
Journal of Artificial Intelligence Research 65 (2019) 271-306 Submitted 11/2018; published 06/2019

Probabilistic Planning with Reduced Models

Luis Pineda lpineda@cics.umass.edu
Facebook AI Research, Montreal, QC, Canada

Shlomo Zilberstein shlomo@cics.umass.edu

University of Massachusetts, Amherst, MA, USA

Abstract

Reduced models are simplified versions of a given domain, designed to accelerate the
planning process. Interest in reduced models has grown since the surprising success of
determinization in the first international probabilistic planning competition, leading to the
development of several enhanced determinization techniques. To address the drawbacks
of previous determinization methods, we introduce a family of reduced models in which
probabilistic outcomes are classified as one of two types: primary and exceptional. In
each model that belongs to this family of reductions, primary outcomes can occur an
unbounded number of times per trajectory, while exceptions can occur at most a finite
number of times, specified by a parameter. Distinct reduced models are characterized by
two parameters: the maximum number of primary outcomes per action, and the maximum
number of occurrences of exceptions per trajectory. This family of reductions generalizes
the well-known most-likely-outcome determinization approach, which includes one primary
outcome per action and zero exceptional outcomes per plan. We present a framework to
determine the benefits of planning with reduced models, and develop a continual planning
approach that handles situations where the number of exceptions exceeds the specified
bound during plan execution. Using this framework, we compare the performance of various
reduced models and consider the challenge of generating good ones automatically. We show
that each one of the dimensions—allowing more than one primary outcome or planning
for some limited number of exceptions—could improve performance relative to standard
determinization. The results place previous work on determinization in a broader context
and lay the foundation for a systematic exploration of the space of model reductions.

1. Introduction

Automated planning—the ability to reason about the course of actions necessary to achieve
one’s goals—is the hallmark of intelligence and a core area of AI research. Planning is crucial
for the development of autonomous systems in a wide range of domains, from household
products such as the iRobot’s Roomba vacuum cleaners to space exploration vehicles such
as the Curiosity and Opportunity Mars rovers. A new generation of sophisticated systems
such as autonomous wheelchairs, autonomous robotic tractors, and autonomous cars are
currently under development. As the range of the tasks performed by such systems grows,
so does the complexity of the associated planning problems.

When actions have probabilistic outcomes, they can be modeled using the Markov deci-
sion process (MDP) (Puterman, 1994)—a rich model that has been extensively used by the
AI community for planning (Boutilier & Poole, 1996; Dean, Kaelbling, Kirman, & Nichol-
son, 1995; Kaelbling, Littman, & Cassandra, 1998) and learning (Barto, Bradtke, & Singh,
1995; Sutton & Barto, 1998). Work on MDPs has a long and fruitful history, starting with

c©2019 AI Access Foundation. All rights reserved.

Pineda & Zilberstein

the introduction of the model in the late 1950s and the pioneering work of Bellman (1957)
and Howard (1960). We focus in this paper on planning under uncertainty in autonomous
systems such as mobile robots (Hsu, Latombe, & Kurniawati, 2006; Koenig, Goodwin, &
Simmons, 1996; Thrun, Burgard, & Fox, 2005). However, the results are equally relevant
to other applications of MDPs such as network management (Singh, Alpcan, Agrawal, &
Sharma, 2010), optimizing software on mobile phones (Cheung, Okamoto, Maker, Liu, &
Akella, 2009), and managing water levels of river reservoirs (Petrik & Zilberstein, 2011).

