
COMBOPTNET: FIT THE RIGHT NP-HARD PROBLEM BY
LEARNING INTEGER PROGRAMMING CONSTRAINTS

Anselm Paulus1, Michal Rolínek1, Vít Musil2, Brandon Amos3, Georg Martius1

1 Max-Planck-Institute for Intelligent Systems, Tübingen, Germany
2 Masaryk University, Brno, Czechia

3 Facebook AI Research, USA

anselm.paulus@tuebingen.mpg.de

ABSTRACT

Bridging logical and algorithmic reasoning with modern machine learning techniques is a funda-
mental challenge with potentially transformative impact. On the algorithmic side, many NP-HARD
problems can be expressed as integer programs, in which the constraints play the role of their “com-
binatorial specification.” In this work, we aim to integrate integer programming solvers into neural
network architectures as layers capable of learning both the cost terms and the constraints. The
resulting end-to-end trainable architectures jointly extract features from raw data and solve a suitable
(learned) combinatorial problem with state-of-the-art integer programming solvers. We demonstrate
the potential of such layers with an extensive performance analysis on synthetic data and with a
demonstration on a competitive computer vision keypoint matching benchmark.

IL
P

So
lv
er

Figure 1: CombOptNet as a module in a deep architecture.

1 Introduction

It is becoming increasingly clear that to advance artifi-
cial intelligence, we need to dramatically enhance the rea-
soning, algorithmic, logical, and symbolic capabilities of
data-driven models. Only then we can aspire to match
humans in their astonishing ability to perform complicated
abstract tasks such as playing chess only based on visual
input. While there are decades worth of research directed
at solving complicated abstract tasks from their abstract
formulation, it seems very difficult to align these methods
with deep learning architectures needed for processing raw
inputs. Deep learning methods often struggle to implicitly
acquire the abstract reasoning capabilities to solve and gen-
eralize to new tasks. Recent work has investigated more
structured paradigms that have more explicit reasoning
components, such as layers capable of convex optimiza-

tion. In this paper, we focus on combinatorial optimiza-
tion, which has been well-studied and captures nontrivial
reasoning capabilities over discrete objects. Enabling its
unrestrained usage in machine learning models should fun-
damentally enrich the set of available components.

On the technical level, the main challenge of incorporat-
ing combinatorial optimization into the model typically
amounts to non-differentiability of methods that operate
with discrete inputs or outputs. Three basic approaches to
overcome this are to a) develop “soft” continuous versions
of the discrete algorithms [44, 46]; b) adjust the topology
of neural network architectures to express certain algo-
rithmic behaviour [8, 23, 24]; c) provide an informative
gradient approximation for the discrete algorithm [10, 41].
While the last strategy requires nontrivial theoretical con-
siderations, it can resolve the non-differentiability in the



strongest possible sense; without any compromise on the
performance of the original discrete algorithm. We follow
this approach.

The most succesful generic approach to combinatorial op-
timization is integer linear programming (ILP). Integrating
ILPs as building blocks of differentiable models is chal-
lenging because of the nontrivial dependency of the solu-
tion on the cost terms and on the constraints. Learning
parametrized cost terms has been addressed in Berthet et al.
[10], Ferber et al. [20], Vlastelica et al. [41], the learnabil-
ity of constraints is, however, unexplored. At the same
time, the constraints of an ILP are of critical interest due to
their remarkable expressive power. Only by modifying
the constraints, one can formulate a number of diverse
combinatorial problems (SHORTEST-PATH, MATCHING,
MAX-CUT, KNAPSACK, TRAVELLING SALESMAN). In
that sense, learning ILP constraints corresponds to learn-
ing the combinatorial nature of the problem at hand.

In this paper, we propose a backward pass (gradient compu-
tation) for ILPs covering their full specification, allowing
to use blackbox ILPs as combinatorial layers at any point in
the architecture. This layer can jointly learn the cost terms
and the constraints of the integer program, and as such it
aspires to achieve universal combinatorial expressivity.
We demonstrate the potential of this method on multiple
tasks. First, we extensively analyze the performance on
synthetic data. This includes the inverse optimization task
of recovering an unknown set of constraints, and a KNAP-
SACK problem specified in plain text descriptions. Finally,
we demonstrate the applicability to real-world tasks on
a competitive computer vision keypoint matching bench-
mark.

1.1 Related Work

Learning for combinatorial optimization. Learning
methods can powerfully augment classical combinatorial
optimization methods with data-driven knowledge. This
includes work that learns how to solve combinatorial opti-
mization problems to improve upon traditional solvers that
are otherwise computationally expensive or intractable, e.g.
by using reinforcement learning [9, 26, 33, 47], learning
graph-based algorithms [39, 40, 45], learning to branch [6],
solving SMT formulas [7] and TSP instances [28]. Nair
et al. [32] have recently scaled up learned MIP solvers on
non-trivial production datasets. In a more general compu-
tational paradigm, Graves et al. [23, 24] parameterize and
learn Turing machines.

Optimization-based modeling for learning. In the
other direction, optimization serves as a useful modeling
paradigm to improve the applicability of machine learn-
ing models and to add domain-specific structures and pri-
ors. In the continuous setting, differentiating through op-
timization problems is a foundational topic as it enables
optimization algorithms to be used as a layer in end-to-
end trainable models [17, 22]. This approach has been
recently studied in the convex setting in OptNet [4] for

quadratic programs, and more general cone programs in
Amos [3, Section 7.3] and Agrawal et al. [1, 2]. One
use of this paradigm is to incorporate the knowledge of
a downstream optimization-based task into a predictive
model [18, 19]. Extending beyond the convex setting,
optimization-based modeling and differentiable optimiza-
tion are used for sparse structured inference [34], MAXSAT
[44], submodular optimization [16] mixed integer program-
ming [20], and discrete and combinational settings [10, 41].
Applications of optimization-based modeling include com-
puter vision [36, 37], reinforcement learning [5, 14, 42],
game theory [30], and inverse optimization [38], and meta-
learning [11, 29].

2 Problem description

Our goal is to incorporate an ILP as a differentiable layer
in neural networks that inputs both constraints and objec-
tive coefficients and outputs the corresponding ILP solu-
tion.

Furthermore, we aim to embed ILPs in a blackbox man-
ner: On the forward pass, we run the unmodified optimized
solver, making no compromise on its performance. The
task is to propose an informative gradient for the solver
as it is. We never modify, relax, or soften the solver.

We assume the following form of a bounded integer pro-
gram:

min
y∈Y

c · y subject to Ay ≤ b, (1)

where Y is a bounded subset of Zn, n ∈ N, c ∈ Rn is
the cost vector, y are the variables, A = [a1, . . . ,am] ∈
Rm×n is the matrix of constraint coefficients and b ∈
Rm is the bias term. The point at which the minimum is
attained is denoted by y(A, b, c).

The task at hand is to provide gradients for the mapping
(A, b, c)→ y(A, b, c), in which the triple (A, b, c) is the
specification of the ILP solver containing both the cost and
the constraints, and y(A, b, c) ∈ Y is the optimal solution
of the instance.

Example. The ILP formulation of the KNAPSACK prob-
lem can be written as

max
y∈{0,1}n

c · y subject to a · y ≤ b, (2)

where c = [c1, . . . , cn] ∈ Rn are the prices of the items,
a = [a1, . . . , an] ∈ Rn their weights and b ∈ R the
knapsack capacity.

Similar encodings can be found for many more - often NP-
HARD - combinatorial optimization problems including
those mentioned in the introduction. Despite the apparent
difficulty of solving ILPs, modern highly optimized solvers
[13, 25] can routinely find optimal solutions to instances
with thousands of variables.

