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Abstract—This paper describes AIM (Automatic Index Man-
ager), a configurable index management system, which identifies
impactful secondary indexes for SQL databases to efficiently use
available resources such as CPU, I/O and storage. It has been
validated on thousands of databases which support production
systems. With AIM, the physical design of the database adapts
itself to the changes in the workload.

We lay out the end to end design of AIM while calling out
the guarantees and tradeoffs associated with our design choices.
Some of the salient features of AIM include fast convergence even
while recommending wide composite indexes, reduced reliance
on the query optimizer and a “no regression” guarantee for
production workloads. Each index recommendation from AIM is
accompanied with a metrics driven explanation, making it easier
to verify machine driven changes.

AIM is one of the few industrial strength index recommen-
dation engines that is deployed on production databases at a
large scale. The experimental results show that AIM is quick in
identifying the most effective indexes and the resulting physical
design is close to optimal.

Index Terms—automatic indexing, self managing databases,
workload adaptivity

I. INTRODUCTION

A. Motivation

A significant challenge in managing databases is the main-
tenance of efficient physical structures to facilitate data access
for evolving workloads. Historically, this was done manually
by database administrators with significant domain expertise.
However, the emergence of cloud managed databases and
pay-as-you-go models has resulted in automation of database
tuning processes. The resulting decline in human involvement
has made physical design tuning significantly more efficient
at scale.

A carefully selected set of secondary indexes can have
a defining impact on the applications powered by relational
databases. The tradeoff involves using more storage in ex-
change for reduced CPU and I/O utilization. Reduced I/O
during query execution vastly improves its latency. Decades
of research [1]–[8] has explored a variety of ways to navigate
and choose from the space of available indexes. However, very
few industrial strength solutions exist today that have been
validated on a variety of production workloads and are capable
of identifying wide secondary indexes in a reasonable amount
of time.

B. Challenge

Selection of the optimal set of indexes for a given workload
is an NP-hard problem [9]. In fact, optimal selection of indexes
for facilitating a single join query is a complex problem in
itself since determining the optimal join order is an NP-hard
problem as well [10].

Most state-of-the-art solutions [11], [12] rely on utilizing
the query optimizer to evaluate the cost of executing queries
with hypothetical configurations of indexes. The number of
these configurations explodes for real-life production work-
loads placing significant restraints on the solution space [13].
These restraints limit the ability of modern algorithms to
identify wide composite indexes in time and prevent severe
performance degradation for input workloads. Prior work [14]
also suggests that there is significant utility in optimizing the
evaluation of these hypothetical configurations.

C. Approach & Contribution

In this paper, we approach automatic index management
from a practical viewpoint. Our design falls back on first
priniciples of the utility of indexes. The benefit of using an
index always results from reduced I/O operations. It can be
attributed to efficient selection of records, reading only rele-
vant attributes of selected records and / or by eliminating the
need to sort selected records. The distinguishing contributions
of our work are as follows:

• Utilization of the structural properties of individual
queries to significantly restrict the search space of can-
didate indexes. The query structures are used to generate
targeted index candidates rather than attempt to explore
the entire space.

• Efficient exploration of wide multi-column indexes be-
comes more feasible. Most modern techniques have to
restrict the index width [13] in order to prevent the
number of index configurations from exploding.

• To the best of our knowledge, AIM is one of the few
widely deployed production algorithms which treats com-
plex join queries systematically.

• Reduced reliance on the database query optimizer. Unlike
its predecessors, AIM does not query the optimizer for
data distribution statistics every time it has to append a



new column to a multi-column candidate index. This is
reflected in AIM’s runtime which is orders of magnitude
smaller than other modern algorithms.

• Our experimental study shows that AIM can both fill the
gap left by manual tuning and build secondary indexes
from scratch with comparable (or better) performance. It
can also detect and drop (parts of) unused indexes.

D. Structure of the paper

Section II defines the index tuning problem which is fol-
lowed by a detailed description of the general algorithm and
system architecture used for solving the problem in section III
and section IV. The algorithm described is general enough
to be implemented by any SQL database and its salient
features are called out in section V. Conclusions drawn from
experiments conducted on production workloads and synthetic
benchmarks are presented in section VI, which demonstrate
the impact of the design choices made when implementing
AIM. It also compares AIM against other modern algorithms
and highlights the significantly better runtime of AIM. Exter-
nal components that play a crucial role in AIM’s architecture
are described in section VII. Section VIII calls out the lessons
learned in the process of implementing AIM while section IX
draws a comparison with existing work and lists ideas for
future work.

II. PROBLEM DEFINITION

The index tuning problem focuses on selecting an optimal
configuration X for a relational database D such that the
execution cost of the workload running on it (W) can be mini-
mized under certain constraints. For the scope of this problem,
the configuration X is comprised of a set of secondary indexes,
each of which is materialized on one of the tables present in
D. The workload W is comprised of queries running on D.
Each query, q, has an associated weight wq . wq can be based
on query q’s execution frequency, its overall CPU consumption
or a manually specified importance measure provided by query
authors.

A. Static Index Tuning Problem

The static index tuning problem (also referred to as boot-
strapping) involves finding the optimal subset of possible
secondary indexes that minimize the computational cost of
serving a constant workload. It is formally defined as follows.

Given a constant workload W (consisting of queries q ∈
W), a set of all possible indexes U and a storage budget B,
find X ∗ such that

X ∗ = argmin
X∈2U

(
∑
q∈W

wqcost(q,X )) (1)

where wq is the weight associated with query q and
cost(q,X ) is the execution cost of q with index configuration
X such that X fits in B.

B. Continuous Index Tuning Problem

The continuous index tuning problem is a slightly different
variant of the bootstrapping problem. In fact, this variant is
closer to the real world since most developers deploy their
databases with an initial set of indexes. This initial set might
not always be the most efficient choice but it serves as a
starting point to improve upon. The problem statement is as
follows.