In this work we are concerned with resource-bounded settings, where both planning
time and plan quality must be optimized (Dean & Boddy, 1988; Horvitz, 1987; Russell &
Wefald, 1991; Svegliato, Wray, & Zilberstein, 2018; Zilberstein, 1996, 2011). One paradigm
for planning under time and other resource constraints is to perform a limited amount of
planning online, then execute an action, and then perform more planning during execution
time as needed (e.g., if the current plan fails or new information about the domain is ob-
tained). Actions in that case are selected for execution based on an approximate plan that
may be incomplete. In this context, we are particularly interested in planning with reduced
models—models that are easier to solve and allow the planner to find partial plans very
quickly. Interest in planning with reduced models has a long history, using such principles as
aggregating equivalent states (Dean & Givan, 1997; Givan, Dean, & Greig, 2003; Hostetler,
Fern, & Dietterich, 2014; Petrik & Subramanian, 2014; Ravindran & Barto, 2002), ap-
proximate partitioning of the state space (Dean, Givan, & Leach, 1997), or limiting plan
reachability to a certain envelope (Dean et al., 1995; Trevizan & Veloso, 2014). While re-
duced models are designed to deliberately ignore some aspects of the domain to accelerate
planning, other works have examined ways to handle missing information and known in-
completeness of the domain model (Garland & Lesh, 2002; Nguyen & Kambhampati, 2014;
Nguyen, Kambhampati, & Do, 2013; Weber & Bryce, 2011).

Renewed interest in planning with reduced models was prompted by the surprising suc-
cess of FF-REPLAN (Yoon, Fern, & Givan, 2007) in the 2004 International Probabilistic Plan-
ning Competition (IPPC-04) (Younes, Littman, Weissman, & Asmuth, 2005). FF-REPLAN

employs a simple approach: it creates a deterministic version of the underlying MDP and
solves it using the FF classical planner (Hoffmann & Nebel, 2001), resulting in a partial
plan for the original problem. This partial plan is then executed until an unexpected state
is reached, upon which the planning process repeats using the current state as the ini-
tial state. The main advantage of such determinization-based algorithms is their ability to
leverage the efficiency of classical planners and quickly generate partial plans in domains
where probabilistic planners are too slow. It was surprising, however, that such a simple
approach outperformed an array of competing state-of-the-art MDP solvers, which sparked
substantial research to understand the benefits and alleviate the drawbacks of this approach.

In particular, some have argued that determinization-based algorithms perform poorly in
settings that are probabilistically interesting in some sense (Little & Thiébaux, 2007). This
has led to the introduction of improved determinization-based approaches that produce more
robust partial plans. FF-REPLAN (Yoon et al., 2007) is the most basic of these approaches
that simply solves a deterministic relaxation of the original MDP in an online fashion, with-
out attempting to anticipate future deviations from the plan. FF-HINDSIGHT (Yoon, Fern,
Givan, & Kambhampati, 2008; Yoon, Ruml, Benton, & Do, 2010) uses a hindsight optimiza-
tion approach to approximate the value function of the original MDP by sampling multiple

272

Probabilistic Planning with Reduced Models

deterministic futures that are solved using the FF planner. RFF (Teichteil-Königsbuch,
Kuter, & Infantes, 2010) generates a plan for an envelope of states such that the probabil-
ity of reaching a state outside the envelope is below some predefined threshold. To increase
the envelope, RFF chooses states outside of the current plan and computes actions for these
states using an approach similar to FF-REPLAN. HMDPP (Keyder & Geffner, 2008) intro-
duces the so-called self-loop determinization in order to force the deterministic planner to
generate plans with a low probability of deviations, using a pattern database heuristic to
avoid dead ends.

Despite their partial success, determinization-based algorithms have some inherent draw-
backs, mostly because they typically consider the outcomes of an action in isolation and are
not sensitive to decision-theoretic measures such as expected utility. Consequently, these
techniques can be overly optimistic (Kolobov, Mausam, & Weld, 2010) and can produce
plans that are arbitrarily worse (in terms of solution cost) than the optimal plan. Further-
more, even in cases where optimal plans could actually be obtained using isolated outcomes,
it is not always clear, nor intuitive, which outcomes should be included in the determiniza-
tion. Our goal in this work is to exploit the insights offered by successful methods for
planning with reduced models, while addressing their inherent drawbacks and limitations.

To this end, we introduce a more general paradigm in which an algorithm such as the
single-outcome variant of FF-REPLAN (FFs) (Yoon et al., 2007) is just one extreme point on
a spectrum of MDP reductions that differ from each other along two dimensions: (1) the
number of outcomes per state-action pair that are fully accounted for in the reduced model,
and (2) the number of occurrences of the remaining outcomes that are planned for in
advance. For example, FFs considers one outcome per state-action pair and plans for zero
occurrences of the remaining outcomes in advance (i.e., it completely ignores them). In
contrast, we propose algorithms that fully account for a subset of the original outcomes—
possibly a subset of cardinality greater than one—and consider the remaining outcomes at
most k times in any trajectory found during plan execution.

