down-stream nav-
igation tasks. Top plots shows ef-
fectiveness of the exploration trajec-
tory for localization of goal images
in a new environment. Bottom table
compares efficiency of reaching goals
without and with maps built during ex-
ploration.

Now that we have established how to explore well, we next ask
if task-agnostic exploration is even useful for downstream tasks.
We show this in context of goal-driven navigation. We execute
the learned exploration policy πe (for 1500 time steps) to ex-
plore a new house, and collect experience (set of images I along
with their pose p). Once this exploration has finished, the agent
is given different navigation tasks. These navigation tasks put
the agent at an arbitrary location in the environment, and give
it a goal image that it needs to reach. More specifically, we re-
set the agent to 50 random poses (positions and orientations) in
each testing house (20 testing houses in total) and get the RGB
camera view. The agent then needs to use the experience of the
environment acquired during exploration to efficiently navigate
to the desired target location. The efficiency of navigation on
these test queries measures the utility of exploration.

This evaluation requires a navigation policy πn, that uses the
exploration experience and the goal image to output actions that
can convey the agent to the desired target location. We opt for
a simple policy πn. πn first localizes the target image using
nearest neighbor matching to the set of collected images I (in
ImageNet pre-trained ResNet-18 feature space). It then plans a
path to the this estimated target location using a occupancy map
computed from I. We do this experiment in the setting without
any state estimation noise.

We independently measure the effectiveness of exploration data for a) localization of the given target
images, and b) path planning efficiency in reaching desired locations. Localization performance:
We measure the distance between the agent’s estimate of the goal image location, and the true goal
image location. Fig. 4 (top) plots the success at localization as a function of the success threshold
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(distance at which we consider a localization as correct). We report top-1 and top-5 success rates. We
compare to the random exploration baseline and curiosity-driven baseline which serve to measure
the hardness of the task. We see our exploration scheme performs well. Path planning efficiency:
Next, we measure how efficiently desired goal locations can be reached. We measure performance
using the SPL metric as described by Anderson et al. (2018) (described in the appendix, higher is
better). We compare against a baseline that does not have any prior experience in this environment
and derives all map information on the fly from goal driven behavior (going to the desired test
location). Both agents take actions based on the shortest-path motion planning algorithm. Once
again these serve as a measure of the hardness of the topology of the underlying environment. As
shown in Fig. 4 (bottom), using exploration data from our policy improves efficiency of paths to
reach target locations.

5 DISCUSSION

In this paper, we motivated the need for learning explorations policies for navigation in novel 3D
environments. We showed how to design and train such policies, and how experience gathered from
such policies enables better performance for downstream tasks. We think we have just scratched the
surface of this problem, and hope this inspires future research towards semantic exploration using
more expressive policy architectures, reward functions and training techniques.
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APPENDIX A SPL METRIC

As defined by Anderson et al. (2018), Success weighted by (normalized inverse) Path Length or SPL
is computed as follows. Here, `i is the shortest-path distance between the starting and goal position,
pi is the length of the path actually executed by the agent, and Si is a binary variable that indicates
if the agent succeeded. SPL is computed over N trials as follows:

SPL =
1

N

N∑
i=1

Si
`i

max(pi, `i)
. (1)

APPENDIX B EXAMPLES OF POLICY INPUTS AND MAPS

We show an example of the policy inputs (RGB image and maps in two different scales) at time t
and t+ 10 in Fig. B.1. Green area means the known(seen) traversable area, blue area means known
non-traversable area, and the white area means unknown area. Fig. B.2 shows how the map evolves
and the agent moves as it explores a new house.

(a) (b) (c)

(d) (e) (f)
Figure B.1: Examples of policy inputs at time step t and t + 10. (a) and (d) are the RGB images, (b) and (e)
are the coarse maps, and (c) and (f) are the fine maps.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
Figure B.2: Snapshots of the built map as the agent explores the house
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APPENDIX C EXPERIMENTAL DETAILS

C.1 ENVIRONMENT DETAILS

In this paper, we simulated the agent in House3D environment Wu et al. (2018) and used 20 houses
for training and 20 new houses for testing. Fig. C.1 shows the distribution of the total traversable
area of these houses. Fig. C.2 shows some examples of the top-down views for training and testing
houses (white is traversable, black is occupied).
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Figure C.1: Area distribution of training and testing houses (20 houses in each case). The average movable
area of the training houses is 289.7 m2. The average movable area of the testing houses is 327.9 m2.