Given a workload W (consisting of queries q ∈ W), a set
of pre-existing indexes C and a storage budget B, find C′ such
that

∑
q∈W

wqcost(q, C′) ≤ (1 + λ1)
∑
q∈W

wqcost(q,X ∗) (2)

∃q ∈ W • wqcost(q, C′) ≤ (1− λ2)(wqcost(q, C)) (3)

∀q ∈ W • wqcost(q, C′) ≤ (1 + λ3)(wqcost(q, C)) (4)

where 0 ≤ λ1, λ2, λ3 < 1 are parameters that can be set to
achieve the desired goals. Equation 2 keeps the overall cost
in check with respect to the configuration X∗ detected while
bootstrapping, equation 3 mandates the improvement in perfor-
mance of at least one query and equation 4 prevents significant
regressions in the performance of individual queries.

The reason why databases need to undergo continuous
tuning is because wq and cost(q,X ), for a given query q and
configuration X , are functions of time as the workload and
underlying data distributions change.

III. ALGORITHM

A. Terminology

A detailed description of the algorithms requires defining
some frequently used concepts for ease of understanding.

1) Normalized query: A normalized (or parameterized)
form of a query is obtained by replacing parameters with
placeholders. This mechanism is used to group together
queries with similar structure. Note the ? used to represent
a parameter in the following example.

SELECT id, name FROM students WHERE score > ?

2) Discarded data ratio (ddr): For every execution of a
query, we compute the amount of data that was read during
its execution and the amount of data that was returned by it.
The disparity between these two metrics per execution of a
normalized query is computed as the ratio of data sent to data
read averaged across executions of a normalized query.

3) Partial order of index columns: Potential index candi-
dates are denoted as strict partial orders [15] of columns on a
single table such as (Xt,≺) where Xt is the set of columns
of table t and the relation ≺ denotes that a column precedes
another in an index. Consider the following partial order where
its ordered partitions are listed.

<{col1, col2}, {col3}, {col5, col6, col7}>



It represents all non-unique secondary indexes where
columns col1 and col2 occupy the first two places (order
immaterial), followed by column col3 in third place. col3 is,
in turn, followed by any permutation of col5, col6, and col7
in the last three places.

4) Dataless indexes: Dataless indexes are secondary in-
dexes that are created without actual data. They only have
data distribution statistics and are used for estimating query
execution costs by the optimizer1. Dataless indexes are similar
in implementation to “what-if” indexes described by Chaud-
huri and Narasayya [4].

5) Covering index: A covering index is a secondary index
that constitutes all the columns of a table that are referenced
in a specific query. Therefore, the clustered primary key (base
table) need not be accessed in order to compute the result
of the query. Covering indexes usually reduce the number of
random disk seek operations.

B. Overview

The high-level flow of the AIM procedure is depicted in
Figure 1. The algorithm can be thought of as having two
distinct phases; both of which follow the same general outline
presented in algorithm 1. Initially, if multiple queries are

Fig. 1: AIM flowchart

executing inefficiently, it is not easy to predict their relative
frequency in steady state after adding the necessary supporting
indexes. Therefore, AIM tries to add indexes of smaller width

1The estimated execution costs might be a bit off since index dives cannot
be performed

to support each inefficient query in the observed workload. In
a subsequent phase, it identifies queries that might benefit from
covering indexes. Usually, these queries execute extremely
frequently to offset the extra storage overhead of creating
wider indexes.

Algorithm 1: Automatic Index Manager
Input: database: name of the database, j: join parameter
Output: production indexes: Set of index to be created in

production on database
1 W ←WorkloadSelection(database);
2 candidates← GenerateCandidates(W, j);
3 Materialize candidates on the clone database, ordering

them in descending order of perceived benefits from
optimizing queries in W until storage budget is exhausted;

4 production indexes←
RankSelectedIndexes(candidates)

Line 1 of algorithm 1 denotes the representative workload
selection step which identifies the set of queries that need
tuning by monitoring their execution statistics. For each query
that is identified by the previous step, a set of candidate
indexes are generated (line 2). The join parameter j determines
which tables (out of the many) present in a complex join query
are exhaustively evaluated for all possible relative join orders
(explained in subsection IV-C).

The set of candidate indexes is materialized on a clone of the
database to determine if the query optimizer is able to use the
indexes efficiently during execution (line 3). This is necessary
to guarantee that none of the queries regress in production
(more details in subsection VII-B). The set of production
indexes is identified by ranking the usefulness of the candidate
indexes (line 4) which are then materialized on the production
database.

The algorithm works for both static and continuous index
tuning. It can be run once to bootstrap the initial set of indexes
when the database is created and periodically thereafter for
continuous tuning to adapt to changes in the workload. The
following sub-sections provide detailed description of each of
the steps outlined in the high level algorithm.

C. Representative workload selection

The goal of this step is to identify the set of queries
that require index tuning. The workload monitor analyzes
execution statistics to identify queries that are not being exe-
cuted efficiently. Query execution statistics include important
information such as CPU cost, rows read, rows sent and
number of executions corresponding to each normalized query.
The utility of this data is in selecting / ordering queries with
maximum expected benefits from adding potentially useful
indexes.

Based on the query execution statistics, a representative
sample of the workload is selected by identifying the most
expensive queries that need tuning. The selection of the
representative workload for a given database is fully automated
and done periodically at the end of a configurable interval of
time. The selection process takes three main attributes into



account for each query; execution frequency, average CPU
consumption per execution and the discarded data ratio.

The threshold on the execution frequency is only used to
weed out spurious executions of queries from ad hoc sources.
The combination of average CPU consumption and discarded
data ratio (ddravg) is used to assign an optimistic expected
benefit (B) from optimizing a normalized query q executed
with configuration X .

B(q,X ,∆t) := (1−ddravg(q,X ,∆t))·cpuavg(q,X ,∆t) (5)

cpuavg(q,X ,∆t) represents the average CPU utilization by
normalized query q over the time span ∆t. It is measured in
CPU seconds and includes cycles spent on CPU IOWAIT
events. Equation 5 assumes that all the I/O done by the
query which isn’t returned in the result set could have been
avoided by proper index structures and thereby represents the
maximum potential benefit from optimizing the query2. A
threshold on B (e.g. 1/20 of a CPU core) is used to select
the queries in the workload targeted for optimization.

D. Generate Candidate Indexes

The candidate generation process takes into account the
structure of the query and is efficiently able to generate
effective composite indexes. Statistics around data distribution
are indirectly taken into account in our implementation via
dataless indexes. The key lies in defining transformation
functions from column usage metadata to potential index
candidates represented by a partial order of columns. The basic
transformation functions are more or less the same across most
popular SQL database servers and this approach reduces the
number of candidates considerably.