Our work bears some resemblance to the use of the all-outcomes determinization (Yoon
et al., 2007; Keller & Eyerich, 2011) for probabilistic planning. In this type of determiniza-
tion, a deterministic reduction of the original MDP is created, with the property that each
probabilistic outcome in the original problem is mapped into a deterministic action in the
reduced problem. This type of determinization has the advantage that it is guaranteed to
find a plan with a non-zero probability of reaching a goal, if such a plan exists. However,
the all-outcomes determinization ignores information about the probability associated with
different outcomes, and can therefore choose actions with high probability of leading to
catastrophic outcomes. Instead, our reduced model paradigm allows the planner to use the
full transition model a bounded number of times in each possible trajectory, and to exploit
the differences in probabilities of the remaining outcomes once the bound is reached.

Beyond determinization, other planning approaches have been developed for reduced or
incomplete models. SSIPP (Trevizan & Veloso, 2014), for example, relies on pruning all states
beyond a certain reachable envelope. Other works have examined explicitly the question of
improving plan robustness to known incompleteness of the domain model (Nguyen et al.,
2013). Our work not only explores an entire spectrum of relaxations, but also uses an
evaluation metric that minimizes the comprehensive cost of reaching the goal, including
re-planning cost.

273

Pineda & Zilberstein

Hence, we introduce a new approach for planning with reduced MDP models that gener-
alizes determinization-based algorithms. We begin with the definition of a family of MDP
reduced models, and show how to efficiently solve reduced models using heuristic search
algorithm, such as LAO* (Hansen & Zilberstein, 2001) and LRTDP (Bonet & Geffner, 2003).
We then introduce a continual planning approach that handles situations where the number
of exceptions exceeds the bound during plan execution, and study the theoretical properties
of the resulting plans. In particular, we show how to evaluate the benefits of a particular
reduced model analytically. We then show how to use this evaluation technique to choose a
good determinization, and more generally, how to find good reduced models. In the experi-
mental results section, we show that each of the two model reduction dimensions contribute
significantly to outperforming existing approaches.

2. Problem Formulation

In this section we present the mathematical definition of the probabilistic planning problem,
and formally introduce our proposed model reduction approach.

2.1 Markov Decision Processes

We focus on stochastic shortest-path MDPs (also known as stochastic shortest-path prob-
lems, or SSPs), in which the goal is to minimize the expected cost of reaching a set of
goal states1. An MDP can be defined as a tuple 〈S,A, T , C, s0,G〉, where S is a finite set of
states; A is a finite set of actions; T (s′|s, a) is a stationary transition function specifying the
probability of going to state s′ when action a is executed in state s; C(s, a) is a stationary
cost function that gives the non-negative cost of executing action a in state s; s0 ∈ S is
a given start state; and G ⊂ S is a set of absorbing goal states. Additionally, we assume
that C(s, a) > 0 for any state s /∈ G.

A solution to an MDP is a policy, a mapping π : S → A, indicating that action π(s)
should be taken at state s. A policy π induces a value function V π : S → R that represents
the expected cumulative cost of reaching sg ∈ G by following policy π from state s. An
optimal policy, π∗, is one that minimizes this expected cumulative cost. We also use the
notation V ∗ to refer to the optimal value function.

For an MDP to be well-defined, a policy must exist such that the goal is reachable from
any state (reachable from s0) with probability 1 (i.e., there must be a proper policy). Under
this assumption, an MDP is guaranteed to have an optimal solution, and the optimal value
function is unique. This optimal value function can then be found as the fixed point of the
Bellman update operator:

V ∗(s) = min
a

[C(s, a) +
∑
s′∈S
T (s′|s, a)V ∗(s′)]. (1)

An optimal policy can be extracted from V ∗(s) by choosing greedily with respect to this
value function.