Figure C.2: Examples of house layouts (top-down views). The left three figures show 3 examples of the train-
ing houses. The right three figures show 3 examples of the testing houses. White regions indicate traversable
area, black regions represent occupied area.

C.2 MAP RECONSTRUCTION

Given a sequence of camera poses (extrinsics) ([R1, t1], [R2, t2], ..., [RN , tN ]), and the correspond-
ing depth images (D1,D2, ...,DN ) at each time step as well as the camera intrinsics K ∈ R3×3, we
can reconstruct the point cloud of the scene based on the principle of mulitple-view geometry (Hart-
ley & Zisserman, 2003). We can convert the points from pixel space to the camera space and then to
the world space. More specifically, the formulas to achieve this can be summarized as follows:

λijxij = K [Ri, ti]wij ∀j ∈ {1, 2, ..., S}, i ∈ {1, ..., N} (2)

W =

N⋃
i=1

S⋃
j=1

wij (3)

where S is the total number of pixels in each depth image, xij ∈ R3 is the homogeneous coordinates
for jth pixel on ith depth image Di, λij ∈ R is the depth value of the jth pixel on ith depth image Di,
and wij ∈ R4 is the homogeneous coordinates for the corresponding point in the world coordinate
system. We can get wij from xij based on Equation (2). And we can merge points via Equation (3).

C.3 TRAINING DETAILS

The occupancy map generated by the agent itself uses a resolution of 0.05m. Our policy uses a
coarse map, and a detailed map. The coarse map captures information about a 40m×40m area
around the agent, at a resolution of of 0.5m. The occupancy map is down-sampled from 800× 800
to 80× 80 to generate the coarse map that is fed into the policy network. The detailed map captures
information about a 4m×4m area around the agent at a 0.05m resolution. RGB images are rendered
at 224 × 224 resolution in House3D and re-sized into 80 × 80 before they are fed into the policy
network.
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The size of the last fully-connected layer in ResNet18 architecture is modified to 128. Outputs of the
three ResNet18 networks are concatenated into a 384-dimensional vector. This is transformed into
a 128-dimensional vector via a fully-connected layer. Next, it’s fed into a single-layer RNN(GRU)
layer with 128 hidden layer size. The output of RNN layer is followed by two heads. One head (the
policy head) has two fully-connected layers (128 − 32 − 6). The other head (the value head) has
two fully-connected layers (128− 32− 1). We use ELU as the nonlinear activation function for the
fully-connected layers after ResNet18.

Each episode consists of 500 steps in training. RNN time sequence length is 20. Coverage area
C(Mt) is measured by the number of covered grids in the occupancy map. Coefficient α for the
coverage reward Rcov

int(t) is 0.0005, coefficient β for Rcoll
int(t) is 0.006. PPO entropy loss coefficient

is 0.01. Network is optimized via Adam optimizer with a learning rate of 0.00001.

C.4 NOISE MODEL

Details of noise generation for experiments with estimation noise in Section 4.2:

1. Without loss of generality, we initialize the agent at the origin, that is x̂0 = x0 = 0.
2. The agent takes an action at. We add truncated Gaussian noise to the action primitive(e.g., move

forward 0.25m) to get the estimated pose x̂t+1, i.e., x̂t+1 = x̂t + ãt where x̂t is the estimated
pose in time step t and ãt is the action primitive at with added noise.

3. Iterate the second step until the maximum number of steps is reached.

Thus, in this noise model, the agent estimates its new pose based on the estimated pose from the
last time step and the executed action. Thus, we dont use oracle odometry in the noise experiments.
This noise model leads to compounding errors over time (as in the case of a real robot), though we
acknowledge that this simple noise model may not perfectly match noise in the real world.

C.5 IMITATION LEARNING DETAILS

We use behavioral cloning technique (Argall et al., 2009; Michalski et al., 1998; Abbott, 2007)
to imitate the human behaviors in exploring the environments. We got the human demonstration
trajectories from (Das et al., 2018). We ignored the question-answering part of the data and only
used the exploration trajectories. We cleaned up the data by removing the trajectories that have
less than 100 time steps. The trajectories are then converted into short sequences of trajectory
segments ((si, ai, si+1, ai+1, ..., si+T , ai+T ), where T is based on the RNN sequence length). The
policy is pretrained with behavioral cloning by imitating actions (ai, ai+1, ..., ai+T ) from the human
demonstrations given the states (si, si+1, ..., si+T ).
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