Algorithm 2: GenerateCandidates
Input: W: workload, j: join parameter
Output: IP: Set of candidate indexes

1 PO ← ϕ;
2 foreach Q ∈ W do
3 mode← TryCoveringIndex(Q);
4 PO ← PO ∪

GenerateCandidatesForSelection(Q, j,mode) ∪
GenerateCandidatesForGroupBy(Q, j,mode) ∪
GenerateCandidatesForOrderBy(Q, j,mode);

5 end
6 POfinal ←MergePartialOrders(PO);
7 return GenerateCandidateIndexPerPO(POfinal);

Algorithm 2 shows the high level algorithm for the gener-
ation of candidate indexes. The algorithm takes as input the
workload and the join parameter j. For each query Q in the
workload, the algorithm checks if a covering index would be
beneficial for it (line 3). The TryCoveringIndex procedure
makes this determination based on the indexes utilized for
the execution of Q in the current configuration. A covering
index is tried if it is not possible to improve selectivity any

2This assumption is not always true for certain cases such as queries with
a GROUP BY operation

further and the addition of a covering index is expected to
significantly bring down the number of additional seeks from
the primary key. Taking the example of Q4 in subsection IV-D,
a covering index is not tried until an index with the prefix
<col2, col3> is already being utilized. Furthermore, if such
an index is already being used, the number of disk seeks
should be high enough to offset the cost of paying the extra
storage cost of including one more column col1 to the index.
This threshold is high for fast storage media such as SSDs.
Line 4 of the algorithm generates a set of partial orders of
index columns by taking into consideration alternative query
execution strategies. The execution strategy is based on the
primary operation (out of selection, grouping or ordering) that
is optimal for the query. The primary operation is the one
that precedes all other operations. For instance, one execution
strategy of query Q might involve sorting rows in group order
before selection of rows, whereas another strategy might prefer
selection before sorting in group order.

The set of partial orders generated in the previous steps
are merged to get the final set of partial orders (line 6).
The procedure is described in detail in subsection III-E.
Corresponding to each partial order, one index candidate is
generated by arbitrarily choosing a total ordering of index
columns which satisfies the partial order. This is done by the
GenerateCandidateIndexPerPO procedure (line 7).

E. Merge Partial Orders

We first define a function MergeCandidatesPairwise
which takes two strict partial orders (P,≺P ) and (Q,≺Q)
to produce another strict partial order (R,≺R) when the
prerequisite condition Cmerge is met.

Cmerge := P ⊆ Q
∧

(∄ a, b ∈ P : a ≺P b ∧ b ≺Q a)

(R,≺R) :=

{
(P,≺P )

⊕
(Q,≺Q), if Cmerge

(ϕ,≺R), otherwise

P , Q and R are subsets of columns of the same table. a ≺P b,
a ≺Q b and a ≺R b denote relations; all of which semantically
translate to the fact that column a precedes column b in
the index represented by these partial orders.

⊕
denotes the

ordinal sum [16] operator.
The function MergePartialOrders (from algorithm 2)

takes a set of partial orders of index columns (PO) and
recursively merges the constituent partial orders in pairs (using
MergeCandidatesPairwise) until no new ones are pro-
duced. The following equation give a more formal definition.

POn+1 :=

{MergeCandidatesPairwise(X,Y ) | X,Y ∈ POn} (6)

MergePartialOrders(PO) starts with PO0 := PO and
returns POm using Equation 6 such that POm = POm+1.
Intuitively, merging of the partial orders of index columns
helps in picking the right order of index keys that will maxi-
mize the benefit of the index created. For example, consider the
following two partial orders: <{col1, col2, col3}> & <{col2,
col3}>.



The first partial order denotes that some query might ben-
efit from the creation of an index with any permutation of
col1, col2 and col3. The second partial order denotes that some
query might benefit from the creation of an index with any
permutation of col2 and col3. Merging the partial orders leads
to creation of a new partial order: <{col2, col3}, {col1}>.

The merged partial order puts a constraint on the index
columns’ ordering to be limited to <col2, col3, col1> and
<col3, col2, col1>. Either candidate satisfies the merged
partial orders and can individually be beneficial to queries for
which the base partial orders were merged.

F. Ranking and selection of candidates

The utility of an index is computed by summing up the ben-
efits observed by individual queries that use it and discounting
the write amplification resulting from index maintenance.
The cost of a SQL query q can be decomposed into two
main components expresssed as cost(q,X ) = costr(q,X ) +∑

i∈X costu(q, i) where costr(q,X ) represents the cost of
locating the records by using indexes in configuration X and
costu(q, i) represents the overhead of updating index i in X .
costu(q, i) is non-zero only for DML statements. The logic for
estimating (components of) costs is dependent on the storage
engine [17] and can utilize the statistics offered by dataless
indexes.

The two main ways in which indexes help queries are
by reducing the amount of data that needs to be read and
preventing repeated sorting operations. In order to quantify
this benefit, every query q is treated in isolation at first.
This gain (U+) can be estimated by Equation 7 where I
is the set of candidates generated to benefit query q. U+ is
distributed amongst the indexes (in I) which are used during
q’s execution. The share si,q of U+ attributed to an index i is
directly proportional to the reduction in I/O due to i (estimated
by the optimizer).

U+(q, I) :=
cost(q, ϕ)− cost(q, I)

cost(q, ϕ)
· cpuavg(q, ϕ,∆t) (7)

Similarly, the overhead of maintenance arises from index
updates and storage space required. The overhead of index
maintenance can be computed for an individual index i using
Equation 8. Higher I/O operations lead to higher CPU uti-
lization because the cpuavg metric includes CPU IOWAIT
events.

u−(i) :=
∑
q∈W

costu(q, i)

cost(q, ϕ)
· cpuavg(q, ϕ,∆t) (8)

The overall utility of an index is represented by u(i) =
si,q ·U+(q, I) + u−(i). The accounting for index interactions
is limited to the merging of representative partial orders of
the index candidates. When index candidates are merged, the
benefits corresponding to individual queries gets added up
and write amplification overhead is the same as that of the
wider candidate being merged. Index selection can then be
modeled as a knapsack problem [18] where index candidates

are evaluated in the order of their overall utility per unit
storage overhead while not violating the budget allocated for
indexes. We implemented several other heuristics for a more
complete accounting of index interactions but comparison of
their relative effectiveness is deferred to future work.