2



2.1 The main difficulty.

Differentiability. Since there are finitely many available
values of y, the mapping (A, b, c)→ y(A, b, c) is piece-
wise constant; and as such, its true gradient is zero almost
everywhere. Indeed, a small perturbation of the constraints
or of the cost does typically not cause a change in the op-
timal ILP solution. The zero gradient has to be suitably
supplemented.

Gradient surrogates w.r.t. objective coefficients c have been
studied intensively [see e.g. 19, 20, 41]. Here, we focus on
the differentiation w.r.t. constraints coefficients (A, b) that
has been unexplored by prior works.

LP vs. ILP: Active constraints. In the LP case, the in-
tegrality constraint on Y is removed. As a result, in the
typical case, the optimal solution can be written as the
unique solution to a linear system determined by the set of
active constraints. This captures the relationship between
the constraint matrix and the optimal solution. Of course,
this relationship is differentiable.

However, in the case of an ILP the concept of active
constraints vanishes. There can be optimal solutions
for which no constraint is tight. Providing gradients for
nonactive-but-relevant constraints is the principal difficulty.
The complexity of the interaction between the constraint
set and the optimal solution is reflecting the NP-HARD
nature of ILPs and is the reason why relying on the LP
case is of little help.

3 Method

First, we reformulate the gradient problem as a descend
direction task. We have to resolve an issue that the sug-
gested gradient update y − dy to the optimal solution y is
typically unattainable, i.e. y − dy is not a feasible integer
point. Next, we generalize the concept of active constraints.
We substitute the binary information “active/nonactive” by
a continuous proxy based on Euclidean distance.

Descent direction. On the backward pass, the gradient
of the layers following the ILP solver is given. Our aim is
to propose a direction of change to the constraints and to
the cost such that the solution of the updated ILP moves
towards the negated incoming gradient’s direction (i.e. the
descent direction).

Denoting a loss by L, let A, b, c and the incoming gradient
dy = ∂L/∂y at the point y = y(A, b, c) be given. We
are asked to return a gradient corresponding to ∂L/∂A,
∂L/∂b and ∂L/∂c. Our goal is to find directions dA, db
and dc for which the distance between the updated solution
y(A−dA, b−db, c−dc) and the target y−dy decreases
the most.

If the mapping y is differentiable, it leads to the correct
gradients ∂L/∂A = ∂L/∂y · ∂y/∂A (analogously for b
and c). See Proposition A1 in the Appendix, for the precise

formulation and for the proof. The main advantage of this
formulation is that it is meaningful even in the discrete
case.

However, every ILP solution y(A− dA, b− db, c− dc)
is restricted to integer points and its ability to approach the
point y − dy is limited unless dy is also an integer point.
To achieve this, let us decompose

dy =

n∑
k=1

λk∆k, (3)

where ∆k ∈ {−1, 0, 1}n are some integer points and λk ≥
0 are scalars. The choice of basis ∆k is discussed in a
separate paragraph, for now it suffices to know that every
point y′k = y + ∆k is an integer point neighbour of y
pointing in a “direction of dy”. We then address separate
problems with dy replaced by the integer updates ∆k.

In other words, our goal here is to find an update on A,
b, c that eventually pushes the solution closer to y + ∆k.
Staying true to linearity of the standard gradient mapping,
we then aim to compose the final gradient as a linear com-
bination of the gradients coming from the subproblems.

Constraints update. To get a meaningful update for a
realizable change ∆k, we take a gradient of a piecewise
affine local mismatch function P∆k

. The definition of P∆k

is based on a geometric understanding of the underlying
structure. To that end, we rely on the Euclidean distance
between a point and a hyperplane. Indeed, for any point
y and a given hyperplane, parametrized by vector a and
scalar b as x 7→ a · x− b, we have:

dist(a, b;y) = |a · y − b|/‖a‖. (4)

Now, we distinguish the cases based on whether y′k is
feasible, i.e. Ay′k ≤ b, or not. The infeasibility of y′k can
be caused by one or more constraints. We then define

P∆k
(A, b) =



minj dist(aj , bj ;y)

if y′k is feasible and y′k 6= y∑
jJaj · y′k > bjK dist(aj , bj ;y

′
k)

if y′k is infeasible
0 if y′k = y or y′k /∈ Y ,

(5)

where J·K is the Iverson bracket. The geometric intuition
behind the suggested mismatch function is described in
Fig. 2 and its caption. Note that tighter constraints con-
tribute more to P∆k

. In this sense, the mismatch function
generalizes the concept of active constraints. In prac-
tice, the minimum is softened to allow multiple constraints
to be updated simultaneously. For details, see the Ap-
pendix.

Imposing linearity and using decomposition (3), we define
the outcoming gradient dA as

dA =

n∑
k=1

λk
∂P∆k

∂A
(A, b). (6)

and analogously for db, by differentiating with respect to b.
The computation is summarized in Module 1.

3



(a) y′k is feasible but y′k 6= y. (b) y′k is infeasible.

Figure 2: Geometric interpretation of the suggested con-
straint update. (a) All the constraints are satisfied for y′k.
The proxy minimizes the distance to the nearest (“most
active”) constraint to make y “less feasible”. A possible
updated feasible region is shown in green. (b) The sug-
gested y′k satisfies one of three constraints. The proxy
minimizes the distance to violated constraints to make y′k
“more feasible”.

Note that our mapping dy 7→ dA,db is homogeneous. It
is due to the fact that the whole situation is rescaled to one
case (choice of basis) where the gradient is computed and
then rescaled back (scalars λk). The most natural scale
agrees with the situation when the “targets” y′k are the
closest integer neighbors. This ensures that the situation
does not collapse to a trivial solution (zero gradient) and,
simultaneously, that we do not interfere with very distant
values of y.

This basis selection plays a role of a “homogenizing hyper-
paramter” (λ in [41] or ε in [10]). In our case, we explicitly
construct a correct basis and do not need to optimize any
additional hyperparameter.

Cost update. Putting aside distinguishing of feasible and
infeasible y′k, the cost update problem has been addressed
in multiple previous works. We choose to use the simplest
approach of [19] and set

P∆k
(c) =

{
c ·∆k if y′k is feasible
0 if y′k is infeasible or y′k /∈ Y .

(7)

The gradient dc is then composed analogously as in (6).

The choice of the basis. Denote by k1, . . . , kn the in-
dices of the coordinates in the absolute values of dy in
decreasing order, i.e.

|dyk1
| ≥ |dyk2

| ≥ · · · ≥ |dykn
| (8)

and set

∆k =

k∑
j=1

sign(dykj
)ekj

, (9)

where ek is the k-th canonical vector. In other words,
∆k is the (signed) indicator vector of the first k dominant
directions.

Denote by ` the largest index for which |dy`| > 0. Then
the first ` vectors ∆k’s are linearly independent and they
form a basis of the corresponding subspace. Therefore,
there exist scalars λk’s satisfying (3).
Proposition 1. If λj = |dykj

| − |dykj+1
| for j =

1, . . . , n − 1 and λn = |dykn
|, then representation (3)

holds with ∆k’s as in (9).

Module 1 CombOptNet
function FORWARDPASS(A, b, c)
y := Solver(A, b, c)
save y and A, b, c for backward pass
return y

function BACKWARDPASS(dy)
load y and A, b, c from forward pass
Decompose dy =

∑
k λk∆k

// set ∆k as in (9) and λk as in Proposition 1
Calculate the gradients

dAk :=
∂P∆k

∂A , dbk :=
∂P∆k

∂b , dck :=
∂P∆k

∂c
// P∆k

defined in (5) and (7)
Compose dA,db,dc :=

∑
k λk

(
dAk,dbk,dck

)
// According to (6)

return dA,db,dc

An example of a decomposition is shown in Fig. 3. Further
discussion about the choice of basis and various compar-
isons can be found in the Appendix.

Figure 3: All basis vectors ∆k (green) point more “towards
the dy direction” compared to the canonical ones (orange).

Constraint parametrization. For learning constraints,
we have to specify their parametrization. The represen-
tation is of great importance, as it determines how the
constraints respond to incoming gradients. Additionally, it
affects the meaning of constraint distance by changing the
parameter space.

We represent each constraint (ak, bk) as a hyperplane de-
scribed by its normal vector ak, distance from the origin rk
and offset ok of the origin in the global coordinate system
as displayed in Fig. 4a. Consequently bk = rk − ak · ok.

Compared to the plain parametrization which represents
the constraints as a matrix A and a vector b, our slightly
overparametrized choice allows the constraints to rotate
without requiring to traverse large distance in parame-
ter space (consider e.g. a 180◦ rotation). An illustration
is displayed in Fig. 4b. Comparison of our choice of
parametrization to other encodings and its effect on the
performance can be found in the Appendix.

4 Demonstration & Analysis

We demonstrate the potential and flexibility of our method
on four tasks.

4



(a) Constraint representation (b) Possible constraint update

Figure 4: (a) Each constraint (ak, bk) is parametrized by
its normal vector ak and a distance rk to its own origin ok.
(b) Such a representation allows for easy rotations around
the learnable offset ok instead of rotating around the static
global origin.

Starting with an extensive performance analysis on syn-
thetic data, we first demonstrate the ability to learn multiple
constraints simultaneously. For this, we learn a static set
of randomly initialized constraints from solved instances,
while using access to the ground-truth cost vector c.

Additionally, we show that the performance of our method
on the synthetic datasets also translates to real classes of
ILPs. For this we consider a similarly structured task as
before, but use the NP-complete WSC problem to generate
the dataset.

Next, we showcase the ability to simultaneously learn the
full ILP specification. For this, we learn a single input-
dependent constraint and the cost vector jointly from the
ground truth solutions of KNAPSACK instances. These
instances are encoded as sentence embeddings of their
description in natural language.

Finally, we demonstrate that our method is also applicable
to real-world problems. On the task of keypoint matching,
we show that our method achieves results that are compa-
rable to state-of-the-art architectures employing dedicated
solvers. In this example, we jointly learn a static set of con-
straints and the cost vector from ground-truth matchings.

In all demonstrations, we use GUROBI [25] to solve the
ILPs during training and evaluation. Implementation de-
tails, a runtime analysis and additional results, such as
ablations, other loss functions and more metrics, are pro-
vided in the Appendix. Additionally, a qualitative analysis
of the results for the Knapsack demonstration is included.

4.1 Random Constraints

Problem formulation. The task is to learn the con-
straints (A, b) corresponding to a fixed ILP. The network
has only access to the cost vectors c and the ground-truth
ILP solutions y∗. Note that the set of constraints perfectly
explaining the data does not need to be unique.

Dataset. We generate 10 datasets for each cardinality
m = 1, 2, 4, 8 of the ground-truth constraint set while
keeping the dimensionality of the ILP fixed to n = 16.

Each dataset fixes a set of (randomly chosen) constraints
(A, b) specifying the ground-truth feasible region of an
ILP solver. For the constraints (A, b) we then randomly
sample cost vectors c and compute the corresponding ILP
solution y∗ (Fig. 5).

ILP Solver

Figure 5: Dataset generation for the RC demonstration.

The dataset consists of 1 600 pairs (c,y∗) for training and
1 000 for testing. The solution space Y is either constrained
to [−5, 5]n (dense) or [0, 1]n (binary). During dataset
generation, we performed a suitable rescaling to ensure a
sufficiently large set of feasible solutions.

Architecture. The network learns the constraints (A, b)
that specify the ILP solver from ground-truth pairs (c,y∗).
Given c, predicted solution y is compared to y∗ via the
MSE loss and the gradient is backpropagated to the learn-
able constraints using CombOptNet (Fig. 6).

ILP Solver

Figure 6: Architecture design for the RC demonstration.

The number of learned constraints matches the number of
constraints used for the dataset generation.

Baselines. We compare CombOptNet to three baselines.
Agnostic to any constraints, a simple MLP baseline di-
rectly predicts the solution from the input cost vector as the
integer-rounded output of a neural network. The CVXPY
baseline uses an architecture similar to ours, only the Mod-
ule 1 of CombOptNet is replaced with the CVXPY imple-
mentation [15] of an LP solver that provides a backward
pass proposed by Agrawal et al. [1]. Similar to our method,
it receives constraints and a cost vector and outputs the
solution of the LP solver greedily rounded to a feasible
integer solution. Finally, we report the performance of
always producing the solution of the problem only con-
strained to the outer region y ∈ Y . This baseline does
not involve any training and is purely determined by the
dataset.

Results. The results are reported in Fig. 7. In the bi-
nary, case we demonstrate a high accuracy of perfectly
predicting the correct solution. The CVXPY baseline is
not capable of matching this, as it is not able to find a set
of constraints for the LP problem that mimics the effect
of running an ILP solver. For most cost vectors, CVXPY
often predicts the same solution as the unconstrained one
and its ability to use constraints to improve is marginal.

5



1 2 4 8
0

20

40

60

80

100

Box-constrained

CombOptNet

CVXPY

MLP

(a) Results on the binary datasets.

1 2 4 8
0

20

40

60

80

100

Box-constrained

CombOptNet

CVXPY

MLP

(b) Results on the dense datasets.

Figure 7: Results for the Random Constraints demonstra-
tion. We report mean accuracy (y = y∗ in %) over 10
datasets for 1, 2, 4 and 8 ground truth constraints in 16 di-
mensions. By Box-constrained we denote the performance
of always producing the solution of the problem only con-
strained to the outer region y ∈ Y , which does not involve
any training and is purely determined by the dataset.

The reason is that the LP relaxation of the ground truth
problem is far from tight and thus the LP solver proposes
many fractional solutions, which are likely to be rounded
incorrectly. This highlights the increased expressivity of
the ILP formulation compared to the LP formulation.

Even though all methods decrease in performance in the
dense case as the number of possible solutions is increased,
the trend from the binary case continues. With the in-
creased density of the solution space, the LP relaxation
becomes more similar to the ground truth ILP and hence
the gap between CombOptNet and the CVXPY baseline
decreases.

We conclude that CombOptNet is especially useful, when
the underlying problem is truly difficult (i.e. hard to ap-
proximate by an LP). This is not surprising, as CombOpt-
Net introduces structural priors into the network that are
designed for hard combinatorial problems.

4.2 Weighted Set Covering

We show that our performance on the synthetic datasets
also translates to traditional classes of ILPs. Considering a
similarly structured architecture as in the previous section,

we generate the dataset by solving instances of the NP-
complete WSC problem.

Problem formulation. A family C of subsets of a uni-
verse U is called a covering of U if

⋃ C = U . Given
U = {1, . . . ,m}, its covering C = {S1, . . . , Sn} and cost
c : C → R, the task is to find the sub-covering C′ ⊂ C with
the lowest total cost

∑
S∈C′ c(S).

The ILP formulation of this problem consists of m con-
straints in n dimensions. Namely, if y ∈ {0, 1}n denotes
an indicator vector of the sets in C, akj = Jk ∈ SjK and
bk = 1 for k = 1, . . .m, then the specification reads as

min
y∈Y

∑
j

c(Sj)yj subject to Ay ≥ b. (10)

Dataset. We randomly draw n subsets from the m-
element universe to form a covering C. To increase the vari-
ance of solutions, we only allow subsets with no more than
3 elements. As for the Random Constraints demonstration,
the dataset consists of 1 600 pairs (c,y∗) for training and
1 000 for testing. Here, c is uniformly sampled positive
cost vector and y∗ denotes the corresponding optimal so-
lution (Fig. 8). We generate 10 datasets for each universe
size m = 4, 5, 6, 7, 8 with n = 2m subsets.

WSC Solver

Figure 8: Dataset generation for the WSC demonstration.

Architecture and Baselines. We use the same architec-
ture and compare to the same baselines as in the Random
Constraints demonstration (Sec. 4.1).

Results. The results are reported in Fig. 9. Our method is
still able to predict the correct solution with high accuracy.
Compared to the previous demonstration, the performance
of the LP relaxation deteriorates. Contrary to the Ran-
dom Constraints datasets, the solution to the Weighted Set
Covering problem never matches the solution of the uncon-
strained problem, which takes no subset. This prevents the
LP relaxation from exploiting these simple solutions and
ultimately leads to a performance drop. On the other hand,
the MLP baseline benefits from the enforced positivity of
the cost vector, which leads to an overall reduced number
of different solutions in the dataset.

4.3 KNAPSACK from Sentence Description

Problem formulation. The task is inspired by a vintage
text-based PC game called “The Knapsack Problem” [35]
in which a collection of 10 items is presented to a player
including their prices and weights. The player’s goal is
to maximize the total price of selected items without ex-
ceeding the fixed 100-pound capacity of their knapsack.
The aim is to solve instances of the NP-Hard KNAPSACK
problem (2), from their word descriptions. Here, the cost
c and the constraint (a, b) are learned simultaneously.

6



4 6 8 10
0

20

40

60

80

100
Box-constrained

CombOptNet

CVXPY

MLP

Figure 9: Results of the WSC demonstration. We report
mean accuracy (y = y∗ in %) over 10 datasets for universe
sizes m = 4, 6, 8, 10 and 2m subsets.

Dataset. Similarly to the game, a KNAPSACK instance
consists of 10 sentences, each describing one item. The
sentences are preprocessed via the sentence embedding
[12] and the 10 resulting 4 096-dimensional vectors x con-
stitute the input of the dataset. We rely on the ability of
natural language embedding models to capture numerical
values, as the other words in the sentence are uncorrelated
with them (see an analysis of Wallace et al. [43]). The
indicator vector y∗ of the optimal solution (i.e. item se-
lection) to a knapsack instance is its corresponding label
(Fig. 10). The dataset contains 4 500 training and 500 test
pairs (x,y∗).

Figure 10: Dataset generation for the KNAPSACK problem.

Architecture. We simultaneously extract the learnable
constraint coefficients (a, b) and the cost vector c via an
MLP from the embedding vectors (Fig. 11).

ILP

Figure 11: Architecture design for the KNAPSACK prob-
lem.

As only a single learnable constraint is used, which by
definition defines a KNAPSACK problem, the interpreta-
tion of this demonstration is a bit different from the other
demonstrations. Instead of learning the type of combinato-
rial problem, we learn which exact KNAPSACK problem
in terms of item-weights and knapsack capacity needs to
be solved.

Baselines. We compare to the same baselines as in the
Random Constraints demonstration (Sec. 4.1).

0 20 40 60 80 100
0

20

40

60

80

100

CombOptNet

CVXPY

MLP

LPmax

(a) Evaluation accuracy (y = y∗ in %) over training
epochs. LPmax is the maximum achievable LP relaxation
accuracy.

0 20 40 60 80 100

0.04

0.06

0.10

0.20
CombOptNet

CVXPY

MLP

(b) Training MSE loss over epochs.

Figure 12: Results or KNAPSACK demonstration. Reported
error bars are over 10 restarts.

Results. The results are presented in Fig. 12. While
CombOptNet is able to predict the correct items for the
KNAPSACK with good accuracy, the baselines are unable
to match this. Additionally, we evaluate the LP relaxation
on the ground truth weights and prices, providing an upper
bound for results achievable by any method relying on an
LP relaxation. The weak performance of this evaluation
underlines the NP-Hardness of KNAPSACK. The ability
to embed and differentiate through a dedicated ILP solver
leads to surpassing this threshold even when learning from
imperfect raw inputs.

4.4 Deep Keypoint Matching

Problem formulation. Given are a source and target im-
age showing an object of the same class (e.g. airplane),
each labeled with a set of annotated keypoints (e.g. left
wing). The task is to find the correct matching between the
sets of keypoints from visual information without access
to the keypoint annotation. As not every keypoint has to
be visible in both images, some keypoints can also remain
unmatched.

As in this task the combinatorial problem is known a priori,
state-of-the-art methods are able to exploit this knowledge
by using dedicated solvers. However, in our demonstration
we make the problem harder by omitting this knowledge.
Instead, we simultaneously infer the problem specification

7



Table 1: Results for the keypoint matching demonstration.
Reported is the standard per-variable accuracy (%) metric
over 5 restarts. Column p× p corresponds to matching p
source keypoints to p target keypoints.

Method 4× 4 5× 5 6× 6 7× 7

CombOptNet 83.1 80.7 78.6 76.1

BB-GM 84.3 82.9 80.5 79.8

and train the feature extractor for the cost vector from data
end-to-end.

Dataset. We use the SPair-71k dataset [31] which was
published in the context of dense image matching and
was used as a benchmark for keypoint matching in recent
literature [37]. It includes 70 958 image pairs prepared
from Pascal VOC 2012 and Pascal 3D+ with rich pair-
level keypoint annotations. The dataset is split into 53 340
training pairs, 5 384 validation pairs and 12 234 pairs for
testing.

State-of-the-art. We compare to a state-of-the-art archi-
tecture BB-GM [37] that employs a dedicated solver for
the quadratic assignment problem. The solver is made
differentiable with blackbox backpropagation [41], which
allows to differentiate through the solver with respect to
the input cost vector.

Architecture. We modify the BB-GM architecture by
replacing the blackbox-differentiation module employing
the dedicated solver with CombOptNet.

The drop-in replacement comes with a few important con-
siderations. Note that our method relies on a fixed di-
mensionality of the problem for learning a static (i.e. not
input-dependent) constraint set. Thus, we can not learn an
algorithm that is able to match any number of keypoints to
any other number of keypoints, as the dedicated solver in
the baseline does.

Due to this, we train four versions of our architecture, set-
ting the number of keypoints in both source and target
images to p = 4, 5, 6, 7. In each version, the dimensional-
ity is fixed to the number of edges in the bipartite graph.
We use the same amount of learnable constrains as the num-
ber of ground-truth constraints that would realize the ILP
representation of the proposed mathching problem, i.e. the
combined number of keypoints in both images (m = 2p).

The randomly initialized constraint set and the backbone
architecture that produces the cost vectors c are learned
simultaneously from pairs of predicted solutions y and
ground-truth matchings y∗ using CombOptNet.

