
Optimizing Function Layout for Mobile Applications
Ellis Hoag

ellishoag@meta.com
Meta Platforms Inc.

Menlo Park, CA, USA

Kyungwoo Lee

kyulee@meta.com
Meta Platforms Inc.

Menlo Park, CA, USA

Julián Mestre

julian.mestre@sydney.edu.au
University of Sydney

Australia

julianmestre@meta.com
Meta Platforms Inc.

Menlo Park, CA, USA

Sergey Pupyrev

spupyrev@meta.com
Meta Platforms Inc.

Menlo Park, CA, USA

Abstract
Function layout, also known as function reordering or func-

tion placement, is one of the most effective profile-guided

compiler optimizations. By reordering functions in a binary,

compilers can improve the performance of large-scale appli-

cations or reduce the compressed size of mobile applications.

Although the technique has been extensively studied in the

context of large-scale binaries, no study has thoroughly in-

vestigated function layout algorithms on mobile applications.

In this paper we develop the first principled solution for

optimizing function layouts in the mobile space. To this

end, we identify two key optimization goals: reducing the

compressed code size and improving the cold start-up time of

a mobile application. Thenwe propose a formal model for the

layout problem, whose objective closely matches our goals.

Our novel algorithm for optimizing the layout is inspired by

the classic balanced graph partitioning problem. We have

carefully engineered and implemented the algorithm in an

open-source compiler, LLVM. An extensive evaluation of

the new method on large commercial mobile applications

demonstrates significant improvements in start-up time and

compressed size compared to the state-of-the-art approach.

CCS Concepts: • Software and its engineering→ Com-
pilers; • Theory of computation→ Graph algorithms
analysis.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

LCTES ’23, June 18, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0174-0/23/06. . . $15.00

https://doi.org/10.1145/3589610.3596277

Keywords: profile-guided optimizations, code layout, func-

tion reordering, code-size reduction, graph algorithms

ACM Reference Format:
Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev. 2023.

Optimizing Function Layout for Mobile Applications. In Proceed-
ings of the 24th ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES ’23),
June 18, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3589610.3596277

1 Introduction
As mobile applications become an essential part of every-

day life, it becomes crucial to improve their speed, size, and

reliability. Profile-guided optimization (PGO) is a critical

component in modern compilers for improving the perfor-

mance and size of applications; it enables the development

and delivery of new app features for mobile devices that

have limited storage and low memory. The technique, also

known as feedback-driven optimization (FDO), leverages the

program’s dynamic behavior to generate optimized applica-

tions. PGO is now a standard feature in most commercial

and open-source compilers.

Modern PGO has been successful in speeding up server

workloads [7, 17, 36] by providing a double-digit percentage

boost in performance. This is accomplished through a com-

bination of several compiler optimizations, such as function

inlining and code layout. PGO relies on execution profiles

of a program, such as the execution frequencies of basic

blocks and function invocations, to guide compilers in selec-

tively and efficiently optimizing critical paths of a program.

Typically, server-side PGO aims to improve CPU and cache

utilization during the steady state of program execution, re-

sulting in higher server throughput. However, applying PGO

for mobile applications poses a unique challenge, as mobile

applications are largely I/O bound and lack a well-defined

steady-state performance due to their user-interactive na-

ture [27]. Instead, the download speed and launch time of

an app are crucial to its success, as they directly impact user

experience, and therefore, user retention [5, 30].

https://orcid.org/0000-0003-3853-1889
https://orcid.org/0000-0002-9127-7261
https://orcid.org/0000-0003-4948-2998
https://orcid.org/0000-0003-4089-673X
https://doi.org/10.1145/3589610.3596277
https://doi.org/10.1145/3589610.3596277

LCTES ’23, June 18, 2023, Orlando, FL, USA Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev

In this paper we revisit a classic PGO technique, function

layout, and show how to successfully apply it in the context

of mobile applications. We emphasize that most of the earlier

compiler optimizations focus on a single objective, such as

the performance or the size of a binary. However, function

layout might impact multiple key metrics of a mobile ap-

plication. We show how to place functions in a binary to

simultaneously improve its (compressed) size and start-up

performance. The former objective is directly related to the

app download speed and has been extensively discussed in

recent works on compiler optimizations for mobile applica-

tions [5, 27, 28, 30, 40, 42]. The latter receives considerably

less attention but nevertheless is of prime importance in the

mobile space [10, 18, 19, 32].

Function layout, along with basic block reordering and

inlining, is one of the most impactful PGOs. The seminal

work of Pettis and Hansen [37] introduced a heuristic for

function placement that reduces I-TLB (translation lookaside

buffer) cachemisses, improving the steady-state performance

of large-scale binaries. The follow up work of Ottoni and

Maher [35] further improved this placement scheme by con-

sidering the performance of the processor instruction cache

(I-cache). The two heuristics are utilized in the majority of

modern compilers and binary optimizers [25, 35, 36, 44].

However, these optimizations have not been widely used

in mobile development and the corresponding layout algo-

rithms have not been thoroughly studied. To the best of our

knowledge, the recent work of Lee, Hoag, and Tillmann [27]

is the only known study that describes a technique for func-

tion placement in native mobile applications. With this in

mind, we provide the first comprehensive investigation of
function layout algorithms in the context of mobile applica-

tions. In Section 1.1 we explain how function layout impacts

the compressed app size, which eventually affects download

speed. Then in Section 1.2 we describe how an optimized

function placement can improve the start-up time. Finally,

Section 1.3 highlights our main contributions, a unified op-
timization model to tackle these two seemingly unrelated

objectives and a novel algorithm for the problem based on

the recursive balanced graph partitioning.

1.1 Function Layout for App Download Speed
As mobile apps continue to grow rapidly, reducing the bi-

nary size is crucial for application developers [21, 27, 30].

Smaller apps can be downloaded faster, which directly im-

pacts user experience [39]. For example, a recent study in [5]

establishes a strong correlation between the app size and the

user engagement. Furthermore, mobile app distribution plat-

forms may impose size limitations for downloads that use

cellular data [5]. For example, in the Apple App Store, users

will not receive timely updates that include critical security

improvements if an app’s size exceeds a certain threshold,

unless they are connected to a Wi-Fi network.

func 1 func 4 func 6 func 7
optimized function layout

original function layout
(lowest compression)

(highest compression)func 3

func 2 func 3 func 4 func 6 func 7func 1 func 5

func 2 func 5

Figure 1. Placing similar (same-patterned) functions nearby

in the binary leads to higher compression rates achieved

by Lempel-Ziv algorithms. Functions are considered similar

when they share common sequences of instructions that can

be encoded by short references.

Mobile apps are distributed to users in a compressed form

via mobile app platforms. Typically, application developers

do not have control over the compression technique used by

the platforms. However, Lee et al. [27] observe that modify-

ing the content of a binary can improve its compressed size.

Specifically, co-locating “similar” functions in the binary can

improve the compression ratio achieved by popular compres-

sion algorithms such as ZSTD or LZFSE. A similar technique

is used in a bytecode Android optimizer, Redex [20].

Why does function layout affect compression ratios? Most

modern lossless compression tools rely on the Lempel-Ziv

(LZ) scheme [48]. Such algorithms try to identify long re-

peated sequences in the data and substitute them with point-

ers to their previous occurrences. If the pointer is represented

using fewer bits than the actual data, then the substitution

results in a compressed-size win. That is, the shorter the

distance between the repeated sequences, the higher the

compression ratio. To make the computation effective, LZ-

based algorithms search for common sequences inside a

sliding window, which is typically much shorter than the

actual data. Therefore, function layouts in which repeated in-

structions are grouped together, lead to smaller (compressed)

mobile apps; see Figure 1 for an example.

1.2 Function Layout for App Launch Time
Start-up time is one of the key metrics for mobile applica-

tions since a quick launch ensures users have a good first

impression [47]. According to a study in [32], 20% of users

abandon an app after one use, and 80% of users give poorly

performing apps at most three chances before uninstalling

them. Start-up time is the time between a user clicking on an

application icon and the display of the first frame after ren-

dering. There are several start-up scenarios: cold start, warm

start, and hot start [10, 18, 19]. Switching back and forth be-

tween different apps leads to a hot/warm start and typically

does not incur significant delays. In contrast, starting an app

from scratch or resuming it after a memory intensive process

is referred to as cold start. Our focus is to improve this cold

start scenario, which is usually the key performance metric.