IV. CANDIDATE GENERATION

Candidate generation takes into account the structure of
the query and transforms structural metadata to partial or-
ders representing index candidates. The structural metadata
collected by the workload monitor includes information about
operations corresponding to each column, edges in the table
join graph and factors in the selection predicate. Examples
of this metadata are listed in Table I. This information is
particularly useful in generating candidate indexes for common
SQL operations as is described in the following subsections.

A. Projection

The projection operation is used to select a subset of
the attributes (columns) from a relation (table). Let us as-
sume the existence of a table t1 with five columns, namely,
col1, col2, col3, col4 and col5. A very simple example demon-
strating projection would be the following.

Q1: SELECT col2, col3 FROM t1 WHERE col5 < 2

In this query, instead of requesting all columns from t1 for
rows that satisfy the WHERE clause, only col2 and col3 are
requested in the output. The following partial order represents
the set of indexes that would optimize Q1 in the example
above: <{col5}, {col2, col3}>.

The consideration of these secondary indexes which prevent
lookups to the primary key can be useful when using slow
storage media. It should also be noted that addition of both
col2 and col3 at the end is necessary to avoid primary key
lookups. Most greedy algorithms which add one column at a
time may not be able to discover covering indexes for common
queries.

B. Selection (Filter operation)

The WHERE clause may contain predicates of the following
form connected by logical operators (e.g. AND, OR)

column_name op expression

These predicates which aid in the selection of rows from a
single table instance are termed as filter operations. For each
distinct table instance, we construct partial orders of columns
that participate in filter operations. For e.g., a predicate like

E1: WHERE col1 = 5 AND col2 = ‘ABC’
AND col3 IN (5, 9, 11)

would result in the following partial order of columns:
<{col1, col2, col3}>.



TABLE I: Query structure

Column Usage Metadata Operation FILTER, TABLE JOIN, GROUP BY, ORDER BY, PROJECTION etc.
Operator GREATER THAN, EQUAL, SORT ASCENDING etc.

Structural metadata Edges in the table join graph, grouping of predicates in AND-OR chains etc.

1) Complex AND-OR predicates: The selection predicate
might employ complex AND-OR chains and generation of
candidates may differ slightly depending on the factorization
technique implemented by the database server. This technique
is denoted by the FactorizeIndexPredicates routine in
algorithm 5. The algorithm employed by MySQL is simple
but other database engines may use more complex techniques
of factorization [19]. In our implementation, we simply use
the disjunctive normal form (DNF) for complex predicates and
it works well with MySQL. Each factor in the DNF results
in a separate partial order. For e.g., the following predicate
results in two partial orders; <{col1, col2, col3}> and <{col2,
col4}>.

E2: WHERE (
col1 = 5 AND col2 = ‘ABC’

AND col3 IN (5, 9, 11)
) OR ( col2 = ‘CDE’ AND col4 = 8 )

2) Index prefix predicates: Depending on the database
server, the operator plays an important role as well. Fil-
tered upon columns associated with operators like equal (=),
nullsafe equal (<=>), set membership etc. can be chained
together to construct multi-column indexes wherein each par-
ticipating column would typically enhance the selectivity (or
the effectiveness) of the index. However, if columns associated
with operators such as greater than (>), less than or equal to
(<=), BETWEEN etc. were concatenated together to form
a multi-column secondary index, each subsequent column after
the first one may not have a strict additive benefit on selectivity
[20]. This is best explained with an example.

E3: WHERE col1 = 5 AND col2 = ‘ABC’
AND col3 > 5 AND col4 < 2.0

If a multi-column secondary index on <col1, col2, col3,
col4> is added, all rows with col1 = 5, col2 = ABC and
col3 > 5 might have to be read and the evaluation of col4 <
2.0 would be done in a subsequent step. This subsequent step
maybe performed by reading the qualifying rows from primary
key or by using the index condition pushdown optimization
[21]. Therefore, we can construct the following partial order
for the expression E3: <{col1, col2}, {col3, col4}>.

This partial order represents a set of 4 multi-column
secondary indexes where col1 and col2 precede col3 and
col4. The order of col1 with respect to col2 is immaterial.
Similarly, the order of col3 with respect to col4 would
have been immaterial as well but it depends on the overall
selectivity of the individual predicates col3 > 5 and col4 <
2.0. Putting the column corresponding to the more selective
atomic predicate first would be more efficient and can be
done by using dataless indexes. Therefore, the subpredicates
col1 = 5 and col2 =‘ABC’ decide the prefix of the

candidate index. This process is described by the procedure
GenerateCandidateIndexPredicates in algorithm 5.

More formally, an index prefix predicate is an atomic
subpredicate of the filter clause which can be resolved by an
index scan of rows that share a constant non-empty prefix.
This constant prefix can be determined from the atomic
subpredicate itself. For e.g. the atomic predicate col1 = 5
can be resolved using an index on col1 by scanning all the
rows that have the prefix 5 and col2 =‘ABC’ can be resolved
using an index on col2 by scanning all the rows with prefix
‘ABC’. Contrary to this, the atomic predicate col3 > 5 can
also be resolved using an index on col3 by performing a range
scan. However, all the matching rows need not have a common
prefix. Therefore, col3 > 5 is not an index prefix predicate.

C. Joins

Table join operations compute a subset of the cartesian
product of two or more tables (relations). Therefore, it can
be thought of as selection operation (described in subsec-
tion IV-B) on a cross-product of two or more tables.

For most database execution engines, only two tables are
joined together at a time. The order in which tables are
joined together plays an important role in determining the
performance of a join query3. Determining the most efficient
join order for a query is in itself a NP hard problem [23]. There
is a circular dependency between the problem of selecting
the most efficient indexes for facilitating a join query and
determining the best join order for it. Most relational database
engines employ heuristics to predict an efficient join order
rather than computing the most efficient one. The goal is to
prevent query optimization from becoming more expensive
than actual execution. Therefore, only a small number of join
orders are even considered by the optimizer [24].

Our approach can generate candidate indexes for join
queries which works well for transactional workloads. Column
usage metadata includes identifiers for table instances that
participate in a join condition with any given column of
another table instance. This helps us construct the join graph
where nodes are table instances and edges between them
represent a predicate in the join condition involving columns
from the participating tables instances (nodes). Consider the
following query Q2 with the join graph shown in Figure 2.

Q2: SELECT t1.col1, t2.col2, t3.col3
FROM t1, t2, t3
WHERE t1.col2 = t3.col2

AND t2.col4 = t3.col7

AIM accepts a positive integer j to limit its search for join
orders. All table instances with columns participating in the

3The order of some join types is predetermined (e.g. straight join [22])



Fig. 2: Join graph for Q2

join predicates with at most j other table instances are selected.
The candidate indexes for the selected table instances include
all possibilities of join orders with respect to that table. The
upper bound is exponential in j, since every participating table
could either precede or succeed the selected table instance.
Therefore, the value of j is usually a small positive integer.
Although, we do not try to exhaustively facilitate all join
orders for table instances that share a join predicate with more
than j tables, we have not seen any incremental benefit of
exploring j > 3 for any production workload so far. The
impact of choosing j is demonstrated in Figure 6.

If the join order is predetermined, the join predicates can
be merged with the selection predicates to generate partial
orders representing candidate indexes benefiting both the join
and selection operations. Intuitively, if we assume that the join
order for the query Q2 above is [t3, t1, t2], it makes sense to
try out an index on t2.col4 since t3 precedes it and we perform
a lookup into table t2 for every value of t3.col7. However, if
the join order were [t1, t2, t3], an index on t2.col4 would not
reduce the number of records considered from t2.

Our approach considers candidate indexes to facilitate sev-
eral possible join orders and lets the query optimizer pick the
best one. The pseudocode for generation of index candidates
catering to filter and join predicates is provided in algorithm 4.
The procedure ReferencedColumns is an overloaded helper
which returns the columns referenced in an entity. The entity
could be a table in a query or a partial order.

It should again be noted that the greedy approach (utilized
by most modern index selection algorithms) would not be
able to discover optimal indexes for complex join queries
because their exploration logic doesn’t consider co-ordinated
exploration of candidate indexes across multiple tables.

Algorithm 3: JoinedTablesPowerset
Input: Q: query, t: table, j: join parameter
Output: Tj : Power set of tables which have join predicates

with t
1 T ← Set of tables with join predicates with t in Q;
2 if |T | > j then
3 T ← ϕ
4 end
5 return 2T

Algorithm 4: GenerateCandidatesForSelection
Input: Q: query, j: join parameter, mode: covering /

non-covering
Output: IP: Set of partial orders of index columns

1 IP ← ϕ;
2 T ← tables queried in Q ;
3 foreach t ∈ T do
4 CF ← Set of columns in t that feature in filter predicates

of Q;
5 foreach S ∈ JoinedTablesPowerset(Q, t, j) do
6 CJ ← Set of columns in t that feature in join

predicates (of Q) with any table in S;
7 candidates←

GenerateCandidateIndexPredicates(Q, CF ∪
CJ);

8 if mode = covering then
9 candidates←

{c.append(ReferencedColumns(Q, t) \
ReferencedColumns(c)) | c ∈ candidates};

10 end
11 IP ← IP ∪ candidates;
12 end
13 end
14 return IP

Algorithm 5: GenerateCandidateIndexPredicates
Input: Q: query, C: columns used for selection
Output: IP: Set of partial orders of index columns

1 IP ← ϕ;
2 GC ← FactorizeIndexPredicates(Q, C);
3 foreach G ∈ GC do
4 CIPP ← {c | c ∈ G and column c features in an index

prefix predicate (IPP)};
5 CRSP ← G \ CIPP ;
6 last col← argminc∈CRSP

dataless index cost(Q, <
CIPP , {c} >);

7 IP ← IP ∪ {< CIPP , {last col} >};
8 end
9 return IP

D. Group By

In case of a group by operation on a table instance,
a secondary index can come in handy when reading rows
in grouping order and computing any expression involving
aggregation for each group. An example is as follows.

Q3: SELECT col3, COUNT(*) FROM t1
GROUP BY col3

Q4: SELECT col3, SUM(col1)
FROM t1 WHERE col2 = 5 GROUP BY col3

For query Q3, a secondary index on col3 might come
in handy when evaluating the aggregate values per group
(defined by unique values of col3). For query Q4, however, the
follwoing partial order would be more efficient since it forms
a covering index while facilitating selection and grouping
operations simultaneously: <{col2}, {col3}, {col1}>.

Notice that col2 precedes the grouping column (col3)
since it features in an index prefix predicate defined above.



Candidate generation for group by clause is described in
algorithm 6.

Algorithm 6: GenerateCandidatesForGroupBy
Input: Q: query, j: join parameter, mode: covering /

non-covering
Output: IP: Set of partial orders of index columns

1 IP ← ϕ;
2 T ← tables queried in Q ;
3 foreach t ∈ T do
4 CG ← Set of columns in t that feature in the group-by

clause within Q;
5 if mode = non− covering then
6 IP ← IP ∪ {< CG >};
7 else
8 CF ← Set of columns in t that feature in filter

predicates of Q;
9 foreach S ∈ JoinedTablesPowerset(Q, t, j) do

10 candidate←<>;
11 CJ ← Set of columns in t that feature in join

predicates (of Q) with any table in S;
12 GC ←

FactorizeIndexPredicates(Q, CF ∪ CJ);
13 foreach G ∈ GC do
14 CIPP ← {c | c ∈ G and column c features

in an index prefix predicate (IPP)};
15 candidate← candidate.append(CIPP );
16 candidate← candidate.append(CG);
17 remaining columns←

ReferencedColumns(Q, t)\(CIPP ∪CG)
;

18 candidate←
candidate.append(remaining columns);

19 IP ← IP ∪ {candidate};
20 end
21 end
22 end
23 end
24 return IP

E. Order By

A SQL query might request only a few rows in the output
which are sorted in a specific order. Consider the following
query.