Solving MDPs optimally is often intractable (Littman, 1997), which has led to the de-
velopment of many approximate algorithms, often based on value function approximation

1. While we focus on SSPs for our presentation, the ideas described in this work can also be directly applied
to non goal-based discrete MDPs. Hence, we will use the term MDP throughout this work.

274

Probabilistic Planning with Reduced Models

methods. As indicated above, we focus here on extending recent paradigms to handle the
complexity of MDPs based on determinization—an online planning strategy in which deter-
ministic versions of the MDP are repeatedly constructed and solved using a classical planner.
Next, we define a space of MDP reductions that generalizes the idea of determinization.

2.2 A Broad Spectrum of MDP Model Reductions

We propose a new family of MDP reduced models that are characterized by two key param-
eters: the number of outcomes per action that are fully accounted for, and the maximum
number of occurrences of the remaining outcomes that are planned for in advance. Building
on our earlier work (Pineda & Zilberstein, 2014), we refer to the first set of outcomes as
primary outcomes (those that will be fully accounted for) and to the remaining outcomes
as exceptional outcomes.

We consider factored representations of MDPs—such as PPDDL (Younes et al., 2005)—in
which actions are represented as probabilistic operators of the form:

a = 〈prec, cost, [pa1 : ea1, ..., p
a
m : eam]〉,

where prec is a set of conditions necessary for the action to be executed, cost is the cost
of the action (assumed to be the same in all states), and for each i ∈ {1, ...,m}, pai is the
probability of outcome eai occurring when the action is executed. The transition function
can be recovered from this representation by means of a function τ that maps outcomes
to successor states, so that s′ = τ(s, eai) and T (s, a, s′) = pai . Note that typical MDP
representations, like PPDDL, model actions as parameterized action schemata, each of which
declares a function from objects to a grounded action. We formalize our framework at the
level of grounded actions, although we expect that, in practice, reducing the problem at the
schema level will be more practical (and it is the approach we use in our experiments).

For any action a, let Pa ⊆ {ea1, ..., eam} be the set of its primary outcomes. Given sets Pa
for each action a∈A, we define a reduced version of an MDP that accounts for a bounded
number of occurrences of exceptional outcomes, which we refer to as exceptions. Note that
an exception is any effect that belongs to {ea1, ..., eam} \ Pa.

Formally, a reduced model of an MDP M = 〈S,A, T , C, s0,G〉 is another MDP,
M = 〈S ′,A, T ′, C′, s′0,G′〉, where

• The set of states is defined as S ′ , S × {0, 1, ..., k}, where k is a positive integer;

• The set of actions is the original set, A;

• The transition function is defined by Eqs. (2), (3) and (4) below;

• The cost function is defined as C′(〈s, j〉, a) , C(s, a), for all 〈s, j〉 ∈ S ′ ∧ a ∈ A;

• The initial state is s′0 , 〈s0, k〉;

• The set of goals is defined as G′ , {〈s, j〉 ∈ S ′|s ∈ G}.

The transition function T ′ of the augmented MDP is defined as follows. Given a
state 〈s, j〉, the counter j represents the maximum number of exceptions, per trajectory,

275

Pineda & Zilberstein

that will be accounted for by the planner when computing a plan for 〈s, j〉. When j=0, the
reduced model assumes that no more exceptions can occur, so the new transition function
is:

∀s, a, s′ T ′(〈s, j〉, a, 〈s′, j′〉) ,

{
p′i eai ∈ Pa ∧ j′ = j = 0

0 eai /∈ Pa ∧ j′ = j = 0
, (2)

where we use the shorthand s′ = τ(s, eai) and the set {p′1, ..., p′m} is any set of real numbers
that satisfy

∀i :
(
eai ∈ Pa ⇒ p′i > 0

)
∧

∑
i:eai ∈Pa

p′i = 1. (3)

For states 〈s, j〉 with j>0, the full transition model is used, and the exception counter
is updated appropriately if an exception occurs. Thus, the transition function in this case
becomes:

∀s, a, s′, j, j′ T ′(〈s, j〉, a, 〈s′, j′〉) ,

pai eai ∈ Pa ∧ j′ = j

pai eai /∈ Pa ∧ j′ = j − 1

0 otherwise

. (4)