Unlike server workloads, where code layout algorithms op-

timize the cache utilization [34, 35, 36], start-up performance

is mostly dictated by memory page faults [12]. When an app

Optimizing Function Layout for Mobile Applications LCTES ’23, June 18, 2023, Orlando, FL, USA

func 1

memory page

func 2 func 3 func 4 func 5 func 6 func 7

memory page memory page

func 1 func 2func 3 func 4 func 5func 6 func 7

start-up trace 1

optimized
function layout

func 1 func 2 func 3 func 4 func 5 func 6 func 7

start-up trace 2

Figure 2. Co-locating hot (round) functions and cold (rect-

angular) functions nearby in the binary leads to a reduction

in page faults. The hotness of the functions and their order

of executions might depend on the usage scenario (trace),

and the task is to find a single optimized function layout.

is launched, its code is transferred from the disk to the main

memory. Function layout can affect the performance because

the transfer happens at the granularity of memory pages. As

illustrated in Figure 2, interleaving cold functions that are

never executed with hot functions results in more memory

pages being fetched from disk. While simply grouping hot

functions in the binary is an attractive solution, we note that

some mobile apps have a user base of billions of daily active

users across a wide range of devices and platforms. As a

result, optimizing the layout for a particular usage scenario

could lead to a suboptimal performance for other scenarios.

The challenge is to produce a single function layout that

optimizes the start-up performance across all use cases.

1.3 Contributions
We model the problem of computing an optimized function

layout for mobile apps as the balanced graph partitioning

problem [14]. This approach enables a single algorithm to

enhance both app start-up time (which impacts user experi-

ence) and app size (which impacts download speed). How-

ever, while the layout algorithm is the same for both ob-

jectives, it operates with different datasets collected during

profiling. For the sake of clarity, we call the optimizations

Balanced Partitioning for Start-up Optimization (bps)
and Balanced Partitioning for Compression Optimiza-

tion (bpc). Algorithm 1 outlines our implementation.

The former optimization, bps, is applied to hot functions
in the binary that are executed during app start-up, while the

latter optimization, bpc, is applied to all the remaining cold
functions. In our experiments, we found that approximately

15% of functions are hot, allowing us to improve the overall

start-up performance while simultaneously reordering most

of the functions in a “compression-friendly” manner. Com-

pared to the prior work [27], we achieved an average start-up

time improvement of 4% and a compressed size reduction of

up 1%, while speeding up the function layout phase by 30

times faster for SocialApp, one of the largest mobile apps

in the world. The contributions of the paper are summarized

as follows.

• We formally define the function layout problem in the

context of mobile applications. To this end, we identify

and formalize two optimization objectives, based on

the application start-up time and the compressed size.

• Next, we present the Balanced Partitioning algo-

rithm, which takes as input a bipartite graph between

function and utility vertices, and outputs an order of

the function vertices. We also demonstrate how to re-

duce the objectives of bpc and bps to an instance of

the balanced graph partitioning problem.

• Finally, we extensively evaluate the compressed size,

the start-up performance, and the runtime of the new

algorithms with two large commercial iOS applica-

tions, SocialApp and ChatApp, and experiment with

app size on Android native binaries.

The rest of the paper is organized as follows. Section 2

builds an optimization model for compression and start-up

performance, respectively. Then Section 3 introduces the re-

cursive balanced graph partitioning algorithm, which forms

the foundation for effectively solving the two optimization

problems. Next in Section 4, we describe our implementa-

tion of the technique in an open-source compiler, LLVM.

Section 5 presents an evaluation on real-world mobile appli-

cations. We conclude the paper with a discussion of related

works in Section 6 and possible future directions in Section 7.

2 Building an Optimization Model
Wemodel the function layout problem with a bipartite graph,

denoted 𝐺 = (𝐹 ∪𝑈 , 𝐸), where 𝐹 and 𝑈 are disjoint sets of

vertices and 𝐸 are the edges between the sets. The set 𝐹 is a

collection of all functions in a binary, and the goal is to find

a permutation (also called an order or a layout) of 𝐹 . The set
𝑈 represents auxiliary utility vertices that are used to define

an objective for optimization. Every utility vertex 𝑢 ∈ 𝑈 is

adjacent with a subset of functions, 𝑓1, . . . , 𝑓𝑘 ∈ 𝐹 so that

(𝑢, 𝑓1), . . . , (𝑢, 𝑓𝑘) ∈ 𝐸 for some integer 𝑘 ≥ 2. Intuitively,

the goal of the layout algorithm is to place all functions

so that 𝑓1, . . . , 𝑓𝑘 are nearby in the resulting order, for each

utility vertex 𝑢. That is, the utility vertex encodes a locality

preference for the adjacent functions. Next, we formalize the

intuition for each of the two objectives.

2.1 Compression
As explained in Section 1.1, the compression ratio of a Lempel-

Ziv-based algorithm can be improved if similar functions

are placed nearby in the binary. This observation is based

on earlier theoretical studies [38] and has been confirmed

empirically [13, 29] in the context of lossless data compres-

sion. These studies define (sometimes, implicitly) a proxy

metric that correlates an order of functions with the com-

pression achieved by an LZ scheme. Suppose we are given

some data to compress, e.g., a sequence of bytes that rep-

resents the instructions in a binary. We define a k-mer to

LCTES ’23, June 18, 2023, Orlando, FL, USA Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev

19.5

19.0

18.5

18.0

17.5

co
m

pr
es

se
d

si
ze

, M
B

3.830 x10
63.8283.8263.8243.8223.8203.818

number of distinct k-mers

Figure 3. The correlation between the number of distinct

k-mers (𝑘 = 8) in a sliding window of size 𝑤 = 64KB for

ChatApp and its compressed size after applying a Lempel-

Ziv-based (LZ4) compression algorithm

be a contiguous substring in the data of length 𝑘 , which is

a small constant. Let 𝑤 be the size of the sliding window

utilized by the compression algorithm; typically,𝑤 is much

smaller than the length of the data. Then the compression

ratio attained by an LZ-based data compression algorithm

is determined by the number of distinct k-mers in the data

within each sliding window of size 𝑤 . In other words, the

compressed size of the data is minimized when each k-mer

occurs in as few windows of size𝑤 as possible.

To validate the intuition, we computed and plotted the

number of distinct 8-mers within 64KB-windows on a set of

functions from ChatApp; see Figure 3. To obtain a data point

for the plot, we fixed a specific layout of functions in the

binary and extracted its .text section to a string, by con-

catenating their instructions. Then for every (contiguous)

substring of length 𝑤 , we counted the number of distinct

k-mers in the substring. This number serves as the proxy

metric for predicting the compressed size of the data. We

then applied a compression algorithm to the entire string

and measured the compressed size. To get multiple points

on Figure 3, we repeated the process by starting with a dif-

ferent function layout, which was achieved by randomly

permuting some of the functions. The results in Figure 3

reveal a strong correlation between the actual compression

ratio achieved on the data and the predicted value based

on k-mers. We recorded a Pearson correlation coefficient

of 𝜌 > 0.95 between the two quantities. Interestingly, the

high correlation was observed for various values of 𝑘 (in

our evaluation, 4 ≤ 𝑘 ≤ 12), different window sizes (4KB

≤ 𝑤 ≤ 128KB), and various compression tools, including

ZSTD (which combines a dictionary-matching stage with a

fast entropy-coding stage), LZ4 (which belongs to the LZ77

family of byte-oriented compression schemes), and LZMA
(which uses dictionary compression within the xz tool).