Q5: SELECT t1.col13, t1.col14,
t2.col25, t1.col17

FROM t1 LEFT JOIN t2
ON t1.col11 = t2.col21

WHERE t1.col12 IN (’ABC’, ’DEF’)
ORDER BY t1.col13 LIMIT 2

It is possible that the number of rows in t1 matching the
predicate t1.col12 IN (’ABC’, ’DEF’) is too high and a more
efficient execution plan might read rows of t1 in ascending
order of col13 and check if the predicate t1.col12 IN (’ABC’,
’DEF’) is satisfied. In such a scenario, a secondary index on
col13 would be more beneficial than one on col12. Candidate
generation for order by clause is described by algorithm 7.

Algorithm 7: GenerateCandidatesForOrderBy
Input: Q: query, j: join parameter, mode: covering /

non-covering
Output: IP: Set of partial orders of index columns

1 IP ← ϕ;
2 T ← tables queried in Q ;
3 foreach t ∈ T do
4 CO ← Sequence of columns in t that feature in the

order-by clause within Q;
5 if mode = non− covering then
6 IP ← IP ∪ {CO};
7 else
8 CF ← Set of columns in t that feature in filter

predicates of Q;
9 foreach S ∈ JoinedTablesPowerset(Q, t, j) do

10 candidate←<>;
11 CJ ← Set of columns in t that feature in join

predicates (of Q) with any table in S;
12 GC ←

FactorizeIndexPredicates(Q, CF ∪ CJ);
13 foreach G ∈ GC do
14 CIPP ← {c | c ∈ G and column c features

in an index prefix predicate (IPP)};
15 candidate← candidate.append(CIPP );
16 candidate← candidate.append(CO);
17 remaining columns←

ReferencedColumns(Q, t) \ (CIPP ∪
elems CO);

18 candidate←
candidate.append(remaining columns);

19 end
20 IP ← IP ∪ {candidate};
21 end
22 end
23 end
24 return IP

V. SALIENT FEATURES

A. Solution Granularity

As described above, AIM compromises on the solution
granularity to offer lower runtimes. Utilization of the query
structure to severely limit our search space prevents the
algorithm from exploring too many index configurations. It
can support the following levels of solution granularity.

• Only a subset of the queries can be chosen to be op-
timized. Anecdotally, only the top few most expensive
queries account for most of the CPU utilization.

• At the query level, each table instance in a multi-table
query has three options. It can either be unindexed, may
have a non-covering index or a covering index.

• Relaxation / reduction of the number of sub-predicates
in the index prefix predicates (IPP) can also lead to
significant cost reductions especially when the additive
selectivity falls below a certain threshold.

B. Role of dataless indexes

Dataless indexes (section III-A4) are only utilized when
determining the join order (when a lot of tables are involved
as described in subsection IV-C), the most selective atomic



predicate that is not an index prefix predicate ( algorithm 5)
and picking out the primary operation for each distinct query
( subsection III-D).

VI. EXPERIMENTAL STUDY

A. Comparison with manual tuning

AIM has been designed for transactional workloads served
by MySQL which powers a variety of real-time applications
across the industry. It supports both storage engines; InnoDB
(B+ trees) and RocksDB (LSM trees). The workload generated
by these applications is diverse and most databases receive
dynamic ad-hoc updates. In order to compare AIM’s per-
formance against manual tuning, we conducted several tests
on representative production workloads where all secondary
indexes were removed and AIM was allowed to add them
from scratch after analyzing the workload. Not only did
AIM achieve performance comparable to manual tuning, it
did so using fewer indexes in most cases. Metadata about
these representative workloads is provided in Table II. The
Jaccard similarity index between the sets of indexes created
by DBAs and AIM is also provided. AIM was able to
achieve performance at par with manually tuned databases,
even for highly optimized databases with dedicated DBAs.
This performance is demonstrated in Figure 3 for Product A,
B & C listed in Table II. Each graph shows the CPU utilization
on the machines and the observed throughput as we drop all
secondary indexes and initiate AIM which recreates them from
scratch on the test setup (shown in red). The control and
test setups are hosted on separate machines with the exact
same hardware capabilities, data and workload. The control
setup (shown in blue) is left untouched with indexes created
manually by DBAs.

B. Comparison with other state-of-the-art algorithms

We also benchmarked AIM against the state-of-the-art algo-
rithms from industry (DTA [12]) and academia (Extend [11])
using the open-source framework developed by Kossmann et
al [13] on PostgreSQL v12.11. The framework supports eight
algorithms (AutoAdmin [3], CoPhy [25], DB2Advis [7], DTA
[12], Dexter [26], Drop [27], Extend [11] and Relaxation
[28]) but we chose only two to compare against for clarity
in our graphs. DTA and Extend were reported as the best
performing algorithms in industry and academia, respectively.
The framework utilizes HypoPG [29] built for PostgreSQL
and the optimizer does not account for index maintenance
costs which is why purely analytical benchmarks are chosen to
compare the index selection prowess of different algorithms.

The main challenge which hindered a proper comparison
with DTA was its evaluation strategy, which became pro-
hibitively expensive [13] when considering indexes of width >
3 for complex workloads (TPC-DS and JOB). Therefore, we
limited the setup to only consider indexes of maximum width 4
for TPC-H and width 3 for JOB. This experiment is presented
in Figure 4 where the optimizer estimated cost of processing
a workload relative to unindexed processing cost (y-axis) is
plotted against different values of storage budgets (x-axis) for

the TPC-H and JOB benchmarks in Figure 4a & 4c. The
algorithm runtimes (y-axis) are also plotted against storage
budgets (x-axis) in Figure 4b & 4d. Graphs from TPC-DS
benchmark followed the same trend and are not included to
save space.

The compromise implemented by AIM is evident from the
benchmark results. It trades solution granularity for faster
convergence. For lower storage budgets, AIM’s solution is
sometimes not as good as DTA or Extend since it doesn’t
explore the search space in a more granular fashion. However,
as soon as the budget constraints are reasonably relaxed, it’s
solution quality is better or at par with the state-of-the-art
algorithms. The main thing to notice here is the relatively
cheap and stable runtime offered by AIM since it can quickly
detect the most efficient indexes for a query by utilizing its
structural information. Most state-of-the-art algorithms explore
configurations at a fine granularity; often greedily adding one
column at a time. This leads to prohibitively large runtimes
and missing out on optimal solutions where intermediate
configurations are rejected for lack of incremental gain.

Figure 5a and Figure 5b show the performance of the
solutions chosen by different algorithms across individual
queries in the TPC-H benchmark (scale factor 10) with a
budget constraint of 15 GB. Relatively expensive query costs
are shown in log scale. It can be seen that the performance
for individual queries is pretty similar across all algorithms,
except for Q21. AIM chose a covering index for Q21 and
PostgreSQL query optimizer assigned it a higher estimated
cost. However, the actual query execution costs were similar.

C. Impact of the join parameter

Another interesting aspect of the AIM algorithm is its
treatment of join queries. The only way to ensure that the
most optimal join order gets picked for each query is to
have indexes that support all potentially efficient join orders.
On top of that, the optimizer should be able to select the
optimal join order in the presence of these indexes in an
efficient manner. Neither of these prerequisites can be fulfilled
in practice due to various constraints [10], [30]. Therefore,
AIM uses the join parameter j and limits the number of
explored configurations as described in subsection IV-C. In
this experiment, all secondary indexes were removed from
identical databases on two separate machines. A constant
perioidically repeating workload is replayed on both machines.
For this experiment, we chose a transactional workload with
many complex join queries to demonstrate AIM’s impact.
AIM progressively creates secondary indexes with increasing
values of the join parameter j on one machine and a greedy
incremental algorithm (Extend) creates them on the other.
The difference in performance between the two solutions is
visible from Figure 6. AIM’s solution achieves 27% better
throughput compared to the greedy algorithm (labeled GIA)
and results in 4.8% lower CPU utilization. This is because
the quantum of configuration exploration is limited to one
column at every step and the incremental benefit might not be
justified by the cost function. Consider a join clause between



TABLE II: Performance comparison between DBAs and AIM on production workloads

Product Tables Join Queries Workload Type Index Count Total Indexes Size Jaccard Similarity
DBA AIM DBA AIM

Product A 147 67 Write Heavy 248 217 149.76 GiB 119.49 GiB 0.72
Product B 184 733 Read Heavy 287 291 7.69 GiB 9.14 GiB 0.81
Product C 42 25 Balanced 51 49 26.23 GiB 23.11 GiB 0.89
Product D 16 18 Write Heavy 56 52 10.27 GiB 8.42 GiB 0.61
Product E 51 41 Read Heavy 109 82 688.16 GiB 517.01 GiB 0.68
Product F 5 10 Read Heavy 33 34 193.83 MiB 102.52 MiB 0.97
Product G 79 386 Balanced 232 220 868.64 GiB 815.33 GiB 0.76

(a) CPU utilization graph for Product A (b) CPU utilization graph for Product B (c) CPU utilization graph for Product C

(d) Throughput graph for Product A (e) Throughput graph for Product B (f) Throughput graph for Product C

Fig. 3: CPU utilization & throughput profiles before and after AIM execution

(a) TPC-H (SF 10): Solution quality. Cost
relative to processing without indexes.

(b) TPC-H (SF 10): Observed runtime.

(c) JOB: Solution quality. Cost relative to
processing without indexes.

(d) JOB: Observed runtime.

Fig. 4: Estimated workload processing costs & algorithm runtimes

(a) Only those queries are shown where
indexes had an effect.

(b) Only expensive queries are shown in
log scale.

Fig. 5: Query processing costs for TPC-
H (scale factor 10) on PostgreSQL.



Fig. 6: Effect of join parameter

a pair of tables with three sub-predicates. It is possible that
any combination of two sub-predicates is not selective enough
but a combination of all three is highly selective. In such
cases, greedy algorithms would not be able to detect efficient
join orders for the query. Some machine learning algorithms
[31] try to explore suboptimal intermediate configurations
in a probabilistic fashion but utilizing the query structures
for identifying changes to the existing configuration yields
definitive results.

Another important aspect demonstrated by the experiment
is the change in performance with respect to increasing values
of j. The solution with j = 2 results in 16% better throughput
than the one AIM arrived at with j = 1. The gain from
increasing j from 2 to 3 was insignificant. In theory, we can
construct queries on top of synthetic data distributions that
would require j > 3 to achieve optimal performance but we
haven’t seen such cases in production so far.

Please note that indexes were created incrementally with
sleeps in between in order to clearly observe the impact on
the graphs presented in Figure 3 & Figure 6.

D. Continuous index tuning

AIM is not only good at bootstrapping secondary index
creation, it also does particularly well at detecting indexes
when the workload changes significantly. Most of the times,
expensive queries result from new code pushes where develop-
ers forget to create supporting secondary indexes beforehand.
It is evident from Figure 4 that AIM’s runtime is signif-
icantly lower compared to other state-of-the-art algorithms.
Therefore, we naı̈vely achieve continuous tuning by running
AIM periodically. Continuous tuning has resulted in savings
of approximately 2% CPU capacity required for serving OLTP
workloads with roughly 31% of the improved queries resulting
in at least an order of magnitude improvement. Adopting
features like controllable overhead and phased index profiling
from advanced continuous tuning algorithms like Colt [32]
will be addressed by future work.

VII. SUPPORTING COMPONENTS

A. Continuous statistics export

The fault tolerant MySQL offering at Meta [33] replicates
databases across multiple machines. Read queries are served
by one of the many available replicas. Therefore, statistics

need to be gathered from all of these machines and aggregated
to get a holistic view of the workload for a given database. This
is achieved by a daemon process which periodically queries
every single machine running on the fleet and exports it to
Meta’s internal data warehouse. The export is achieved by a
pub-sub system (similar to Apache Kafka [34]) and complex
analytics can be run almost instantaneously.

B. MyShadow

MyShadow framework is a test environment provider which
creates a temporary logical copy of the database (clone) and
can replay traffic from production database instances onto test
instances. This framework plays an important role in catching
significant regressions that are only possible to detect in a
production-like environment. It helps us make sure that there
are no side-effects of running AIM on sensitive production
workloads. The MyShadow framework was used to setup the
experiments presented in section VI. It has the ability to
sample the data and workload being replayed. Therefore, it
is suitable for providing economical test beds.

C. Continuous Regression Detector

The continuous regression detector is an independent pro-
cess that looks for regressions in performance of queries across
the fleet due to query optimizer plan changes. It relies on the
average CPU time consumption by a normalized query over
a period of time. If a regression is detected due to an index
added by automation, it is flagged for removal.

VIII. OPERATIONAL EXPERIENCE AND LESSONS

a) Query optimizer nuances: Our work on AIM gave
us a lot of insight into the tradeoffs that database engines
make when executing queries. The work of Chaudhuri and
Narasayya [3] pioneered the concept of consulting the query
optimizer for index selection. It was a huge step forward but
optimizers (even in mature databases) make lots of mistakes
[35]. There are three interesting aspects to consider. First, the
optimizer might pick a sub-optimal plan which can prevent
usage of beneficial indexes. We have seen several cases in
production where AIM’s index suggestions which offered
significant reduction in query processing cost were rejected
by MySQL’s query optimizer. Second, optimizer switches are
often used to influence the query optimizer plan selection. The
number of candidates generated can be significantly reduced
if candidate generation takes the value of these switches into
account. Features like index skip scan [36], index merge inter-
sections [37] etc. maybe switched off for a subset of databases
due to correctness and performance bugs [38], [39]. Making
the index candidate generation aware of their values improves
the efficiency of the algorithm. Third, most modern algorithms
do not scale well with increasingly complex workloads as a
huge fraction of the runtime is spent making optimizer calls
[14], [25]. In fact, while benchmarking AIM against state-of-
the-art algorithms ( subsection VI-B), we had to set a really
high timeout for DTA when exploring candidates of width
greater than or equal to 3 for TPC-DS and JOB benchmarks.



b) Economics of sharding: Databases that cannot be
served by the resources on a single machine are partitioned
horizontally. Each constituent partition which consists of only
a subset of the data is called a shard. Since our deploy-
ment mandates common physical design across all shards of
a database, the economics of the index selection problem
were adjusted for heavily sharded databases. This is because
the improved queries might not frequently execute on all
consituent shards but each shard has to pay for the storage
and maintenance of all indexes. Similarly, query regressions
which occur on a subset of the shards are difficult to detect in
real-time without comprehensive validation across all shards.
We provide configurable parameters for performance sensitive
databases to perform comprehensive validation and rely on the
continuous regression detection to revert unwanted changes to
the physical design.

c) Compute placement and regression management: The
AIM process does not run on individual database hosts and
a centralized coordinator kicks off the tuning process for a
database if it detects inefficient queries. This setup prevents
compute wastage on the entire fleet. The continuous regression
detector is also an off-host centralized process that serves as
an indispensable protection mechanism because some portions
of the workload may repeat after a very long duration (e.g.
monthly report generation). Therefore, reverting any regres-
sions quickly is of paramount importance and algorithms
which take hours to converge cannot be relied upon.

IX. RELATED & FUTURE WORK

The problem of automatically adding secondary indexes has
been studied since 1970 [40]. A variety of algorithm classes
have been developed over time with varying degrees of produc-
tion readiness. Based on the methodology used for candidate
selection, these algorithms can be broadly classified into two
classes; imperative and declarative [13]. The imperative class
of algorithms either start with an empty configuration and
iteratively add indexes or start with a very large configuration
which is then iteratively reduced. Most of these algorithms rely
heavily on usage of “what-if” indexes [4]. Papadomanolakis
et al. show that index selection algorithms spend 90% of their
runtime in the optimizer, on average [14]. There is also a
significant body of work that tries to reduce the number of
“what-if” calls to the optimizer [14], [41], [42]. The problem is
complicated by the fact that optimizer decisions are sometimes
unreliable [10], [35] and can lead to severe plan regressions
[43], [44].

The occasional shortcomings of the optimizer brings the
focus to the declarative class of algorithms which either
employ machine learning or linear programming. The linear
programming models [25], [45], [46] solve optimization prob-
lems by specifying the optimization goal and constraints as
linear equations. These formulations do not scale well with
the size of the problem [11] and often restrict the solution
space (e.g. restricting index width).

More recently, machine learning algorithms have been uti-
lized for index management [42], [47]–[52]. There are two

common themes across these algorithms. They either use deep
reinforcement learning (DRL) [42], [48], [50], [51] for the
index selection problem or craft a deep learning (DL) model
[52], [53] to improve query cost prediction as compared to the
optimizer.

The problem with DRL algorithms is that they are com-
putationally expensive [31]. They usually rely on a lot of
training data and are not well suited for dynamic workloads
due to their higher runtimes. For e.g., the implementation of
Sharma et al. [48] required 8 hours of training on CPUs for
a small workload like TPC-H [13]. The DL models on the
other hand operate at the query level and are better suited for
analytical queries. Most of these methods do not model the
index maintenance overheads. However, there are many useful
ideas that can be borrowed from machine learning techniques
to AIM, such as training a classifier to predict comparative
performance of execution plans rather than relying on the
optimizer as described by Ding et al [52]. In fact, the technique
described by UDO [51] can be used to build environment spe-
cific benchmarks based on actual query performance since it
generates guaranteed optimal plans via an expensive process.
Furthermore, several avenues to improve cost models of open
source query optimizers based on the utilization of interesting
sort orders [54] have been identified.

AIM’s candidate index selection falls under the imperative
class but it tries to limit its reliance on the query optimizer by
utilizing the structural properties of queries. AIM compromises
on the granularity of the solution in favour of converging really
fast. Since the importance of a query is a subjective attribute,
it is not possible to ascertain it automatically. Therefore, our
approach does not try to explore configurations that are sub-
optimal for constituent normalized queries but optimal for the
overall performance. To the best of our knowledge, relaxation
[28] is the only other modern algorithm which utilizes the
query structure to a significant extent but its approach of
iteratively pruning indexes after starting from a very large
candidate set gives it a prohibitively expensive runtime. Unlike
Relaxation, AIM does not need any extra instrumentation to
the query optimizer.

X. CONCLUDING REMARKS

In this paper, we presented AIM which is an autonomous
index management solution for SQL databases. It works well
for transactional workloads in production and can scale with
increasingly complex workloads. A detailed discussion of the
AIM algorithm proposes a novel way of exploring the search
space of candidate indexes and presents a systematic treatment
of complex join queries for the first time. The compromise
between fast convergence and reduced solution exploration
granularity has been explained thoroughly. The challenges and
lessons learned from the production deployment of AIM have
been shared with the hope that engineers looking to automate
index management on their SQL databases can utilize this
information in their implementations. Experiments described
in the paper compare AIM against DBAs and other modern
algorithms.
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