Note that while the complete state space of a reduced MDP is actually larger than
that of the original problem, the benefit of the reduction is that, for well-chosen values
of k and sets Pa, the set of reachable states can become much smaller. This is desirable
because the runtime of heuristic search algorithms for solving MDPs such as LAO* (Hansen
& Zilberstein, 1998, 2001) and LRTDP (Bonet & Geffner, 2003) depends heavily on the size
of the reachable state space. Furthermore, by changing k and the maximum size of the
sets Pa, we can adjust the amount of uncertainty we are willing to ignore in order to have a
smaller reduced problem. Figure 1 illustrates the pruning effect that can be achieved with
a reduced model.

Building on the formulation presented above, the following definition formalizes the
concept of Mk

l -reductions.

Definition 1 (Mk
l -reduction of an MDP). An Mk

l -reduction of an MDP is an aug-
mented MDP with the transition function defined by Eqs. (2), (3), and (4), where
j ∈ {0, 1, ..., k} and ∀a |Pa| ≤ l.

For example, the single-outcome determinization used in the original FF-REPLAN (Yoon
et al., 2007) is an instance of an M0

1-reduction where each set Pa contains the single most
likely outcome of the corresponding action a.

Note that for any given values of k and l there might be more than one possible
Mk

l -reduction. We introduce the notation M ∈ Mk
l to indicate that M is some instance

of an Mk
l -reduction; different instances are characterized by two choices. One is the set of

specific outcomes that will be labeled primary. The other is how to distribute the proba-
bility of the exceptional outcomes among the primary ones when j = 0—i.e., the choice of
p′i in Eq. (2). In this work we simply normalize the probabilities of the primary outcomes
so that they sum up to one. However, more complex ways to redistribute the probabilities
of exceptional outcomes are possible.

276

Probabilistic Planning with Reduced Models

Using k = 0

s
0

Using k = 1

s
0

Figure 1: Illustration of the pruning effect of an Mk
l -reduction, using two different values

of k. Exceptional outcomes are marked with a red cross and reachable states
are highlighted in green (darker color for those reachable with k = 1 but not
k=0). The value of k can be used to regulate the trade-off between computational
efficiency and plan robustness.

The concept of Mk
l -reductions raises a number of critical questions about its potential

benefits in planning:

1. How should we assess the comprehensive value of anMk
l -reduction? Can this be done

analytically?

2. Considering the space of Mk
l -reductions, is determinization (i.e., M0

1-reduction) al-
ways preferable?

3. In the space of possible determinizations, can the best ones be identified using a simple
heuristic (e.g., choosing the most likely outcome)? Or do we need more sophisticated
value-based methods for that purpose?

4. How can we explore efficiently the space of Mk
l -reductions? How can we find good

ones or the best one?

277

Pineda & Zilberstein

In later sections we answer these questions, showing evidence that an M0
1-reduction

(i.e., a single-outcome determinization) is not always desirable. Furthermore, even when
determinization can provide good (or even optimal) performance, a value-based approach is
needed to choose the most appropriate primary outcome per action. However, before we can
attempt to answer these questions, we need a way to evaluate the benefits of a particular
Mk

l -reduction. In the next section we show how, given k and sets Pa for all actions in the
original MDP, we can evaluate analytically the expected cost of solving the original problem
using plans derived by solving the reduced problem.

3. Planning for More than k Exceptions

A plan generated using a reduction M ∈ Mk
l is likely to be incomplete because more than

k exceptions could occur during plan execution, leading to a state that isn’t included in the
plan. Hence, we propose a continual planning approach that takes advantage of the added
robustness of reduced model plans, such that it can handle a limited number of exceptions
and thereby facilitate uninterrupted plan execution.

The terms continuous planning and continual planning generally refer to system archi-
tectures in which plan generation and plan execution are integrated and performed concur-
rently, in contrast to the more traditional plan-then-execute paradigm (Brenner & Nebel,
2009; Chien, Knight, Stechert, Sherwood, & Rabideau, 2000; desJardins, Durfee, Ortiz,
& Wolverton, 1999; Myers, 1999; Pineda, Takahashi, Jung, Zilberstein, & