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Abstract
Neural networks for image recognition have evolved

through extensive manual design from simple chain-like
models to structures with multiple wiring paths. The suc-
cess of ResNets [12] and DenseNets [17] is due in large
part to their innovative wiring plans. Now, neural architec-
ture search (NAS) studies are exploring the joint optimiza-
tion of wiring and operation types, however, the space of
possible wirings is constrained and still driven by manual
design despite being searched. In this paper, we explore a
more diverse set of connectivity patterns through the lens of
randomly wired neural networks. To do this, we first define
the concept of a stochastic network generator that encap-
sulates the entire network generation process. Encapsula-
tion provides a unified view of NAS and randomly wired net-
works. Then, we use three classical random graph models
to generate randomly wired graphs for networks. The re-
sults are surprising: several variants of these random gen-
erators yield network instances that have competitive ac-
curacy on the ImageNet benchmark. These results suggest
that new efforts focusing on designing better network gen-
erators may lead to new breakthroughs by exploring less
constrained search spaces with more room for novel design.
The code is publicly available online1.

1. Introduction
What we call deep learning today descends from the

connectionist approach to cognitive science [39, 8]—a
paradigm reflecting the hypothesis that how computational
networks are wired is crucial for building intelligent ma-
chines. Echoing this perspective, recent advances in com-
puter vision have been driven by moving from models with
chain-like wiring [20, 55, 43, 44] to more elaborate connec-
tivity patterns, e.g., ResNet [12] and DenseNet [17], that are
effective in large part because of how they are wired.

Advancing this trend, neural architecture search (NAS)
[57, 58] has emerged as a promising direction for jointly
searching wiring patterns and which operations to per-
form. NAS methods focus on search [57, 58, 34, 27, 30,
28] while implicitly relying on an important—yet largely
overlooked—component that we call a network generator
(defined in §3.1). The NAS network generator defines a

1https://github.com/facebookresearch/RandWire
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Figure 1. Randomly wired neural networks generated by the
classical Watts-Strogatz (WS) [51] model: these three instances
of random networks achieve (left-to-right) 79.1%, 79.1%, 79.0%
classification accuracy on ImageNet under a similar computational
budget to ResNet-50, which has 77.1% accuracy.

family of possible wiring patterns from which networks
are sampled subject to a learnable probability distribution.
However, like the wiring patterns in ResNet and DenseNet,
the NAS network generator is hand designed and the space
of allowed wiring patterns is constrained in a small subset
of all possible graphs. Given this perspective, we ask: What
happens if we loosen this constraint and design novel net-
work generators?

We explore this question through the lens of randomly
wired neural networks that are sampled from stochastic
network generators, in which a human-designed random
process defines generation. To reduce bias from us—the
authors of this paper—on the generators, we use three clas-
sical families of random graph models in graph theory [52]:
the Erdős-Rényi (ER) [7], Barabási-Albert (BA) [1], and
Watts-Strogatz (WS) [51] models. To define complete net-
works, we convert a random graph into a directed acyclic
graph (DAG) and apply a simple mapping from nodes to
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their functional roles (e.g., to the same type of convolution).
The results are surprising: several variants of these ran-

dom generators yield networks with competitive accuracy
on ImageNet [40]. The best generators, which use the
WS model, produce multiple networks that outperform or
are comparable to their fully manually designed counter-
parts and the networks found by various neural architecture
search methods. We also observe that the variance of ac-
curacy is low for different random networks produced by
the same generator, yet there can be clear accuracy gaps be-
tween different generators. These observations suggest that
the network generator design is important.

We note that these randomly wired networks are not
“prior free” even though they are random. Many strong
priors are in fact implicitly designed into the generator, in-
cluding the choice of a particular rule and distribution to
control the probability of wiring or not wiring certain nodes
together. Each random graph model [7, 51, 1] has certain
probabilistic behaviors such that sampled graphs likely ex-
hibit certain properties (e.g., WS is highly clustered [51]).
Ultimately, the generator design determines a probabilistic
distribution over networks, and as a result these networks
tend to have certain properties. The generator design under-
lies the prior and thus should not be overlooked.

Our work explores a direction orthogonal to concurrent
work on random search for NAS [24, 42]. These studies
show that random search is competitive in “the NAS search
space” [57, 58], i.e., the “NAS network generator” in our
perspective. Their results can be understood as showing
that the prior induced by the NAS generator design tends
to produce good models, similar to our observations. In
contrast to [24, 42], our work goes beyond the design of
established NAS generators and explores different random
generator designs.

Finally, our work suggests a new transition from design-
ing an individual network to designing a network gener-
ator may be possible, analogous to how our community
have transitioned from designing features to designing a
network that learns features. Rather than focusing primar-
ily on search with a fixed generator, we suggest designing
new network generators that produce new families of mod-
els for searching. The importance of the designed network
generator (in NAS and elsewhere) also implies that machine
learning has not been automated (c.f . “AutoML” [21])—the
underlying human design and prior shift from network en-
gineering to network generator engineering.

2. Related Work
Network wiring. Early recurrent and convolutional neural
networks (RNNs and CNNs) [38, 22] use chain-like wiring
patterns. LSTMs [15] use more sophisticated wiring to
create a gating mechanism. Inception CNNs [46, 47, 45]
concatenate multiple, irregular branching pathways, while

ResNets [12] use x + F(x) as a regular wiring template;
DenseNets [17] use concatenation instead: [x,F(x)]. The
LSTM, Inception, ResNet, and DenseNet wiring patterns
are effective in general, beyond any individual instantiation.

Neural architecture search (NAS). Zoph and Le [57]
define a NAS search space and investigate reinforcement
learning (RL) as an optimization algorithm. Recent re-
search on NAS mainly focuses on optimization methods,
including RL [57, 58], progressive [27], gradient-based
[30, 28, 54, 5], weight-sharing [34], evolutionary [35], and
random search [24, 42] methods. The search space in these
NAS works, determined by the network generator implicit
in [57], is largely unchanged in these works. While this
is reasonable for comparing optimization methods, it inher-
ently limits the set of feasible solutions.

Randomly wired machines. Pioneers of artificial intelli-
gence were originally interested in randomly wired hard-
ware and their implementation in computer programs (i.e.,
artificial neural networks). In 1940s, Turing [48] suggested
a concept of unorganized machines, which is a form of the
earliest randomly connected neural networks. One of the
first neural network learning machines, designed by Minsky
[32] in 1950s and implemented using vacuum tubes, was
randomly wired. In late 1950s the “Mark I Perceptron” vi-
sual recognition machine built by Rosenblatt [37] used an
array of randomly connected photocells.

Relation to neuroscience. Turing [48] analogized the un-
organized machines to an infant human’s cortex. Rosenblatt
[37] pointed out that “the physical connections of the ner-
vous system ... are not identical from one organism to an-
other”, and “at birth, the construction of the most important
networks is largely random.” Studies [51, 49] have observed
that the neural network of a nematode (a worm) with about
300 neurons is a graph with small-world properties [19].
Random graph modeling has been used as a tool to study
the neural networks of human brains [2, 4, 3].

Random graphs in graph theory. Random graphs are
widely studied in graph theory [52]. Random graphs ex-
hibit different probabilistic behaviors depending on the ran-
dom process defined by the model (e.g., [7, 1, 51]). The
definition of the random graph model determines the prior
knowledge encoded in the resulting graphs (e.g., small-
world [19]) and may connect them to naturally occurring
phenomena. As a result, random graph models are an ef-
fective tool for modeling and analyzing real-world graphs,
e.g., social networks, world wide web, citation networks.

3. Methodology

We now introduce the concept of a network generator,
which is the foundation of randomly wired neural networks.



3.1. Network Generators

We define a network generator as a mapping g from a
parameter space Θ to a space of neural network architec-
tures N , g: Θ 7→ N . For a given θ ∈ Θ, g(θ) returns a
neural network instance n ∈ N . The set N is typically
a family of related networks, for example, VGG nets [44],
ResNets [12], or DenseNets [17].

The generator g determines, among other concerns, how
the computational graph is wired. For example, in ResNets
a generator produces a stack of blocks that compute x +
F(x). The parameters θ specify the instantiated network
and may contain diverse information. For example, in
a ResNet generator, θ can specify the number of stages,
number of residual blocks for each stage, depth/width/filter
sizes, activation types, etc.

Intuitively, one may think of g as a function in a pro-
gramming language, e.g. Python, that takes a list of argu-
ments (corresponding to θ), and returns a network architec-
ture. The network representation n returned by the gener-
ator is symbolic, meaning that it specifies the type of oper-
ations that are performed and the flow of data; it does not
include values of network weights,2 which are learned from
data after a network is generated.

Stochastic network generators. The above network gen-
erator g(θ) performs a deterministic mapping: given the
same θ, it always returns the same network architecture n.
We can extend g to accept an additional argument s that
is the seed of a pseudo-random number generator that is
used internally by g. Given this seed, one can construct
a (pseudo) random family of networks by calling g(θ, s)
multiple times, keeping θ fixed but changing the value of
s = 1, 2, 3, . . .. For a fixed value of θ, a uniform probability
distribution over all possible seed values induces a (likely
non-uniform) probability distribution over N . We call gen-
erators of the form g(θ, s) stochastic network generators.

Before we discuss our method, we provide additional
background by reinterpreting the work on NAS [57, 58] in
the context of stochastic network generators.

NAS from the network generator perspective. The NAS
methods of [57, 58] utilize an LSTM “controller” in the
process of generating network architectures. But the LSTM
is only part of the complete NAS network generator, which
is in fact a stochastic network generator, as illustrated next.

The weight matrices of the LSTM are the parameters θ
of the generator. The output of each LSTM time-step is a
probability distribution conditioned on θ. Given this dis-
tribution and the seed s, each step samples a construction
action (e.g., insert an operator, connect two nodes). The pa-
rameters θ of the LSTM controller, due to its probabilistic
behavior, are optimized (searched for) by RL in [57, 58].

2We use parameters to refer to network generator arguments and
weights to refer to the learnable weights and biases of a generated network.

However, the LSTM is not the only component in the
NAS network generator g(θ, s). There are also hand-
designed rules defined to map the sampled actions to a com-
putational DAG, and these rules are also part of g. Using
the node/edge terminology in graph theory, for a NAS net-
work in [58], if we map a combination operation (e.g., sum)
to a node and a unary transformation (e.g., conv) to an edge
(see the supplement), the rules of the NAS generator in-
clude, but are not limit to:

• A subgraph to be searched, called a cell [58], always
accepts the activations of the output nodes from the 2
immediately preceding cells;

• Each cell contains 5 nodes that are wired to 2 and only
2 existing nodes, chosen by sampling from the proba-
bility distribution output by the LSTM;

• All nodes that have no output in a cell are concatenated
by an extra node to form a valid DAG for the cell.

All of the generation rules, together with the choice of using
an LSTM, and other hyper-parameters of the system (e.g.,
the number of nodes, say, 5), comprise the NAS network
generator that produces a full DAG. It is also worth noticing
that the view of “node as combination and edge as transfor-
mation” is not the only way to interpret a neural network as
a graph, and so it is not the only way to turn a general graph
into a neural network (we use a different mapping in §3.2).

Encapsulating the complete generation process, as we
have illustrated, reveals which components are optimized
and which are hard-coded. It now becomes explicit that
the network space N has been carefully restricted by hand-
designed rules. For example, the rules listed above suggest
that each of the 5 nodes in a cell always has precisely input
degree3 2 and output degree 1 (see the supplement). This
does not cover all possible 5-(internal-)node graphs. It is
in a highly restricted network space. Viewing NAS from
the perspective of a network generator helps explain the
recently demonstrated ineffectiveness of sophisticated op-
timization vs. random search [24, 42]: the manual design in
the NAS network generator is a strong prior, which repre-
sents a meta-optimization beyond the search over θ (by RL,
e.g.) and s (by random search).

3.2. Randomly Wired Neural Networks

Our analysis of NAS reveals that the network generator
is hand-designed and encodes a prior from human knowl-
edge. It is likely that the design of the network generator
plays a considerable role—if so, current methods are short
of achieving “AutoML” [21] and still involve significant hu-
man effort (c.f . “Our experiments show that Neural Archi-
tecture Search can design good models from scratch.” [57],

3In graph theory, “degree” is the number of edges connected to a node.
We refer to “input/output degree” as that of input/output edges to a node.
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Figure 2. Node operations designed for
our random graphs. Here we illustrate a
node (blue circle) with 3 input edges and
4 output edges. The aggregation is done
by weighted sum with learnable positive
weights w0, w1, w2. The transformation
is a ReLU-convolution-BN triplet, sim-
ply denoted as conv. The transformed
data are sent out as 4 copies.

emphasis added). To investigate how important the gener-
ator design is, it is not sufficient to compare different opti-
mizers (sophisticated or random) for the same NAS genera-
tor; it is necessary to study new network generators that are
substantially different from the NAS generator.

This leads to our exploration of randomly wired neu-
ral networks. That is, we will define network genera-
tors that yield networks with random graphs, subject to
different human-specific priors. To minimize the human
bias from us—the authors of this paper—on the prior, we
will use three classical random graph models in our study
([7, 1, 51]; §3.3). Our methodology for generating ran-
domly wired networks involves the following concepts:

Generating general graphs. Our network generator starts
by generating a general graph (in the sense of graph theory).
It generates a set of nodes and edges that connect nodes,
without restricting how the graphs correspond to neural net-
works. This allows us to freely use any general graph gen-
erator from graph theory (ER/BA/WS). Once a graph is ob-
tained, it is mapped to a computable neural network.

The mapping from a general graph to neural network op-
erations is in itself arbitrary, and thus also human-designed.
We intentionally use a simple mapping, discussed next, so
that we can focus on graph wiring patterns.

Edge operations. Assuming by construction that the graph
is directed, we define that edges are data flow, i.e., a directed
edge sends data (a tensor) from one node to another node.

Node operations. A node in a directed graph may have
some input edges and some output edges. We define the
operations represented by one node (Figure 2) as:

- Aggregation: The input data (from one or more edges) to
a node are combined via a weighted sum; the weights are
learnable and positive.4

- Transformation: The aggregated data is processed by a
transformation defined as a ReLU-convolution-BN triplet5

[13]. The same type of convolution is used for all nodes,
e.g., a 3×3 separable convolution6 by default.

4Applying sigmoid on unrestricted weights ensures they are positive.
5Instead of a triplet with a convolution followed by BN [18] then ReLU

[33], we use the ReLU-convolution-BN triplet, as it means the aggregation
(at the next nodes) can receive positive and negative activation, preventing
the aggregated activation from being inflated in case of a large input degree.

6Various implementations of separable convolutions exist. We use the

- Distribution: The same copy of the transformed data is
sent out by the output edges of the node.

These operations have some nice properties:
(i) Additive aggregation (unlike concatenation) main-

tains the same number of output channels as input channels,
and this prevents the convolution that follows from growing
large in computation, which may increase the importance of
nodes with large input degree simply because they increase
computation, not because of how they are wired.

(ii) The transformation should have the same number
of output and input channels (unless switching stages; dis-
cussed later), to make sure the transformed data can be com-
bined with the data from any other nodes. Fixing the chan-
nel count then keeps the FLOPs (floating-point operations)
and parameter count unchanged for each node, regardless
of its input and output degrees.

(iii) Aggregation and distribution are almost parameter-
free (except for a negligible number of parameters for
weighted summation), regardless of input and output de-
grees. Also, given that every edge is parameter-free the
overall FLOPs and parameter count of a graph are roughly
proportional to the number of nodes, and nearly indepen-
dent of the number of edges.

These properties nearly decouple FLOPs and parameter
count from network wiring, e.g., the deviation of FLOPs is
typically±2% among our random network instances or dif-
ferent generators. This enables the comparison of different
graphs without inflating/deflating model complexity. Dif-
ferences in task performance are therefore reflective of the
properties of the wiring pattern.

Input and output nodes. Thus far, a general graph is not
yet a valid neural network even given the edge/node opera-
tions, because it may have multiple input nodes (i.e., those
without any input edge) and multiple output nodes. It is de-
sirable to have a single input and a single output for typical
neural networks, e.g., for image classification. We apply a
simple post-processing step.

For a given general graph, we create a single extra node
that is connected to all original input nodes. This is the
unique input node that sends out the same copy of input
data to all original input nodes. Similarly, we create a sin-
gle extra node that is connected to all original output nodes.
This is the unique output node; we have it compute the (un-
weighted) average from all original output nodes. These
two nodes perform no convolution. When referring to the
node count N , we exclude these two nodes.

Stages. With unique input and output nodes, it is sufficient
for a graph to represent a valid neural network. Never-
theless, in image classification in particular, networks that

form of [6]: a 3×3 separable convolution is a 3×3 depth-wise convolution
followed by a 1×1 convolution, with no non-linearity in between.



stage output small regime regular regime
conv1 112×112 3×3 conv, C/2

conv2 56×56 3×3 conv, C
random wiring

N/2, C

conv3 28×28
random wiring random wiring

N , C N , 2C

conv4 14×14
random wiring random wiring

N , 2C N , 4C

conv5 7×7
random wiring random wiring

N , 4C N , 8C

classifier 1×1
1×1 conv, 1280-d

global average pool, 1000-d fc, softmax

Table 1. RandWire architectures for small and regular computa-
tion networks. A random graph is denoted by the node count (N )
and channel count for each node (C). We use conv to denote a
ReLU-Conv-BN triplet (expect conv1 is Conv-BN). The input size
is 224×224 pixels. The change of the output size implies a stride
of 2 (omitted in table) in the convolutions that are right after the
input of each stage.

maintain the full input resolution throughout are not desir-
able. It is common [20, 44, 12, 58] to divide a network into
stages that progressively down-sample feature maps.

We use a simple strategy: the random graph generated
above defines one stage. Analogous to the stages in a
ResNet, e.g., conv1,2,3,4,5 [12], our entire network consists
of multiple stages. One random graph represents one stage,
and it is connected to its preceding/succeeding stage by its
unique input/output node. For all nodes that are directly
connected to the input node, their transformations are mod-
ified to have a stride of 2. The channel count in a random
graph is increased by 2× when going from one stage to the
next stage, following [12].

Table 1 summarizes the randomly wired neural net-
works, referred to as RandWire, used in our experiments.
They come in small and regular complexity regimes (more
in §4). For conv1 and/or conv2 we use a single convolu-
tional layer for simplicity with multiple random graphs fol-
lowing. The network ends with a classifier output (Table 1,
last row). Figure 1 shows full computation graphs of three
randomly wired network samples.

3.3. Random Graph Models

We now describe in brief the three classical random
graph models used in our study. We emphasize that these
random graph models are not proposed by this paper; we
describe them for completeness. The three classical models
all generate undirected graphs; we use a simple heuristic to
turn them into DAGs (see the supplement).

Erdős-Rényi (ER). In the ER model [9, 7], with N nodes,
an edge between two nodes is connected with probability
P , independent of all other nodes and edges. This process
is iterated for all pairs of nodes. The ER generation model
has only a single parameter P , and is denoted as ER(P ).

Any graph with N nodes has non-zero probability of be-
ing generated by the ER model, including graphs that are
disconnected. However, a graph generated by ER(P ) has
high probability of being a single connected component if
P > ln(N)

N [7]. This provides one example of an implicit
bias introduced by a generator.

Barabási-Albert (BA). The BA model [1] generates a ran-
dom graph by sequentially adding new nodes. The initial
state is M nodes without any edges (1 ≤ M < N ). The
method sequentially adds a new node with M new edges.
For a node to be added, it will be connected to an existing
node v with probability proportional to v’s degree. The new
node repeatedly adds non-duplicate edges in this way until
it has M edges. Then this is iterated until the graph has N
nodes. The BA generation model has only a single parame-
ter M , and is denoted as BA(M).

Any graph generated by BA(M) has exactly
M ·(N−M) edges. So the set of all graphs generated
by BA(M) is a subset of all possible N -node graphs—this
gives one example on how an underlying prior can be
introduced by the graph generator in spite of randomness.

Watts-Strogatz (WS). The WS model [51] was defined to
generate small-world graphs [19]. Initially, theN nodes are
regularly placed in a ring and each node is connected to its
K/2 neighbors on both sides (K is an even number). Then,
in a clockwise loop, for every node v, the edge that connects
v to its clockwise i-th next node is rewired with probability
P . “Rewiring” is defined as uniformly choosing a random
node that is not v and that is not a duplicate edge. This loop
is repeated K/2 times for 1≤i≤K/2. K and P are the only
two parameters of the WS model, denoted as WS(K,P ).

Any graph generated by WS(K,P ) has exactly N ·K
edges. WS(K,P ) only covers a small subset of all possi-
ble N -node graphs too, but this subset is different from the
subset covered by BA. This provides an example on how a
different underlying prior has been introduced.

3.4. Design and Optimization

Our randomly wired neural networks are generated by
a stochastic network generator g(θ, s). The random graph
parameters, namely, P , M , (K,P ) in ER, BA, WS respec-
tively, are part of the parameters θ. The “optimization” of
such a 1- or 2-parameter space is essentially done by trial-
and-error by human designers, e.g., by line/grid search.
Conceptually, such “optimization” is not distinct from many
other designs involved in our and other models (including
NAS), e.g., the number of nodes, stages, and filters.

Optimization can also be done by scanning the random
seed s, which is an implementation of random search. Ran-
dom search is possible for any stochastic network generator,
including ours and NAS. But as we present by experiment,
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Figure 4. Visualization of the random graphs generated by ER, BA, and WS. Each plot represents one random graph instance sampled
by the specified generator. The generators are those in Figure 3. The node count is N=32 for each graph. A blue/red node denotes an
input/output node, to which an extra unique input/output node (not shown) will be added (see §3.2).

the accuracy variation of our networks is small for differ-
ent seeds s, suggesting that the benefit of random search
may be small. So we perform no random search and report
mean accuracy of multiple random network instances. As
such, our network generator has minimal optimization (1- or
2-parameter grid search) beyond their hand-coded design.

4. Experiments
We conduct experiments on the ImageNet 1000-class

classification task [40]. We train on the training set with
∼1.28M images and test on the 50K validation images.

Architecture details. Our experiments span a small com-
putation regime (e.g., MobileNet [16] and ShuffleNet [56])
and a regular computation regime (e.g., ResNet-50/101
[12]). RandWire nets in these regimes are in Table 1, where
N nodes and C channels determine network complexity.

We set N=32, and then set C to the nearest integer such
that target model complexity is met: C=78 in the small
regime, and C=109 or 154 in the regular regime.

Random seeds. For each generator, we randomly sample
5 network instances (5 random seeds), train them from
scratch, and evaluate accuracy for each instance. To empha-
size that we perform no random search for each generator,
we report the classification accuracy with “mean±std” for
all 5 random seeds (i.e., we do not pick the best). We use
the same seeds 1, . . ., 5 for all experiments.

Implementation details. We train our networks for 100
epochs, unless noted. We use a half-period-cosine shaped
learning rate decay [29, 17]. The initial learning rate is 0.1,
the weight decay is 5e-5, and the momentum is 0.9. We use
label smoothing regularization [45] with a coefficient of 0.1.
Other details of the training procedure are the same as [11].



4.1. Analysis Experiments

Random graph generators. Figure 3 compares the results
of different generators in the small computation regime:
each RandWire net has ∼580M FLOPs. Figure 4 visualizes
one example graph for each generator. The graph generator
is specified by the random graph model (ER/BA/WS) and
its set of parameters: e.g., ER(0.2). We observe:

All random generators provide decent accuracy over all
5 random network instances; none of them fails to converge.
ER, BA, and WS all have certain settings that yield mean
accuracy of >73%, within a <1% gap from the best mean
accuracy of 73.8% from WS(4, 0.75).

Moreover, the variation among the random network in-
stances is low. Almost all random generators in Figure 3
have an standard deviation (std) of 0.2∼0.4%. As a com-
parison, training the same instance of a ResNet-50 multiple
times has a typical std of 0.1∼0.2% [11]. The observed low
variance of our random generators suggests that even with-
out random search (i.e., picking the best from several ran-
dom instances), it is likely that the accuracy of a network in-
stance is close to the mean accuracy, subject to some noise.

On the other hand, different random generators may have
a gap between their mean accuracies, e.g., BA(1) has 70.7%
accuracy and is ∼3% lower than WS(4, 0.75). This suggests
that random generator design, including the wiring priors
(BA vs. WS) and generation parameters, plays an important
role in the accuracy of sampled network instances.

Figure 3 also includes a set of non-random generators:
WS(K,P=0). “P=0” means no random rewiring. Inter-
estingly, the results of WS(K,P=0) are all worse than their
WS(K,P>0) counterparts for any fixed K in Figure 3.

Graph damage. We explore graph damage by randomly
removing one node or edge—an ablative setting inspired by
[23, 50]. Formally, given a network instance after training,
we remove one node or one edge from the graph and evalu-
ate the validation accuracy without any further training.

When a node is removed, we evaluate the accuracy loss
(∆) vs. the output degree of that node (Figure 5, top). It is
clear that ER, BA, and WS behave differently under such
damage. For networks generated by WS, the mean degra-
dation of accuracy is larger when the output degree of the
removed node is higher. This implies that “hub” nodes in
WS that send information to many nodes are influential.

When an edge is removed, we evaluate the accuracy loss
vs. the input degree of this edge’s target node (Figure 5, bot-
tom). If the input degree of an edge’s target node is smaller,
removing this edge tends to change a larger portion of the
target node’s inputs. This trend can be seen by the fact that
the accuracy loss is generally decreasing along the x-axis in
Figure 5 (bottom). The ER model is less sensitive to edge
removal, possibly because in ER’s definition wiring of ev-
ery edge is independent.
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Figure 5. Graph damage ablation. We randomly remove one
node (top) or remove one edge (bottom) from a graph after the
network is trained, and evaluate the loss (∆) in accuracy on Im-
ageNet. From left to right are ER, BA, and WS generators. Red
circle: mean; gray bar: median; orange box: interquartile range;
blue dot: an individual damaged instance.
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Figure 6. Alternative node operations. Each column is the mean
accuracy of the same set of 5 random graphs equipped with differ-
ent node operations, sorted by “3×3 separable conv” (from Fig-
ure 3). The generators roughly maintain their orders of accuracy.

Node operations. Thus far, all models in our experiment
use a 3×3 separable convolution as the “conv” in Figure 2.
Next we evaluate alternative choices. We consider: (i) 3×3
(regular) convolution, and (ii) 3×3 max-/average-pooling
followed by a 1×1 convolution. We replace the transforma-
tion of all nodes with the specified alternative. We adjust the
factor C to keep the complexity of all alternative networks.

Figure 6 shows the mean accuracy for each of the gen-
erators listed in Figure 3. Interestingly, almost all networks
still converge to non-trivial results. Even “3×3 pool with
1×1 conv” performs similarly to “3×3 conv”. The network
generators roughly maintain their accuracy ranking despite
the operation replacement; in fact, the Pearson correlation
between any two series in Figure 5 is 0.91∼0.98. This sug-
gests that the network wiring plays a role somewhat orthog-
onal to the role of the chosen operations.

4.2. Comparisons
Small computation regime. Table 2 compares our results
in the small computation regime, a common setting studied
in existing NAS papers. Instead of training for 100 epochs,
here we train for 250 epochs following settings in [58, 35,
27, 28] for fair comparisons.

RandWire with WS(4, 0.75) has mean accuracy of
74.7% (with min 74.4% and max 75.0%). This result is
better than or comparable to all existing hand-designed



network top-1 acc. top-5 acc. FLOPs (M) params (M)

MobileNet [16] 70.6 89.5 569 4.2
MobileNet v2 [41] 74.7 - 585 6.9
ShuffleNet [56] 73.7 91.5 524 5.4
ShuffleNet v2 [31] 74.9 92.2 591 7.4
NASNet-A [58] 74.0 91.6 564 5.3
NASNet-B [58] 72.8 91.3 488 5.3
NASNet-C [58] 72.5 91.0 558 4.9
Amoeba-A [35] 74.5 92.0 555 5.1
Amoeba-B [35] 74.0 91.5 555 5.3
Amoeba-C [35] 75.7 92.4 570 6.4
PNAS [27] 74.2 91.9 588 5.1
DARTS [28] 73.1 91.0 595 4.9
RandWire-WS 74.7±0.25 92.2±0.15 583±6.2 5.6±0.1

Table 2. ImageNet: small computation regime (i.e., <600M
FLOPs). RandWire results are the mean accuracy (±std) of 5 ran-
dom network instances, with WS(4, 0.75). Here we train for 250
epochs similar to [58, 35, 27, 28], for fair comparisons.

network top-1 acc. top-5 acc. FLOPs (B) params (M)

ResNet-50 [12] 77.1 93.5 4.1 25.6
ResNeXt-50 [53] 78.4 94.0 4.2 25.0
RandWire-WS, C=109 79.0±0.17 94.4±0.11 4.0±0.09 31.9±0.66

ResNet-101 [12] 78.8 94.4 7.8 44.6
ResNeXt-101 [53] 79.5 94.6 8.0 44.2
RandWire-WS, C=154 80.1±0.19 94.8±0.18 7.9±0.18 61.5±1.32

Table 3. ImageNet: regular computation regime with FLOPs
comparable to ResNet-50 (top) and to ResNet-101 (bottom).
ResNeXt is the 32×4 version [53]. RandWire is WS(4, 0.75).

network
test

epochs top-1 acc. top-5 acc. FLOPs (B) params (M)size

NASNet-A [58] 3312 >250 82.7 96.2 23.8 88.9
Amoeba-B [35] 3312 >250 82.3 96.1 22.3 84.0
Amoeba-A [35] 3312 >250 82.8 96.1 23.1 86.7
PNASNet-5 [27] 3312 >250 82.9 96.2 25.0 86.1
RandWire-WS 3202 100 81.6±0.13 95.6±0.07 16.0±0.36 61.5±1.32

Table 4. ImageNet: large computation regime. Our networks
are the same as in Table 3 (C=154), but we evaluate on 320×320
images instead of 224×224. Ours are only trained for 100 epochs.

wiring (MobileNet/ShuffleNet) and NAS-based results, ex-
cept for AmoebaNet-C [35]. The mean accuracy achieved
by RandWire is a competitive result, especially considering
that we perform no random search in our random genera-
tors, and that we use a single operation type for all nodes.

Regular computation regime. Next we compare the
RandWire networks with ResNet-50/101 [12] under similar
FLOPs. In this regime, we use a regularization method in-
spired by our edge removal analysis: for each training mini-
batch, we randomly remove one edge whose target node has
input degree > 1 with probability of 0.1. This regulariza-
tion is similar to DropPath adopted in NAS [58]. We train
with a weight decay of 1e-5 and a DropOut [14] rate of 0.2
in the classifier fc layer. Other settings are the same as the
small computation regime. We train the ResNet/ResNeXt
competitors using the recipe of [11], but with the cosine

backbone AP AP50 AP75 APS APM APL

ResNet-50 [12] 37.1 58.8 39.7 21.9 40.8 47.6
ResNeXt-50 [53] 38.2 60.5 41.3 23.0 41.5 48.8
RandWire-WS, C=109 39.9 61.9 43.3 23.6 43.5 52.7
ResNet-101 [12] 39.8 61.7 43.3 23.7 43.9 51.7
ResNeXt-101 [53] 40.7 62.9 44.5 24.4 44.8 52.7
RandWire-WS, C=154 41.1 63.1 44.6 24.6 45.1 53.0

Table 5. COCO object detection results fine-tuned from the net-
works in Table 3, reported on the val2017 set. The backbone
networks have comparable FLOPs to ResNet-50 or ResNet-101.

schedule and label smoothing, for fair comparisons.
Table 3 compares RandWire with ResNet and ResNeXt

under similar FLOPs as ResNet-50/101. Our mean accu-
racies are respectively 1.9% and 1.3% higher than ResNet-
50 and ResNet-101, and are 0.6% higher than the ResNeXt
counterparts. Both ResNe(X)t and RandWire can be
thought of as hand-designed, but ResNe(X)t is based on
designed wiring patterns, while RandWire uses a designed
stochastic generator. These results illustrate different roles
that manual design can play.

Larger computation. For completeness, we compare with
the most accurate NAS-based networks, which use more
computation. For simplicity, we use the same trained net-
works as in Table 3, but only increase the test image size to
320×320 without retraining. Table 4 compares the results.

Our networks have mean accuracy 0.7%∼1.3% lower
than the most accurate NAS results, but ours use only ∼2/3
FLOPs and ∼3/4 parameters. Our networks are trained for
100 epochs and not on the target image size, vs. the NAS
methods which use >250 epochs and train on the target
331×331 size. Our model has no search on operations, un-
like NAS. These gaps will be explored in future work.

COCO object detection. Finally, we report the transfer-
ability results by fine-tuning the networks for COCO object
detection [26]. We use Faster R-CNN [36] with FPN [25] as
the object detector. Our fine-tuning is based on 1× setting
of the publicly available Detectron [10]. We simply re-
place the backbones with those in Table 3 (regular regime).

Table 5 compares the object detection results. A trend
is observed similar to that in the ImageNet experiments in
Table 3. These results indicate that the features learned by
our randomly wired networks can also transfer.

5. Conclusion
We explored randomly wired neural networks driven by

three classical random graph models from graph theory.
The results were surprising: the mean accuracy of these
models is competitive with hand-designed and optimized
models from recent work on neural architecture search. Our
exploration was enabled by the novel concept of a network
generator. We hope that future work exploring new gener-
ator designs may yield new, powerful networks designs.
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