Given the remarkable predictive power of the simple proxy

metric, we suggest optimizing the layout of functions in a

binary based on the metric since it can be easily extracted

add x0, x0, 1
mul x0, x0, x1
add x0, x0, 1
ret

func 1:

mul x0, x0, 2
ret

func 2:

add x0, x0, 1
mul x0, x0, 2
ret

func 3:

utility vertices, U :

functions, F :

func 1 func 2 func 3

Figure 4. Modeling compression-aware function layout

(bpc) with a bipartite graph

and computed from the data. To achieve this, we represent

each function, 𝑓 ∈ 𝐹 , as a sequence of instructions. For

each instruction in the binary that occurs in at least two

functions, we create a utility vertex 𝑢 ∈ 𝑈 . The bipartite

graph,𝐺 = (𝐹 ∪𝑈 , 𝐸), contains an edge (𝑓 ,𝑢) ∈ 𝐸 if function

𝑓 contains instruction 𝑢; refer to Figure 4 for an illustration

of the process. The goal is to co-locate functions that share

many utility vertices so that the compression algorithm can

efficiently encode the corresponding instructions.

2.2 Start-up
To optimize cold start, we develop a simplified memory

model. Initially, we assume that the application code is not

present in the main memory. When the application starts,

the code needs to be fetched from the disk to the main mem-

ory at the granularity of memory pages. We assume that the

pages are never evicted from the memory. That is, when a

function is executed for the first time, its page should be

present in the memory to avoid a start-up delay caused by

page faults. The goal is to find a function layout that results

in the fewest number of page faults possible.

In this model, the start-up performance is affected only by

the first execution of a function; all subsequent executions

do not result in page faults. Hence, we record the timestamp

when each function 𝑓 ∈ 𝐹 was first executed, and collect

the sequence, called the trace, of functions ordered by the

timestamps. The traces vary depending on the user or us-

age scenario of the application. We assume that we have a

representative collection of traces, 𝑆 .

Given an order of functions, we can determine which

memory page each function belongs to, given their sizes and

assuming a certain page size. Then for every start-up trace,

𝜎 ∈ 𝑆 , and an index 𝑡 ≤ |𝜎 |, we define 𝑝𝜎 (𝑡) to be the number

of page faults during the execution of the first 𝑡 functions

in 𝜎 . Similarly, for a set of traces 𝑆 , we define the evaluation
curve as the average number of page faults for each 𝜎 ∈ 𝑆 ,
that is, 𝑝 (𝑡) := ∑

𝜎∈𝑆 𝑝𝜎 (𝑡)/|𝑆 |.
To gain an intuition, consider what happens when there is

only one trace 𝜎 ∈ 𝑆 . In this case, the optimal layout is to use

the order induced by 𝜎 , which results in an evaluation curve

that is linear in 𝑡 . On the other hand, a random permutation

Optimizing Function Layout for Mobile Applications LCTES ’23, June 18, 2023, Orlando, FL, USA

memory page memory page memory page

start-up trace 1

C 1 A 2A 1

start-up trace 2

C 2 A 3 C 3

C 1 B 2B 1 C 2 B 3 C 3

utility vertices, U :

functions, F :

C 1A 2A 1 C 2A 3 C 3 B 2B 1 B 3

(a) Bipartite graph construction with a single threshold

m
ea

n
pa

ge
fa

ul
ts

,p
(t
)

time step, t
1 2 3 4 5 6

1

2

3

4

order, σ

A1A2A3 C1C2C3 B1B2B3

A1B1C1 A2B2C2 A3B3C3

(bps)

(order-avg)

(b) Evaluation curves for two orders: bps and order-avg ([27])

Figure 5. Modeling start-up-aware function layout (bps)

of functions causes most pages to be fetched early in the

execution, resulting in an evaluation curve that looks like a

step function. Figure 5b provides a concrete example of how

different layouts lead to different evaluation curves.

We remark that while traces have the same length if all

functions are executed eventually, the length of the prefix

of each trace corresponding to the start-up phase of the

execution may vary due to diverging execution paths specific

to the device and the user. Hence, instead of optimizing the

value of 𝑝 (𝑡) for a particular 𝑡 , we aim to minimize the area

under the curve 𝑝 (𝑡) by selecting a discrete set of threshold
values 𝑡1, 𝑡2, . . . 𝑡𝑘 , and use the bipartite graph𝐺 = (𝐹 ∪𝑈 , 𝐸)
with utility vertices

𝑈 = {(𝜎, 𝑡𝑖) : 𝜎 ∈ 𝑆 and 1 ≤ 𝑖 ≤ 𝑘},

and edge set

𝐸 = {(𝑓 , (𝜎, 𝑡𝑖)) : 𝜎−1 (𝑓) ≤ 𝑡𝑖 },

where 𝜎−1 (𝑓) is the index of function 𝑓 in 𝜎 . That way, the
algorithm builds an order of 𝐹 in which the first 𝑡𝑖 positions

of every 𝜎 ∈ 𝑆 occur, as much as possible, consecutively.

3 Recursive Balanced Graph Partitioning
Our algorithm utilizes the recursive balanced graph partition-

ing scheme. Recall that the input is an undirected bipartite

graph 𝐺 = (𝐹 ∪ 𝑈 , 𝐸), where 𝐹 and 𝑈 are disjoint sets of

functions and utilities, respectively, and 𝐸 are the edges be-

tween them; see Figure 6a. The goal of the algorithm is to

find a permutation of 𝐹 that optimizes a specific objective.

For a high-level overview of our method, refer to Algo-

rithm 1. The algorithm combines recursive graph bisection

with a local search optimization at each step. Given an input

graph 𝐺 with |𝐹 | = 𝑛, we apply the bisection algorithm to

obtain two disjoint sets of (approximately) equal cardinality,

𝐹1, 𝐹2 ⊆ 𝐹 , where |𝐹1 | = ⌊𝑛/2⌋ and |𝐹2 | = ⌈𝑛/2⌉. We layout 𝐹1
on the set {1, . . . , ⌊𝑛/2⌋} and 𝐹2 on the set {⌈𝑛/2⌉, . . . , 𝑛}. By
doing so, we divide the problem into two sub-problems, each

with half the size, and recursively compute orders for the

two subgraphs induced by vertices 𝐹1 and 𝐹2, adjacent util-

ity vertices, and incident edges. Naturally, when the graph

contains only one function, the order is trivial; see Figure 6b.

Every bisection step of Algorithm 1 is a variant of the local

search optimization inspired by the popular Kernighan-Lin

heuristic [23] for the graph bisection problem. We start by

splitting 𝐹 into two sets, 𝐹1 and 𝐹2, of roughly equal size.

Then, we iteratively exchange pairs of vertices between 𝐹1
and 𝐹2 to improve a certain cost. To this end, we compute, for

every function 𝑓 ∈ 𝐹 , the move gain, that is, the difference
of the cost after moving 𝑓 from its current set to another

one. Then the vertices of 𝐹1 (𝐹2) are sorted in the decreasing

order of the gains to produce list 𝑆1 (𝑆2). Finally, the lists 𝑆1
and 𝑆2 are traversed in the order, exchanging the pairs of

vertices when the sum of the move gains is positive. The

process is repeated until a convergence criterion is met or

the maximum number of iterations is reached. The final

order of the functions is obtained by concatenating the two

recursively computed orders for 𝐹1 and 𝐹2.

Optimization objective. An important aspect of our al-

gorithm is the objective to optimize at each bisection step.

The goal is to find a layout in which functions sharing many

utility vertices are co-located in the order. We capture this

with the cost of a given partition of 𝐹 into 𝐹1 and 𝐹2:

𝑐𝑜𝑠𝑡 (𝐹1, 𝐹2) :=
∑︁
𝑢∈𝑈

𝑐𝑜𝑠𝑡
(
𝐿(𝑢), 𝑅(𝑢)

)
, (1)

where 𝐿(𝑢) and 𝑅(𝑢) are the numbers of functions adjacent

to utility vertex 𝑢 in parts 𝐹1 and 𝐹2, respectively; see Fig-

ure 6a. Observe that 𝐿(𝑢) + 𝑅(𝑢) is the degree of vertex 𝑢,
and thus, it is independent of the split. The objective, which

we try to minimize, is the summation of the individual con-

tributions to the cost over the utilities. The contribution

of one utility vertex, 𝑐𝑜𝑠𝑡
(
𝐿(𝑢), 𝑅(𝑢)

)
, is minimized when

𝐿(𝑢) = 0 or 𝑅(𝑢) = 0, that is, when all functions of 𝑢 belong

to the same part; in that case, the algorithm might be able

to group the functions in the final order. In contrast, when

𝐿(𝑢) ≈ 𝑅(𝑢), the cost takes its highest value, as the functions
will likely be spread out in the order. Of course, it is easy to

minimize the cost for one utility vertex (by placing its func-

tions to one of the parts). However, minimizing 𝑐𝑜𝑠𝑡 (𝐹1, 𝐹2)

LCTES ’23, June 18, 2023, Orlando, FL, USA Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev

Algorithm1: Recursive Balanced Graph Partitioning
Input :graph 𝐺 = (𝐹 ∪𝑈 , 𝐸)
Output :order of 𝐹 vertices

Function ReorderBP
/* Initial splitting of the functions

into two halves. */

for 𝑓 ∈ 𝐹 do
if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) < 0.5 then 𝐹1 ← 𝐹1 ∪ {𝑓 }
else 𝐹2 ← 𝐹2 ∪ {𝑓 };

/* Refinement of the split. */

repeat
for 𝑓 ∈ 𝐹 do

𝑔𝑎𝑖𝑛𝑠 [𝑓] ← ComputeMoveGain(𝑓)
𝑆1 ← sorted 𝐹1 in descending order of 𝑔𝑎𝑖𝑛𝑠;

𝑆2 ← sorted 𝐹2 in descending order of 𝑔𝑎𝑖𝑛𝑠;

for 𝑣 ∈ 𝑆1, 𝑢 ∈ 𝑆2 do
if 𝑔𝑎𝑖𝑛𝑠 [𝑣] + 𝑔𝑎𝑖𝑛𝑠 [𝑢] > 0 then

exchange 𝑣 and 𝑢 in the sets;

else break;

until converged or iteration limit exceeded;
/* Recursively reorder the two parts and

concatenate the results. */
𝑂𝑟𝑑𝑒𝑟1 ← ReorderBP(Graph induced by 𝐹1 ∪𝑈);

𝑂𝑟𝑑𝑒𝑟2 ← ReorderBP(Graph induced by 𝐹2 ∪𝑈);

return concatenation of 𝑂𝑟𝑑𝑒𝑟1 and 𝑂𝑟𝑑𝑒𝑟2

Function ComputeMoveGain(𝑓)
/* Calculate cost improvement after

moving 𝑓 to another part. */

𝑔𝑎𝑖𝑛 = 0;

for (𝑢, 𝑓) ∈ 𝐸 do
if 𝑓 ∈ 𝐹1 then

𝑔𝑎𝑖𝑛 ← 𝑔𝑎𝑖𝑛 + 𝑐𝑜𝑠𝑡
(
𝐿(𝑢), 𝑅(𝑢)

)
−

𝑐𝑜𝑠𝑡
(
𝐿(𝑢) − 1, 𝑅(𝑢) + 1

)
;

else
𝑔𝑎𝑖𝑛 ← 𝑔𝑎𝑖𝑛 + 𝑐𝑜𝑠𝑡

(
𝐿(𝑢), 𝑅(𝑢)

)
−

𝑐𝑜𝑠𝑡
(
𝐿(𝑢) + 1, 𝑅(𝑢) − 1

)
;

return 𝑔𝑎𝑖𝑛

for all utilities simultaneously is a challenging task, due to

the constraint on the sizes of 𝐹1 and 𝐹2.

There are multiple ways of defining 𝑐𝑜𝑠𝑡
(
𝐿(𝑢), 𝑅(𝑢)

)
that

satisfy the conditions above. After an extensive evaluation

of various candidates, we identified the following objective:

𝑐𝑜𝑠𝑡 := −𝐿(𝑢) log
(
𝐿(𝑢) + 1

)
− 𝑅(𝑢) log

(
𝑅(𝑢) + 1

)
, (2)

which is inspired by the so-called uniform log-gap cost uti-
lized in the context of index compression [8, 11].

utilities, U :

functions, F :

✓
u

L(u) R(u)

F1 F2

(a) An optimization goal for the

bipartite graph

1 nn/2

F

(b) Recursive computation of

function orders

Figure 6. The recursive balanced graph partitioning

Computational complexity. To estimate the computa-

tional complexity of Algorithm 1 and predict its running

time, denote |𝐹 | = 𝑛 and |𝐸 | =𝑚. At each bisection step, we

apply a constant number of refinement steps (referred to as

the iteration limit in the pseudocode). There are ⌈log𝑛⌉ lev-
els of recursion, and we assume that every call of ReorderBP
splits the graph into two equal-sized parts with 𝑛/2 vertices
and𝑚/2 edges. Each call of the graph bisection consists of

computing move gains and sorting two arrays with 𝑛 ele-

ments. The former can be done in O(𝑚) steps, while the

latter takes O(𝑛 log𝑛) steps. Therefore, the total number of

steps is expressed as follows:

𝑇 (𝑛,𝑚) = O(𝑚) + O(𝑛 log𝑛) + 2 ·𝑇 (𝑛/2,𝑚/2).

One can verify that summing over all subproblems yields

𝑇 (𝑛,𝑚) = O(𝑚 log𝑛 + 𝑛 log2 𝑛).

3.1 Algorithm Engineering
While implementing Algorithm 1, we developed a few modi-

fications improving its runtime, space requirements, and the

quality of produced layouts.

Improving the running time. Due to the simplicity of

the algorithm, it can be implemented to run in parallel.

Since the two subgraphs resulting from the bisection step

are disjoint, the two recursive calls can be processed con-

currently. We use the fork-join computation model, where

small enough graphs are processed sequentially, while larger

graphs are solved in parallel. To speed up the algorithm fur-

ther, we set a maximum depth of the recursive tree (16 in

our implementation) and limit the number of local search it-

erations per split (20 in our implementation). If the recursive

tree reaches the lowest node and there are still unordered

functions, then we fall back to the original relative order of

the functions provided by the compiler.

Finally, we observe that our objective cost requires re-

peated computation of log(𝑥 + 1) expressions for integer
arguments. To avoid costly floating-point logarithm evalu-

ations, we pre-computed a table of values for 0 ≤ 𝑥 < 2
14
,

where the upper bound is chosen small enough to fit in the

Optimizing Function Layout for Mobile Applications LCTES ’23, June 18, 2023, Orlando, FL, USA

processor data cache. That way, we replaced most of the loga-

rithm evaluations with a table lookup, saving approximately

10% of the total runtime.

Optimizing the quality. An interesting aspect of Algo-

rithm 1 is the way for exchanging functions between the

two sets. Recall that we pair the functions in 𝐹1 with func-

tions in 𝐹2 based on the computed move gains, which are

positive when a function should be moved to another set

or negative when a function should stay in its current set.

We observed that it is beneficial to skip some of the moves.

To this end, we introduce a fixed probability (0.1 in our im-

plementation) of skipping the move for a vertex that would

otherwise have been moved to a new set. Intuitively, this

adjustment prevents the optimization from becoming stuck

at a local minimum. It is also helpful in avoiding redundant

swapping cycles, which might occur in the algorithm; refer

to [31, 46] for a discussion in the context of graph reordering.

Reducing the space complexity. One potential down-

side to our start-up function layout algorithm is the need to

collect full traces during profiling. If too many executions

are profiled, then the storage requirements may become im-

practical. To address the issue, we cap the number of stored

traces by a fixed integer ℓ . If the profiling process generates

more than ℓ traces, we select a representative random sample

of size ℓ using reservoir sampling [45]: When the 𝑖th trace

arrives, if 𝑖 ≤ ℓ we keep the trace; otherwise, with proba-

bility 1 − ℓ/𝑖 we ignore the trace, and with complementary

probability, we pick uniformly at random one of the stored

traces and swap it out with the new one. The process yields

a sample of ℓ traces chosen uniformly at random from the

stream of traces. We use ℓ = 300 in our implementation.

4 Implementation in LLVM
Both bpc and bps use profile data to guide function layout.

Ideally, profile data should accurately represent common real-

world scenarios. The current instrumentation in LLVM [24]

produces an instrumented binary with large size and per-

formance overhead due to added instrumentation instruc-

tions, added metadata sections, and changes in optimization

passes. This can be particularly problematic for mobile de-

vices, where increased code size can lead to performance

regressions and alter the behavior of the application. Profiles

collected from these instrumented binaries might not accu-

rately represent our target scenarios. To address these issues,

Machine IR Profile (MIP) [27] aims to minimize binary size

and performance overhead for instrumented binaries. This

is achieved by extracting instrumentation metadata from the

binary and using it to post-process the profiles offline.

MIP collects profile data that are relevant for optimizing

mobile apps. It records function call counts used to iden-

tify functions as either hot or cold. Within each function,

MIP can derive coverage data for each basic block. MIP has

an optional mode, called return address sampling, which

adds probes to callees to collect a sample of their callsites.

This can be used to construct a dynamic call graph that

includes dynamically dispatched calls. Furthermore, MIP col-

lects function timestamps by recording and incrementing a

global timestamp for each function when it is called for the

first time. We sort the functions by their initial call times-

tamp to construct a function trace. To collect raw profiles

at runtime, we run instrumented apps under normal usage,

and dump raw profiles to the disk, which is uploaded to a

database. These raw profiles are later merged offline into a

single optimization profile.

4.1 Overview of the Build Pipeline
Figure 7 shows an overview of our build pipeline. We col-

lect thousands of raw profile data files from various uses

and periodically perform offline post-processing to gener-

ate a single optimization profile. During post-processing,

bps determines the optimized order of hot functions that

were profiled, including both start-up and non-start-up func-

tions. Our apps are built with link-time optimization (LTO or

ThinLTO). At the end of LTO, bpc orders cold functions to

achieve a highly compressed binary size. These two orders

of functions are concatenated and passed to the linker which

finalizes the function layout in the binary. We have chosen

to use two separate optimization passes for bps and bpc,
since applying them jointly at the end of LTO would require

carrying large amounts of traces through the build pipeline.

4.2 Hot Function Layout
As shown in Figure 7, we first merge the raw profiles into the

optimization profile with instrumentation metadata during

post-processing. For the block coverage and dynamic call

graph data, we simply accumulate them into the optimization

profile as we go along. However, to run bps, we need to keep
the function timestamps from each raw profile. We encode

the sequence of indices to the functions participating in the

cold start-up and append them to a separate section of the

optimization profile.

The bps algorithm, described in Section 2.2, uses function

traces with thresholds, to set utility vertices, and produces

an optimized order for start-up functions. Once bps is com-

pleted, the embedded function traces are no longer needed,

and can be removed from the optimization profile.

Third-party library functions and outlined functions that

appear later than instrumentation in the compilation pass,

might not be instrumented. To order such functions, we first

check if their call sites are profiled using block coverage data.

If so, these functions inherit the order of their first caller. For

example, if an uninstrumented outlined function, 𝑓𝑜𝑢𝑡𝑙𝑖𝑛𝑒𝑑 , is

called from the profiled functions, 𝑓𝐴 and 𝑓𝐵 , and bps orders

𝑓𝐴 followed by 𝑓𝐵 , then we insert 𝑓𝑜𝑢𝑡𝑙𝑖𝑛𝑒𝑑 after 𝑓𝐴; this results

in the layout 𝑓𝐴, 𝑓𝑜𝑢𝑡𝑙𝑖𝑛𝑒𝑑 , 𝑓𝐵 .

LCTES ’23, June 18, 2023, Orlando, FL, USA Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev

Raw

Profiles

Raw

Profiles

Raw

Profiles

Merge bps Optimization

Profile

Optimization

and CodeGen

bpc Linking

Post-Processing Link-Time Optimization (LTO)

Recursive Balanced Graph Partitioning

Figure 7. An overview of the build pipeline with the optimized function layout

4.3 Cold Function Layout
We execute bpc after optimization and code generation are

finished, without using an intermediate representation (IR),

as shown in Figure 7. During code generation, each function

publishes a set of hashes that represent its contents, which

are meaningful across modules. We use one 64-bit stable hash
for each instruction by combining hashes of its opcode and

operands, resulting in an 8-mer, a substring of length 8, for

every instruction. When computing stable hashes, we omit

hashes of pointers and instead use hashes of the contents of

their targets. Unlike outliners that need to match instruction

sequences, we do not consider the order or duplicates of the

hashes. We only keep track of the unique stable hashes per

function as the input to bpc.
Since hot functions are already ordered, we filter them

out before applying bpc. It is worth noting that outliners

can optimistically produce many identical functions, which

will eventually be folded by the linker. To efficiently handle

deduplication, bpc groups functions that have identical sets

of hashes, and runs with the set of unique cold functions.

5 Evaluation
We evaluated our approach on two commercial iOS appli-

cations and one commercial Android application; refer to

Table 1 for basic properties of the apps. SocialApp is one of

the largest mobile applications in the world, with a total size

of over 250MB, and provides a variety of usage scenarios,

making it an attractive target for compiler optimizations.

ChatApp is a medium sized mobile app with a total size of

over 50MB. AndroidNative consists of around 400 shared

natives binaries. Unlike the two iOS binaries that are built

with ThinLTO, each Android native binary is relatively small,

and can be compiled with (Full)LTO without a significant

increase in build time. Since there is no fully automated MIP

pipeline for building AndroidNative, we use the app only to

evaluate the compressed binary size.

5.1 Start-up Performance
Here we present the impact of function layout on start-up

performance. Our proposed algorithm, referred to as bps, is
compared with the following alternatives:

Table 1. Basic properties of evaluated applications

text size binary size total hot blocks per func.

(MB) (MB) func. func. p50 p95 p99

SocialApp 119 259 856𝐾 154𝐾 1 11 29

ChatApp 35 58 202𝐾 44𝐾 3 24 70

AndroidNative 38 62 186𝐾 N/A 3 36 113

• baseline is the original ordering of functions as dictated
by the compiler; the function layout follows the order

of object files that are passed into the linker;

• random is the result of randomly permuting the hot func-

tions;

• order-avg is a natural heuristic for ordering hot func-
tions suggested in [27] based on the average timestamp

of a function during start-up computed across all traces.

To evaluate the impact of function layout in a produc-

tion environment, we compared the current order-avg al-
gorithm with the new bps algorithm for two different re-

lease versions, release 𝑁 and release 𝑁 + 1, and recorded the
number of page faults during start-up. Table 2 presents the

detailed results for the average and 99th percentile number

of page faults observed in millions of samples published in

production. Since in the production environment for iOS

apps, only a single binary can be shipped, and less effective

algorithms (such as baseline or random) cannot be utilized
without regressing performance, we acknowledge that the

improvements observed may result from multiple optimiza-

tions shipped simultaneously with bps. To account for this,

we repeated the alternations three times in consecutive re-

leases, and recorded the overall reduction in page faults. On

average, bps reduced the number of major page faults by

6.9% and 16.9% for SocialApp andChatApp, respectively. The
improvement translates into 4.2% (average) and 2.9% (p99)

reductions of the cold start-up time for SocialApp.
Table 3 presents the results of a similar evaluation of the

start-up performance with different function layouts on a

specific device, 𝑖𝑃ℎ𝑜𝑛𝑒12 𝑃𝑟𝑜 , during the first 10s of the cold

start-up.We repeat the experiment three times and calculated

the mean number of page faults in (i) the .text segment and

(ii) the entire binary, which additionally includes other data

Optimizing Function Layout for Mobile Applications LCTES ’23, June 18, 2023, Orlando, FL, USA

Table 2. The number of major page faults measured for

order-avg and bps shipped in consecutive releases. The

relative improvement of bps over order-avg is shown in

parentheses.

average p99

SocialApp
order-avg release 𝑁 3.4𝐾 7.6𝐾

bps release 𝑁 + 1 3.1𝐾 (6.9%) 7.2𝐾 (4.6%)
ChatApp

order-avg release 𝑁 1.7𝐾 10.3𝐾

bps release 𝑁 + 1 1.4𝐾 (16.9%) 9.3𝐾 (9.1%)

segments. Overall, bps reduces the total number of major

page faults in the binary by 6.8% and 18.3% for SocialApp
and ChatApp, respectively, while order-avg reduces them
by 3.2% and 15.9%, respectively. On the other hand, random
significantly increases the number of page faults, negatively

impacting the start-up performance.

An interesting observation from Tables 2 and 3 is that

function layout has a greater impact on the start-up perfor-

mance of ChatApp than that of SocialApp. This could be due
to that SocialApp consists of dozens of native binaries, while

function layout is effective within each binary. Therefore,

optimizing the function layout across different binaries has a

more limited impact on the overall start-up performance of

SocialApp. In contrast, ChatApp is composed of only a few

native binaries and only one large binary is responsible for

the start-up; thus, an optimized function layout can directly

impact the performance.

5.2 Compressed Binary Size
We now present the results of size optimizations on the se-

lected applications. In addition to the baseline and random
function layout algorithms, we compare bpcwith the follow-

ing heuristic:

• greedy is an approach for ordering cold functions dis-

cussed in [27]. It is a procedure that iteratively builds an

order by appending one function at a time. On each step,

the most recently placed function is compared (based

on the instructions) with not yet selected functions, and

the one with the highest similarity score is appended to

the order. To avoid an expensive O(𝑛2)-computation of

the scores, several pruning rules is applied to reduce the

set of candidates; see [27] for details.

Table 4 summarizes the app size reduction from each func-

tion layout algorithm, where the improvements are com-

puted on top of baseline (that is, the original order of func-
tions generated by the compiler). The compressed size re-

duction is measured in three modes: the size of the .text
section of the binary directly impacted by our optimization,

the size of the executables excluding resource files such as

images and videos, and the total app size in a compressed

Table 3. The relative improvements of major page faults of

various function layout algorithms over baselinemeasured

on 𝑖𝑃ℎ𝑜𝑛𝑒12 𝑃𝑟𝑜 during the first 10s of the cold start-ups;

negative values indicate regressions.

Text Binary

SocialApp
random −4.7% −3.3%
order-avg 14.1% 3.2%

bps 19.9% 6.8%

ChatApp
random −144.4% −65.7%
order-avg 34.9% 15.9%

bps 36.6% 18.3%

package. We observe that bpc reduces the size of .text by
3% and 1.8% for SocialApp and ChatApp, respectively. Since
this section is the largest in the binary (responsible for 2/3 of
the compressed ipa size), this translates into overall 1.9% and

1.3% improvements. At the same time, the impact of all the

tested algorithm on the uncompressed size of a binary is min-

imal (within 0.1%), which is mainly due to differences in code

alignment. We stress that while the absolute savings may feel

insignificant, this is a result of applying a single compiler

optimization on top of the heavily tuned state-of-the-art

techniques; the gains are comparable to those reported by

other recent works in the area [9, 27, 28, 30, 40].

An interesting observation is the behavior of random on
the dataset, which worsen the compression ratios by approx-

imately 5% in comparison to baseline. The explanation is

that similar functions are naturally clustered in the source

code. For example, functions within the same object file tend

to have many local calls, making the corresponding call in-

structions good candidates for a compact LZ-based encoding.

Yet bpc can significantly improve the instruction locality by

reordering functions across different object files.

Additionally, we assess the reduction in compressed size

for AndroidNative. It is important to note that the total app

size is measured using Android package kit (apk) which

includes not only native binaries, but also Android Dex byte-

code. Unlike the aforementioned two iOS apps, the .text
size of the native binaries is only 1/4 of the total app size.

Therefore, the overall app compressed size win is smaller

than for the .text or the executable sections. We observe

that these compressed sizes for AndroidNative are more sen-

sitive to different layouts. This is due to AndroidNative being
a traditional C/C++ binary, where the number of blocks per

function is significantly higher than that of the iOS apps, as

illustrated in Table 1. Function call instructions encode their

call targets with relative offsets whose values differ for each

call-site. Unlike the iOS apps written in Objective-C hav-

ing many dynamic calls, AndroidNative has fewer call-sites,
making it more compression-sensitive.

LCTES ’23, June 18, 2023, Orlando, FL, USA Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev

Table 4. Compressed size improvements of various function

layout algorithms over baseline; negative values indicate
regressions.

Text Executables App Size

SocialApp
random −5.3% −4.6% −3.7%
greedy 1.6% 1.3% 1.1%

bpc 3.0% 2.3% 1.9%
ChatApp

random −4.9% −4.4% −3.8%
greedy 1.3% 1.0% 0.8%

bpc 1.8% 1.6% 1.3%

AndroidNative
random −10.0% −8.2% −3.2%
greedy 3.5% 1.9% 0.9%

bpc 5.2% 3.0% 1.3%

Finally, we discuss the impact of function layout on the

build time of the applications. The time overhead by running

bpc is minimal: it takes less than 20 seconds for the larger

SocialApp and almost 1 second for the smaller ChatApp.
In contrast, using the greedy approach leads to a notice-

able slowdown, increasing the overall build of SocialApp
by around 10 minutes, accounting for more than 10% of the

total build time of approximately 100 minutes.

6 Related Work
Most compiler optimizations for mobile applications are

aimed at reducing the code size. Such techniques include al-

gorithms for function inlining and outlining [9, 28], merging

similar functions [41, 42], loop optimization [40], unreach-

able code elimination, and many others. In addition, some

works describe performance improvements for mobiles, by

improving their responsiveness, memory management, and

start-up time [27, 47]. The optimizations can be applied at

the compile time, link time [30], or post-link time [36, 44].

Our approach is complimentary to the works and can be

applied in combination with the existing optimizations.

The work by Pettis and Hansen [37] serves as the basis for

most modern code reordering techniques for server work-

loads. The goal of their basic block reordering is to create

chains of blocks that are frequently executed together. Many

variants of the technique were suggested in the literature

and implemented in various tools [25, 33, 34, 35, 36, 43, 44].

Alternative models have been studied in several papers [15,

16, 22, 26], where a temporal-relation graph is considered.

Code reordering at the function-level is also initiated by

Pettis and Hansen [37] whose algorithm is implemented in

many compilers and binary optimization tools [36, 44]. This

approach greedily merges chains of functions and is designed

to primarily reduce I-TLB misses. An improvement is pro-

posed by Ottoni and Maher [35], who propose working with

a directed call graph to reduce I-cache misses. As discussed

in Section 1, the approaches are designed to improve the

steady-state performance of server workloads and cannot be

applied to mobile apps. The very recent work of Lee, Hoag,

and Tillmann [27] is the only study discussing heuristics

for function layout in the mobile space; our novel algorithm

significantly outperforms their heuristics.

Our model for function layout is based on the balanced

graph partitioning problem [2, 14, 23]. There exists a rich

literature on the topic from both theoretical and practical

points of view [3, 4]. The most closely related work to our

study is on graph reordering [11, 31], which utilizes recursive

graph bisection for creating “compression-friendly” inverted

indices. While our algorithm shares some similarities with

these works, our objectives and application area are different.

7 Discussion
In this paper we have presented and evaluated the first func-

tion layout algorithm designed for mobile compiler optimiza-

tions. The algorithm was carefully designed, making it easy

to implement and scalable to process even the largest in-

stances within a matter of seconds. We have successfully

applied this optimization to several large commercial mo-

bile applications, resulting in significant improvements in

start-up performance and reductions in app size.

An important contribution of the work is a formal model

for function layout optimizations. We believe that the model

utilizing the bipartite graph with utility vertices is general

enough to be applicable in various contexts. In our current

implementation, each function is either optimized for start-

up or for size, but not for both at the same time. However,

it might be possible to relax the constraint and design an

approach that unifies the two objectives. Our early exper-

iments show that reordering all functions with bpc could

result in up to 0.3% size reduction, but this may come at the

cost of a longer start-up time. Unifying the optimizations is

a promising direction for future work.

From a theoretical point of view, our work is related to

a computationally hard problem of balanced graph parti-

tioning [2]. While the problem is hard in theory, real-world

instances obey certain characteristics, which may simplify

the analysis of algorithms. For example, control-flow and call

graphs arising from modern programming languages have

constant treewidth, which is a standard notion to measure

how close a graph is to a tree [1, 6, 33]. Many NP-hard opti-

mization problems can be solved efficiently on graphs with

a small treewidth, and therefore, exploring function layout

algorithms parameterized by the treewidth is of interest.

Acknowledgments
We would like to thank Nikolai Tillmann for fruitful discus-

sions of the problem, and YongKang Zhu for helping with

evaluating the approach on AndroidNative.

Optimizing Function Layout for Mobile Applications LCTES ’23, June 18, 2023, Orlando, FL, USA

References
[1] Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas

Pavlogiannis. 2022. Efficient approximations for cache-conscious data

placement. In International Conference on Programming Language De-
sign and Implementation, Ranjit Jhala and Isil Dillig (Eds.). ACM, San

Diego, CA, USA, 857–871. https://doi.org/10.1145/3519939.3523436
[2] Konstantin Andreev and Harald Räcke. 2006. Balanced graph parti-

tioning. Theory of Computing Systems 39, 6 (2006), 929–939. https:
//doi.org/10.1007/s00224-006-1350-7

[3] Charles-Edmond Bichot and Patrick Siarry. 2013. Graph Partitioning.
John Wiley & Sons. https://doi.org/10.1002/9781118601181

[4] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and

Christian Schulz. 2016. Recent Advances in Graph Partitioning. In

Algorithm Engineering - Selected Results and Surveys. Springer, Cham,

117–158. https://doi.org/10.1007/978-3-319-49487-6_4
[5] Milind Chabbi, Jin Lin, and Raj Barik. 2021. An Experience with

Code-Size Optimization for Production iOS Mobile Applications. In

International Symposium on Code Generation and Optimization, Jae W.

Lee, Mary Lou Soffa, and Ayal Zaks (Eds.). IEEE, Seoul, South Korea,

363–377. https://doi.org/10.1109/CGO51591.2021.9370306
[6] Krishnendu Chatterjee, Amir Kafshdar Goharshady, Nastaran Okati,

and Andreas Pavlogiannis. 2019. Efficient parameterized algorithms

for data packing. Proceedings of the ACM on Programming Languages
3, POPL (2019), 1–28. https://doi.org/10.1145/3290366

[7] Dehao Chen, Tipp Moseley, and David Xinliang Li. 2016. AutoFDO:

Automatic feedback-directed optimization forwarehouse-scale applica-

tions. In International Symposium on Code Generation and Optimization.
ACM, New York, NY, USA, 12–23. https://doi.org/10.1145/2854038.
2854044

[8] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, MichaelMitzenmacher,

Alessandro Panconesi, and Prabhakar Raghavan. 2009. On compressing

social networks. In Knowledge Discovery and Data Mining. ACM, Paris,

France, 219–228. https://doi.org/10.1145/1557019.1557049
[9] Thaís Damásio, Vinícius Pacheco, Fabrício Goes, Fernando Pereira, and

Rodrigo Rocha. 2021. Inlining for code size reduction. In 25th Brazilian
Symposium on Programming Languages. ACM, Joinville, Brazil, 17–24.

https://doi.org/10.1145/3475061.3475081
[10] Google Developers. 2022. App Startup Time. https://developer.android.

com/topic/performance/vitals/launch-time
[11] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano,

Sergey Pupyrev, and Alon Shalita. 2016. Compressing Graphs and

Indexes with Recursive Graph Bisection. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’16). ACM, New York, NY, USA, 1535–1544. https:
//doi.org/10.1145/2939672.2939862

[12] Malcolm C Easton and Ronald Fagin. 1978. Cold-start vs. warm-start

miss ratios. Commun. ACM 21, 10 (1978), 866–872. https://doi.org/10.
1145/359619.359634

[13] Paolo Ferragina and Giovanni Manzini. 2010. On compressing the

textual web. In International Conference onWeb Search and DataMining.
ACM, New York, NY, USA, 391–400. https://doi.org/10.1145/1718487.
1718536

[14] Michael R Garey, David S Johnson, and Larry Stockmeyer. 1974. Some

simplified NP-complete problems. In Proceedings of the sixth annual
ACM Symposium on Theory of Computing. ACM, New York, NY, USA,

47–63. https://doi.org/10.1145/800119.803884
[15] Nikolas Gloy and Michael D Smith. 1999. Procedure placement using

temporal-ordering information. Transactions on Programming Lan-
guages and Systems 21, 5 (1999), 977–1027. https://doi.org/10.1145/
330249.330254

[16] Amir H Hashemi, David R Kaeli, and Brad Calder. 1997. Efficient

procedure mapping using cache line coloring. SIGPLAN Notices 32, 5
(1997), 171–182. https://doi.org/10.1145/258915.258931

[17] Wenlei He, Julián Mestre, Sergey Pupyrev, Lei Wang, and Hongtao Yu.

2022. Profile inference revisited. Proceedings of the ACM on Program-
ming Languages 6, POPL (2022), 1–24. https://doi.org/10.1145/3498714

[18] Apple Inc. 2022. Reducing Your App’s Launch Time. https://developer.
apple.com/documentation/xcode/reducing-your-app-s-launch-time

[19] Facebook Inc. 2015. Optimizing Facebook for iOS Start Time.
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-
ios-start-time

[20] Facebook Inc. 2021. Redex: A bytecode optimizer for Android apps.
https://fbredex.com

[21] Facebook Inc. 2021. Superpack: Pushing the limits of compression in
Facebook’s mobile apps. https://engineering.fb.com/2021/09/13/core-
data/superpack/

[22] J Kalamationos and David R Kaeli. 1998. Temporal-based procedure

reordering for improved instruction cache performance. In High-
Performance Computer Architecture. IEEE Computer Society, Las Vegas,

Nevada, USA, 244–253. https://doi.org/10.1109/HPCA.1998.650563
[23] Brian W Kernighan and Shen Lin. 1970. An efficient heuristic proce-

dure for partitioning graphs. Bell System Technical Journal 49, 2 (1970),
291–307.

[24] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization. IEEE Computer Soci-

ety, San Jose, CA, USA, 75. https://doi.org/10.1109/CGO.2004.1281665
[25] Rahman Lavaee, John Criswell, and Chen Ding. 2019. Codestitcher:

inter-procedural basic block layout optimization. In Proceedings of the
28th International Conference on Compiler Construction, José Nelson
Amaral andMilind Kulkarni (Eds.). ACM,Washington, DC, USA, 65–75.

https://doi.org/10.1145/3302516.3307358
[26] Rahman Lavaee and Chen Ding. 2014. ABC Optimizer: Affinity Based

Code Layout Optimization. Technical Report. University of Rochester.

[27] Kyungwoo Lee, Ellis Hoag, and Nikolai Tillmann. 2022. Efficient

profile-guided size optimization for native mobile applications. In

International Conference on Compiler Construction. ACM, Seoul, South

Korea, 243–253. https://doi.org/10.1145/3497776.3517764
[28] Kyungwoo Lee, Manman Ren, and Shane Nay. 2022. Scalable size

inliner for mobile applications (WIP). In International Conference on
Languages, Compilers, and Tools for Embedded Systems. ACM, San

Diego, CA, USA, 116–120. https://doi.org/10.1145/3519941.3535074
[29] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and Grant Wal-

lace. 2014. Migratory compression: Coarse-grained data reordering

to improve compressibility. In USENIX Conference on File and Storage
Technologies (FAST). USENIX, Santa Clara, CA, USA, 257–271.

[30] Gai Liu, Umar Farooq, Chengyan Zhao, Xia Liu, and Nian Sun. 2023.

Linker Code Size Optimization for Native Mobile Applications. In

International Conference on Compiler Construction. ACM, New York,

NY, USA, 168–179. https://doi.org/10.1145/3578360.3580256
[31] Joel Mackenzie, Matthias Petri, and Alistair Moffat. 2022. Tradeoff Op-

tions for Bipartite Graph Partitioning. IEEE Transactions on Knowledge
and Data Engineering (2022), 1–15. https://doi.org/10.1109/TKDE.2022.
3208902

[32] Nezar Mansour. 2020. Understanding Cold, Hot, and Warm App Launch
Time. https://blog.instabug.com/understanding-cold-hot-and-warm-
app-launch-time/

[33] Julián Mestre, Sergey Pupyrev, and Seeun William Umboh. 2021. On

the Extended TSP Problem. In 32nd International Symposium on Algo-
rithms and Computation (LIPIcs, Vol. 212), Hee-Kap Ahn and Kunihiko

Sadakane (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

Fukuoka, Japan, 42:1–42:14. https://doi.org/10.4230/LIPIcs.ISAAC.
2021.42

[34] Andy Newell and Sergey Pupyrev. 2020. Improved Basic Block Re-

ordering. IEEE Transactions in Computers 69, 12 (2020), 1784–1794.

https://doi.org/10.1109/TC.2020.2982888

https://doi.org/10.1145/3519939.3523436
https://doi.org/10.1007/s00224-006-1350-7
https://doi.org/10.1007/s00224-006-1350-7
https://doi.org/10.1002/9781118601181
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1109/CGO51591.2021.9370306
https://doi.org/10.1145/3290366
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/2854038.2854044
https://doi.org/10.1145/1557019.1557049
https://doi.org/10.1145/3475061.3475081
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://doi.org/10.1145/2939672.2939862
https://doi.org/10.1145/2939672.2939862
https://doi.org/10.1145/359619.359634
https://doi.org/10.1145/359619.359634
https://doi.org/10.1145/1718487.1718536
https://doi.org/10.1145/1718487.1718536
https://doi.org/10.1145/800119.803884
https://doi.org/10.1145/330249.330254
https://doi.org/10.1145/330249.330254
https://doi.org/10.1145/258915.258931
https://doi.org/10.1145/3498714
https://developer.apple.com/documentation/xcode/reducing-your-app-s-launch-time
https://developer.apple.com/documentation/xcode/reducing-your-app-s-launch-time
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time
https://engineering.fb.com/2015/11/20/ios/optimizing-facebook-for-ios-start-time
https://fbredex.com
https://engineering.fb.com/2021/09/13/core-data/superpack/
https://engineering.fb.com/2021/09/13/core-data/superpack/
https://doi.org/10.1109/HPCA.1998.650563
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3302516.3307358
https://doi.org/10.1145/3497776.3517764
https://doi.org/10.1145/3519941.3535074
https://doi.org/10.1145/3578360.3580256
https://doi.org/10.1109/TKDE.2022.3208902
https://doi.org/10.1109/TKDE.2022.3208902
https://blog.instabug.com/understanding-cold-hot-and-warm-app-launch-time/
https://blog.instabug.com/understanding-cold-hot-and-warm-app-launch-time/
https://doi.org/10.4230/LIPIcs.ISAAC.2021.42
https://doi.org/10.4230/LIPIcs.ISAAC.2021.42
https://doi.org/10.1109/TC.2020.2982888

LCTES ’23, June 18, 2023, Orlando, FL, USA Ellis Hoag, Kyungwoo Lee, Julián Mestre, and Sergey Pupyrev

[35] Guilherme Ottoni and Bertrand Maher. 2017. Optimizing Function

Placement for Large-scale Data-center Applications. In International
Symposium on Code Generation and Optimization. IEEE Press, Austin,

USA, 233–244. https://doi.org/10.1109/CGO.2017.7863743
[36] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.

2019. BOLT: a practical binary optimizer for data centers and be-

yond. In International Symposium on Code Generation and Optimiza-
tion. IEEE, Washington, DC, USA, 2–14. https://doi.org/10.1109/CGO.
2019.8661201

[37] Karl Pettis and Robert C Hansen. 1990. Profile guided code positioning.

SIGPLAN Notices 25, 6 (1990), 16–27. https://doi.org/10.1145/989393.
989433

[38] Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam Smith.

2013. Sublinear algorithms for approximating string compressibility.

Algorithmica 65, 3 (2013), 685–709. https://doi.org/10.1007/s00453-
012-9618-6

[39] Peter Reinhardt. 2016. Effect of Mobile App Size on Downloads. https:
//segment.com/blog/mobile-app-size-effect-on-downloads/

[40] Rodrigo CO Rocha, Pavlos Petoumenos, Björn Franke, Pramod Bhato-

tia, and Michael O’Boyle. 2022. Loop rolling for code size reduction. In

International Symposium on Code Generation and Optimization, Jae W.

Lee, Sebastian Hack, and Tatiana Shpeisman (Eds.). IEEE, Seoul, Repub-

lic of Korea, 217–229. https://doi.org/10.1109/CGO53902.2022.9741256
[41] Rodrigo CO Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,

Kim Hazelwood, and Hugh Leather. 2021. HyFM: Function merging

for free. In International Conference on Languages, Compilers, and Tools
for Embedded Systems, Jörg Henkel and Xu Liu (Eds.). ACM, Virtual

Event, Canada, 110–121. https://doi.org/10.1145/3461648.3463852
[42] Rodrigo CO Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole,

and Hugh Leather. 2020. Effective function merging in the SSA form.

In International Conference on Programming Language Design and Im-
plementation, Alastair F. Donaldson and Emina Torlak (Eds.). ACM,

London, UK, 854–868. https://doi.org/10.1145/3385412.3386030
[43] Benjamin Schwarz, Saumya Debray, Gregory Andrews, and Matthew

Legendre. 2001. PLTO: A link-time optimizer for the Intel IA-32 archi-

tecture. InWorkshop on Binary Rewriting. 1–7.
[44] Han Shen, Krzysztof Pszeniczny, Rahman Lavaee, Snehasish Kumar,

Sriraman Tallam, and Xinliang David Li. 2023. Propeller: A Profile

Guided, Relinking Optimizer for Warehouse-Scale Applications. In

International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, Vancouver, BC, Canada, 617–

631. https://doi.org/10.1145/3575693.3575727
[45] Jeffrey Scott Vitter. 1985. Random Sampling with a Reservoir. ACM

Trans. Math. Softw. 11, 1 (1985), 37–57. https://doi.org/10.1145/3147.
3165

[46] Qi Wang and Torsten Suel. 2019. Document reordering for faster

intersection. Proceedings of the VLDB Endowment 12, 5 (2019), 475–487.
https://doi.org/10.14778/3303753.3303755

[47] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu.

2012. Fast app launching for mobile devices using predictive user

context. In Proceedings of the 10th international conference on Mobile
systems, applications, and services. ACM, Ambleside, United Kingdom,

113–126. https://doi.org/10.1145/2307636.2307648
[48] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for

sequential data compression. IEEE Transactions on Information Theory
23, 3 (1977), 337–343. https://doi.org/10.1109/TIT.1977.1055714

Received 2023-03-16; accepted 2023-04-21

https://doi.org/10.1109/CGO.2017.7863743
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1109/CGO.2019.8661201
https://doi.org/10.1145/989393.989433
https://doi.org/10.1145/989393.989433
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://segment.com/blog/mobile-app-size-effect-on-downloads/
https://segment.com/blog/mobile-app-size-effect-on-downloads/
https://doi.org/10.1109/CGO53902.2022.9741256
https://doi.org/10.1145/3461648.3463852
https://doi.org/10.1145/3385412.3386030
https://doi.org/10.1145/3575693.3575727
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165
https://doi.org/10.14778/3303753.3303755
https://doi.org/10.1145/2307636.2307648
https://doi.org/10.1109/TIT.1977.1055714

	Abstract
	1 Introduction
	1.1 Function Layout for App Download Speed
	1.2 Function Layout for App Launch Time
	1.3 Contributions

	2 Building an Optimization Model
	2.1 Compression
	2.2 Start-up

	3 Recursive Balanced Graph Partitioning
	3.1 Algorithm Engineering

	4 Implementation in LLVM
	4.1 Overview of the Build Pipeline
	4.2 Hot Function Layout
	4.3 Cold Function Layout

	5 Evaluation
	5.1 Start-up Performance
	5.2 Compressed Binary Size

	6 Related Work
	7 Discussion
	Acknowledgments
	References