Results. The results are presented in Tab. 1. Even though
CombOptNet is uninformed about which combinatorial
problem it should be solving, its performance is close to the
privileged state-of-the-art method BB-GM. These results

Figure 13: Example matchings predicted by CombOptNet.

are especially satisfactory, considering the fact that BB-
GM outperforms the previous state-of-the-art architecture
[21] by several percentage points on experiments of this
difficulty. Example matchings are shown in Fig. 13.

5 Conclusion

We propose a method for integrating integer linear pro-
gram solvers into neural network architectures as layers.
This is enabled by providing gradients for both the cost
terms and the constraints of an ILP. The resulting end-
to-end trainable architectures are able to simultaneously
extract features from raw data and learn a suitable set of
constraints that specify the combinatorial problem. Thus,
the architecture learns to fit the right NP-hard problem
needed to solve the task. In that sense, it strives to achieve
universal combinatorial expressivity in deep networks –
opening many exciting perspectives.

In the experiments, we demonstrate the flexibility of our
approach, using different input domains, natural language
and images, and different combinatorial problems with the
same CombOptNet module. In particular for combinatori-
ally hard problems we see a strong advantage of the new
architecture.

The potential of our method is highlighted by the demon-
stration on the keypoint matching benchmark. Unaware
of the underlying combinatorial problem, CombOptNet
achieves a performance that is not far behind architectures
employing dedicated state-of-the-art solvers.

In future work we aim to make the number of constraints
flexible and to explore more problems with hybrid combi-
natorial complexity and statistical learning aspects.

8



A Demonstrations

A.1 Implementation Details

When learning multiple constraints, we replace the mini-
mum in definition (5) of mismatch function P∆k

with its
softened version. Therefore, not only the single closest
constraint will shift towards y′k, but also other constraints
close to y′k will do. For the softened minimum we use

softmin(x) = −τ · log

(∑
k

exp
(
−xk
τ

))
, (A1)

which introduces the temperature τ , determining the soft-
ening strength.

In all experiments, we normalize the cost vector c before
we forward it to the CombOptNet module. For the loss we
use the mean squared error between the normalized pre-
dicted solution y and the normalized ground-truth solution
y∗. For normalization we apply the shift and scale that
translates the underlying hypercube of possible solutions
([0, 1]n in binary or [−5, 5]n in dense case) to a normalized
hypercube [−0.5, 0.5]n.

The hyperparameters for all demonstrations are listed in
Tab. A1. We use Adam [27] as the optimizer for all demon-
strations.

Random Constraints. For selecting the set of con-
straints for data generation, we uniformly sample con-
straint origins ok in the center subcube (halved edge
length) of the underlying hypercube of possible solutions.
The constraint normals ak and the cost vectors c are ran-
domly sampled normalized vectors and the bias terms are
initially set to bk = 0.2. The signs of the constraint nor-
mals ak are flipped in case the origin is not feasible, ensur-
ing that the problem has at least one feasible solution. We
generate 10 such datasets for m = 1, 2, 4, 8 constraints in
n = 16 dimensions. The size of each dataset is 1 600 train
instances and 1 000 test instances.

For learning, the constraints are initialised in the same way
except for the feasibility check, which is skipped since
CombOptNet can deal with infeasible regions itself.

KNAPSACK from Sentence Description. Our method
and CVXPY use a small neural network to extract weights
and prices from the 4 096-dimensional embedding vec-
tors. We use a two-layer MLP with a hidden dimension

Table A1: Hyperparameters for all demonstrations.

WSC & Random
Knapsack

Keypoint
Constraints Matching

Learning rate 5× 10−4 5× 10−4 1× 10−4

Batch size 8 8 8
Train epochs 100 100 10
τ 0.5 0.5 0.5
Backbone lr – – 2.5× 10−6

of 512, ReLU nonlinearity on the hidden nodes, and a sig-
moid nonlinearity on the output. The output is scaled to
the ground-truth price range [10, 45] for the cost c and to
the ground-truth weight range [15, 35] for the constraint
a. The bias term is fixed to the ground-truth knapsack
capacity b = 100. Item weights and prices as well as the
knapsack capacity are finally multiplied by a factor of 0.01
to produce a reasonable scale for the constraint parameters
and cost vector.

The CVXPY baseline implements a greedy rounding pro-
cedure to ensure the feasibility of the predicted integer
solution with respect to the learned constraints. Starting
from the item with the largest predicted (noninteger) value,
the procedure adds items to the predicted (integer) solution
until no more items can be added without surpassing the
knapsack capacity.

The MLP baseline employs an MLP consisting of three
layers with dimensionality 100 and ReLU activation on the
hidden nodes. Without using an output nonlinearity, the
output is rounded to the nearest integer point to obtain the
predicted solution.

Deep Keypoint Matching. We initialize a set of con-
straints exactly as in the binary case of the Random Con-
straints demonstration. We use the architecture described
by Rolínek et al. [37], only replacing the dedicated solver
module with CombOptNet.

We train models for varying numbers of keypoints p =
4, 5, 6, 7 in the source and target image, resulting in varying
dimensionalities n = p2 and number of constraints m =
2p. Consistent with Rolínek et al. [37], all models are
trained for 10 epochs, each consisting of 400 iterations
with randomly drawn samples from the training set. We
discard samples with fewer keypoints than what is specified
for the model through the dimensionality of the constraint
set. If the sample has more keypoints, we chose a random
subset of the correct size.

After each epoch, we evaluate the trained models on the
validation set. Each model’s highest-scoring validation
stage is then evaluated on the test set for the final results.

A.2 Runtime analysis.

The runtimes of our demonstrations are reported in Tab. A2.
Random Constrains demonstrations have the same run-
times as Weighted Set Covering since they share the archi-
tecture.

Unsurprisingly, CombOptNet has higher runtimes as it re-
lies on ILP solvers which are generally slower than LP
solvers. Also, the backward pass of CombOptNet has neg-
ligible runtime compared to the forward-pass runtime. In
Random Constraints, Weighted Set Covering and KNAP-
SACK demonstration, the increased runtime is necessary,
as the baselines simply do not solve a hard enough problem
to succeed in the tasks.

9



Table A2: Average runtime for training and evaluating a
model on a single Tesla-V100 GPU. For Keypoint Match-
ing, the runtime for the largest model (p = 7) is shown.

Weighted
Knapsack

Keypoint
Set Covering Matching

CombOptNet 1h 30m 3h 50m 5h 30m
CVXPY 1h 2h 30m –
MLP 10m 20m –
BB-GM – – 55m

Table A3: Random Constraints demonstration with multi-
ple learnable constraints. Using a dataset with m ground-
truth constraints, we train a model with k ×m learnable
constraints. Reported is evaluation accuracy (y = y∗ in
%) for m = 1, 2, 4, 8. Statistics are over 20 restarts (2 for
each of the 10 dataset seeds).

m 1 2 4 8

bi
na

ry 1×m? 97.8 ± 0.7 94.2 ± 10.1 77.4 ± 13.5 46.5 ± 12.4
2×m 97.3 ± 0.9 95.1 ± 1.6 87.8 ± 5.2 63.1 ± 7.0
4×m 96.9 ± 0.7 95.1 ± 1.2 88.7 ± 2.3 77.7 ± 3.2

de
ns

e 1×m? 87.3 ± 2.5 70.2 ± 11.6 29.6 ± 10.4 2.3 ± 1.2
2×m 87.8 ± 1.7 73.4 ± 2.4 32.7 ± 7.6 2.4 ± 0.8
4×m 85.0 ± 2.6 64.6 ± 3.9 28.3 ± 2.7 2.9 ± 1.3

In the Keypoint Matching demonstration, CombOptNet
slightly drops behind BB-GM and requires higher runtime.
Such drawback is outweighed by the benefit of employing
a broad-expressive model that operates without embedded
knowledge of the underlying combinatorial task.

A.3 Additional Results

Random Constraints & Weighted Set Covering. We
provide additional results regarding the increased amount
of learned constraints in Tab. A3 and A4) and the choice
of the loss function Tab. A5.

With a larger set of learnable constraints the model is able
to construct a more complex feasible region. While in gen-
eral this tends to increase performance and reduce variance
by increasing robustness to bad initializations, it can also
lead to overfitting similarly to a neural net with too many
parameters.

In the dense case, we also compare different loss functions
which is possible because CombOptNet can be used as
an arbitrary layer. As shown in Tab. A5, this choice mat-
ters, with the MSE loss, the L1 loss and the Huber loss
outperforming the L0 loss. This freedom of loss function
choice can prove very helpful for training more complex
architectures.

KNAPSACK from Sentence Description. As for the
Random Constraints demonstration, we report the perfor-
mance of CombOptNet on the KNAPSACK task for a higher

?Used in the main demonstrations.

Table A4: Weighted set covering demonstration with mul-
tiple learnable constraints.

k 4 6 8 10

1? 100 ± 0.0 97.2 ± 6.4 79.7 ± 12.1 56.7 ± 14.8
2 100 ± 0.0 99.5 ± 1.9 99.3 ± 0.8 80.4 ± 13.0
4 100 ± 0.0 99.9 ± 0.0 97.9 ± 6.4 85.2 ± 8.1

Table A5: Random Constraints dense demonstration with
various loss functions. For the Huber loss we set β = 0.3.
Statistics are over 20 restarts (2 for each of the 10 dataset
seeds).

Loss 1 2 4 8

MSE? 87.3 ± 2.5 70.2 ± 11.6 29.6 ± 10.4 2.3 ± 1.2
Huber 88.3 ± 4.0 75.4 ± 9.3 25.0 ± 11.8 2.6 ± 2.7
L0 85.9 ± 3.4 65.8 ± 3.5 15.3 ± 4.3 1.1 ± 0.3
L1 89.2 ± 1.6 75.8 ± 10.8 30.2 ± 16.5 2.1 ± 1.2

number of learnable constraints. The results are listed in
Tab. A6. Similar to the binary Random Constraints ab-
lation with m = 1, increasing the number of learnable
constraints does not result in strongly increased perfor-
mance.

Additionally, we provide a qualitative analysis of the re-
sults on the KNAPSACK task. In Fig. A1 we compare
the total ground-truth price of the predicted instances to
the total price of the ground-truth solutions on a single
evaluation of the trained models.

The plots show that CombOptNet is achieving much better
results than CVXPY. The total prices of the predictions are
very close to the optimal prices and only a few predictions
are infeasible, while CVXPY tends to predict infeasible
solutions and only a few predictions have objective values
matching the optimum.

In Fig. A2 we compare relative errors on the individual
item weights and prices on the same evaluation of the
trained models as before. Since (I)LP costs are scale invari-
ant, we normalize predicted price vector to match the size
of the ground-truth price vector before the comparison.

CombOptNet shows relatively small normally distributed
errors on both prices and weights, precisely as expected
from the prediction of a standard network. CVXPY reports
much larger relative errors on both prices and weights
(note the different plot scale). The vertical lines correspond
to the discrete steps of ground-truth item weights in the
dataset. Unsurprisingly, the baseline usually tends to either

Table A6: Knapsack demonstration with more learnable
constraints. Reported is evaluation accuracy (y = y∗ in
%) for m = 1, 2, 4, 8 constraints. Statistics are over 10
restarts.

1? 2 4 8

64.7 ± 2.8 63.5 ± 3.7 65.7 ± 3.1 62.6 ± 4.4

10



100 150 200
Price of GT solution

100

150

200

P
ri

ce
of

pr
ed

.
so

lu
ti

on

(a) CombOptNet

100 150 200
Price of GT solution

100

150

200

optimal

feasible

infeasible

(b) CVXPY

Figure A1: Prices analysis for the KNAPSACK demonstra-
tion. For each test set instance, we plot the total price of the
predicted solution over the total price of the ground-truth
solution. Predicted solutions which total weight exceeds
the knapsack capacity are colored in red (cross).

−0.2 0.0 0.2
Relative weight error

−0.2

0.0

0.2

R
el

at
iv

e
pr

ic
e

er
ro

r

(a) CombOptNet

−0.5 0.0 0.5
Relative weight error

−0.5

0.0

0.5

feasible

infeasible

(b) CVXPY

Figure A2: Qualitative analysis of the errors on weights
and prices in the KNAPSACK demonstration. We plot
the relative error between predicted and ground-truth item
prices over the relative error between predicted and ground-
truth item weights. Colors denote whether the predicted
solution is feasible in terms of ground-truth weights.

overestimate the price and underestimate the item weight,
or vice versa, due to similar effects of these errors on the
predicted solution.

A.4 Ablations

We ablate the choices in our architecture and model design
on the Random Constraints (RC) and Weighted Set Cover-
ing (WSC) tasks. In Tab. A7 and A8 we report constraint
parametrization, choice of basis, and minima softening
ablations.

The ablations show that our parametrization with learn-
able origins is consistently among the best ones. Without
learnable origins, the performance is highly dependend on
the origin of the coordinate system in which the directly
learned parameters (A, b) are defined.

The choice of basis in the gradient decomposition shows
a large impact on performance. Our basis ∆ (9) is out-
performing the canonical one in the binary RC and WSC
demonstration, while showing performance similar to the
canonical basis in the dense RC case. The canonical basis
produces directions for the computation of y′k that in many
cases point in very different directions than the incoming

descent direction. As a result, the gradient computation
leads to updates that are very detached from the original
incoming gradient.

Finally, the softened minimum leads to increased perfor-
mance in all demonstrations. This effect is apparent par-
ticularly in the case of a binary solution space, as the
constraints can have a relevant impact on the predicted
solution y over large distances. Therefore, only updating
the constraint which is closest to the predicted solution y,
as it is the case for a hard minimum, gives no gradient to
constraints that may potentially have had a huge influence
on y.

B Method

To recover the situation from the method section, set x as
one of the inputs A, b, or c.
Proposition A1. Let y : R` → Rn be differentiable
at x ∈ R` and let L : Rn → R be differentiable at
y = y(x) ∈ Rn. Denote dy = ∂L/∂y at y. Then the
distance between y(x) and y− dy is minimized along the
direction ∂L/∂x, where ∂L/∂x stands for the derivative
of L(y(x)) at x.

Proof. For ξ ∈ R`, let ϕ(ξ) denote the distance between
y(x− ξ) and the target y(x)− dy, i.e.

ϕ(ξ) =
∥∥y(x− ξ)− y(x) + dy

∥∥.
There is nothing to prove when dy = 0 as y(x) = y− dy
and there is no room for any improvement. Otherwise, ϕ is
positive and differentiable in a neighborhood of zero. The
Fréchet derivative of ϕ reads as

ϕ′(ξ) =
−
[
y(x− ξ)− y(x) + dy

]
· ∂y∂x (x− ξ)∥∥y(x− ξ)− y(x) + dy
∥∥ ,

whence

ϕ′(0) = − 1

‖dy‖
∂L

∂y
· ∂y
∂x

= − 1

‖dy‖
∂L

∂x
, (A2)

where the last equality follows by the chain rule. Therefore,
the direction of the steepest descent coincides with the
direction of the derivative ∂L/∂x, as ‖dy‖ is a scalar.

proof of Proposition 1. We prove that

n∑
j=`

ujekj
=

n∑
j=`

λj∆j − |u`|
`−1∑
j=1

sign(uj)ekj
(A3)

for every ` = 1, . . . , n, where we abbreviate uj = dykj
.

The claimed equality (3) then follows from (A3) in the
special case ` = 1.

We proceed by induction. In the first step we show (A3)
for ` = n. Definition of ∆n (9) yields

λn∆n − |un|
n−1∑
j=1

sign(uj)ekj

11



Table A7: Ablations of CombOptNet on Random Constraints demonstration. Reported is
evaluation accuracy (y = y∗ in %) for m = 1, 2, 4, 8 ground-truth constraints. Statistics
are over 20 restarts (2 for each of the 10 dataset seeds).

Method 1 2 4 8

bi
na

ry

pa
ra

m
. learnable origins? 97.8 ± 0.7 94.2 ± 10.1 77.4 ± 13.5 46.5 ± 12.4

direct (origin at corner) 97.4 ± 1.0 94.9 ± 7.0 59.0 ± 26.8 26.9 ± 10.3
direct (origin at center) 98.0 ± 0.5 97.1 ± 0.6 70.5 ± 19.1 44.6 ± 5.9

ba
si

s ∆ basis? 97.8 ± 0.7 94.2 ± 10.1 77.4 ± 13.5 46.5 ± 12.4
canonical 96.3 ± 1.9 70.8 ± 4.1 14.4 ± 3.2 2.7 ± 0.9

m
in

hard 83.1 ± 13.2 55.4 ± 18.9 37.7 ± 8.7
soft (τ = 0.5)? 97.8 ± 0.7 94.2 ± 10.1 77.4 ± 13.5 46.5 ± 12.4
soft (τ = 1.0) 95.7 ± 2.2 70.2 ± 14.1 36.0 ± 9.7

de
ns

e

pa
ra

m
. learnable origins? 87.3 ± 2.5 70.2 ± 11.6 29.6 ± 10.4 2.3 ± 1.2

direct (origin at corner) 86.7 ± 3.0 74.6 ± 3.6 32.6 ± 13.7 2.8 ± 0.5
direct (origin at center) 83.0 ± 6.1 43.8 ± 13.2 11.6 ± 3.1 1.1 ± 0.5

ba
si

s ∆ basis? 87.3 ± 2.5 70.2 ± 11.6 29.6 ± 10.4 2.3 ± 1.2
canonical 88.6 ± 1.4 71.6 ± 1.6 26.8 ± 4.1 4.0 ± 0.7

m
in

hard 70.8 ± 15.1 21.4 ± 10.7 2.2 ± 2.1
soft (τ = 0.5)? 89.1 ± 2.8 70.2 ± 11.6 29.6 ± 10.4 2.3 ± 1.2
soft (τ = 1.0) 73.0 ± 12.1 31.9 ± 11.7 2.2 ± 1.5

Table A8: Ablations of CombOptNet on Weighted Set Covering. Reported is evaluation
accuracy (y = y∗ in %) for m = 4, 6, 8, 10 ground-truth constraints.

Method 4 6 8 10

pa
ra

m
. learnable origins? 100 ± 0.0 97.2 ± 6.4 79.7 ± 12.1 56.7 ± 14.8

direct (origin at corner) 99.4 ± 2.9 94.1 ± 16.4 78.5 ± 15.7 47.7 ± 17.9
direct (fixed origin at 0) 99.9 ± 0.6 87.6 ± 6.4 65.3 ± 11.9 46.7 ± 11.5

ba
si

s ∆ basis? 100 ± 0.0 97.2 ± 6.4 79.7 ± 12.1 56.7 ± 14.8
canonical 8.4 ± 13.3 2.0 ± 2.6 0.2 ± 0.3 0.0 ± 0.1

m
in

hard 88.2 ± 13.4 64.3 ± 14.6 45.1 ± 14.1 32.3 ± 17.4
soft (τ = 0.5)? 100 ± 0.0 97.2 ± 6.4 79.7 ± 12.1 56.7 ± 14.8
soft (τ = 1.0) 99.9 ± 0.4 95.6 ± 9.6 70.3 ± 15.5 51.2 ± 16.4
soft (τ = 2.0) 98.8 ± 3.1 90.6 ± 14.3 66.4 ± 12.5 51.2 ± 9.5
soft (τ = 5.0) 97.5 ± 11.1 90.2 ± 9.1 64.2 ± 11.8 49.7 ± 10.4

= |un|
n∑

j=1

sign(uj)ekj − |un|
n−1∑
j=1

sign(uj)ekj

= unekn .

Now, assume that (A3) holds for `+ 1 ≥ 2. We show that
(A3) holds for ` as well. Indeed,

n∑
j=`

λj∆j − |u`|
`−1∑
j=1

sign(uj)ekj

=

n∑
j=`+1

λj∆j − |u`+1|
∑̀
j=1

sign(uj)ekj
+ λ`∆`

+ |u`+1|
∑̀
j=1

sign(uj)ekj
− |u`|

`−1∑
j=1

sign(uj)ekj

=

n∑
j=`+1

ujekj +
(
|u`| − |u`+1|

)∑̀
j=1

sign(uj)ekj

+ |u`+1|
∑̀
j=1

sign(uj)ekj
− |u`|

`−1∑
j=1

sign(uj)ekj

=

n∑
j=`+1

ujekj + sign(u`)|u`|ek`
=

n∑
j=`

ujekj ,

where we used the definitions of ∆` and λ`.

12



References
[1] Akshay Agrawal, Brandon Amos, Shane Barratt,

Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. In Ad-
vances in Neural Information Processing Systems,
pages 9562–9574, 2019.

[2] Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo
Busseti, and Walaa M. Moursi. Differentiating
through a cone program. J. Appl. Numer. Optim,
1(2):107–115, 2019.

[3] Brandon Amos. Differentiable optimization-based
modeling for machine learning. PhD thesis, PhD
thesis. Carnegie Mellon University, 2019.

[4] Brandon Amos and J Zico Kolter. Optnet: Differ-
entiable optimization as a layer in neural networks.
In International Conference on Machine Learning,
pages 136–145, 2017.

[5] Brandon Amos and Denis Yarats. The differentiable
cross-entropy method. In International Conference
on Machine Learning, pages 291–302, 2020.

[6] Maria-Florina Balcan, Travis Dick, Tuomas Sand-
holm, and Ellen Vitercik. Learning to branch. In
International conference on machine learning, pages
344–353, 2018.

[7] Mislav Balunovic, Pavol Bielik, and Martin Vechev.
Learning to solve SMT formulas. In Advances in Neu-
ral Information Processing Systems, pages 10317–
10328, 2018.

[8] Peter Battaglia, Jessica Blake Chandler Hamrick, Vic-
tor Bapst, Alvaro Sanchez, Vinicius Zambaldi, Ma-
teusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, Caglar Gulcehre,
Francis Song, Andy Ballard, Justin Gilmer, George E.
Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash,
Victoria Jayne Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matt Botvinick,
Oriol Vinyals, Yujia Li, and Razvan Pascanu. Re-
lational inductive biases, deep learning, and graph
networks. arXiv:1806.01261, 2018.

[9] Irwan Bello, Hieu Pham, Quoc V Le, Moham-
mad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning.
arXiv:1611.09940, 2016.

[10] Quentin Berthet, Mathieu Blondel, Olivier Teboul,
Marco Cuturi, Jean-Philippe Vert, and Francis Bach.
Learning with differentiable perturbed optimizers. In
Advances in Neural Information Processing Systems,
pages 9508–9519, 2020.

[11] Luca Bertinetto, Joao F Henriques, Philip HS Torr,
and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. In International Confer-
ence on Learning Representations, 2019.

[12] Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loïc Barrault, and Antoine Bordes. Supervised learn-
ing of universal sentence representations from natural

language inference data. In Conference on Empiri-
cal Methods in Natural Language Processing, pages
670–680, Copenhagen, Denmark, 2017. Association
for Computational Linguistics.

[13] IBM ILOG Cplex. V12. 1: User’s Manual for
CPLEX. International Business Machines Corpo-
ration, 46(53):157, 2009.

[14] Gal Dalal, Krishnamurthy Dvijotham, Matej Ve-
cerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces.
arXiv:1801.08757, 2018.

[15] Steven Diamond and Stephen Boyd. CVXPY: A
Python-embedded modeling language for convex op-
timization. Journal of Machine Learning Research,
17(83):1–5, 2016.

[16] Josip Djolonga and Andreas Krause. Differentiable
learning of submodular models. In Advances in
Neural Information Processing Systems, pages 1013–
1023, 2017.

[17] Justin Domke. Generic methods for optimization-
based modeling. In Artificial Intelligence and Statis-
tics, pages 318–326, 2012.

[18] Priya Donti, Brandon Amos, and J Zico Kolter. Task-
based end-to-end model learning in stochastic opti-
mization. In Advances in Neural Information Pro-
cessing Systems, pages 5484–5494, 2017.

[19] Adam N. Elmachtoub and Paul Grigas. Smart “pre-
dict, then optimize”. arXiv:1710.08005, 2020.

[20] Aaron Ferber, Bryan Wilder, Bistra Dilkina, and
Milind Tambe. MIPaaL: Mixed integer program as a
layer. In AAAI Conference on Artificial Intelligence,
volume 34, pages 1504–1511, 2020.

[21] Matthias Fey, Jan E Lenssen, Christopher Morris,
Jonathan Masci, and Nils M Kriege. Deep graph
matching consensus. In International Conference on
Learning Representations, 2020.

[22] Stephen Gould, Basura Fernando, Anoop Cherian,
Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and
argmax problems with application to bi-level opti-
mization. arXiv:1607.05447, 2016.

[23] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural
turing machines. arXiv:1410.5401, 2014.

[24] Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann,
Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom, Ko-
ray Kavukcuoglu, and Demis Hassabis. Hybrid com-
puting using a neural network with dynamic external
memory. Nature, 538(7626):471–476, October 2016.

13



[25] LLC Gurobi Optimization. Gurobi optimizer ref-
erence manual, 2019. URL http://www.gurobi.
com.

[26] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina,
and Le Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Infor-
mation Processing Systems, pages 6348–6358, 2017.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Confer-
ence on Learning Representations, 2014.

[28] Wouter Kool, Herke van Hoof, and Max Welling.
Attention, learn to solve routing problems! In In-
ternational Conference on Learning Representations,
2018.

[29] Kwonjoon Lee, Subhransu Maji, Avinash Ravichan-
dran, and Stefano Soatto. Meta-learning with differ-
entiable convex optimization. In Conference on Com-
puter Vision and Pattern Recognition, pages 10657–
10665, 2019.

[30] Chun Kai Ling, Fei Fang, and J Zico Kolter. What
game are we playing? End-to-end learning in normal
and extensive form games. In International Joint
Conference on Artificial Intelligence, 2018.

[31] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu
Cho. SPair-71k: A Large-scale Benchmark for Se-
mantic Correspondence. arXiv:1908.10543, 2019.

[32] Vinod Nair, Sergey Bartunov, Felix Gimeno, In-
grid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjan-
draatmadja, Pengming Wang, Ravichandra Addanki,
Tharindi Hapuarachchi, Thomas Keck, James Keel-
ing, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol
Vinyals, and Yori Zwols. Solving mixed integer pro-
grams using neural networks. arXiv:2012.13349,
2020.

[33] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence
Snyder, and Martin Takác. Reinforcement learning
for solving the vehicle routing problem. In Advances
in Neural Information Processing Systems, pages
9839–9849, 2018.

[34] Vlad Niculae, Andre Martins, Mathieu Blondel, and
Claire Cardie. Sparsemap: Differentiable sparse
structured inference. In International Conference
on Machine Learning, pages 3799–3808, 2018.

[35] Leonard Richardson. The knapsack problem, the
game of premature optimization, 2001. URL https:
//www.crummy.com/software/if/knapsack/.

[36] M. Rolínek, V. Musil, A. Paulus, M. Vlastelica,
C. Michaelis, and G. Martius. Optimizing ranking-
based metrics with blackbox differentiation. In Con-
ference on Computer Vision and Pattern Recognition,
2020.

[37] Michal Rolínek, Paul Swoboda, Dominik Zietlow,
Anselm Paulus, Vít Musil, and Georg Martius. Deep
graph matching via blackbox differentiation of com-
binatorial solvers. In European Conference on Com-
puter Vision, pages 407–424, 2020.

[38] Yingcong Tan, Daria Terekhov, and Andrew Delong.
Learning linear programs from optimal decisions. In
Advances in Neural Information Processing Systems,
pages 19738–19749, 2020.

[39] Petar Veličković, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International
Conference on Learning Representations, 2018.

[40] Petar Veličković, Rex Ying, Matilde Padovano, Raia
Hadsell, and Charles Blundell. Neural execution of
graph algorithms. In International Conference on
Learning Representations, 2020.

[41] M. Vlastelica, A. Paulus, V. Musil, G. Martius, and
M. Rolínek. Differentiation of blackbox combinato-
rial solvers. In International Conference on Learning
Representations, 2020.

[42] Marin Vlastelica, Michal Rolinek, and Georg Mar-
tius. Discrete planning with end-to-end trained neuro-
algorithmic policies. ICML 2020, Graph Representa-
tion Learning Workshop, 2020.

[43] Eric Wallace, Yizhong Wang, Sujian Li, Sameer
Singh, and Matt Gardner. Do NLP models know
numbers? Probing numeracy in embeddings. In Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, pages 5310–
5318, 2019.

[44] Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico
Kolter. SATNet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver.
In International Conference on Machine Learning,
pages 6545–6554, 2019.

[45] Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind
Tambe. End to end learning and optimization on
graphs. In Advances in Neural Information Process-
ing Systems, pages 4672–4683, 2019.

[46] Andrei Zanfir and Cristian Sminchisescu. Deep learn-
ing of graph matching. In Conference on Computer
Vision and Pattern Recognition, pages 2684–2693,
2018.

[47] Wei Zhang and Thomas G Dietterich. Solving com-
binatorial optimization tasks by reinforcement learn-
ing: A general methodology applied to resource-
constrained scheduling. Journal of Artificial Intelli-
gence Reseach, 1:1–38, 2000.

14

http://www.gurobi.com
http://www.gurobi.com
https://www.crummy.com/software/if/knapsack/
https://www.crummy.com/software/if/knapsack/

	Introduction
	Related Work

	Problem description
	The main difficulty.

	Method
	Demonstration & Analysis
	Random Constraints
	Weighted Set Covering
	Knapsack from Sentence Description
	Deep Keypoint Matching

	Conclusion
	Demonstrations
	Implementation Details
	Runtime analysis.
	Additional Results
	Ablations

	Method

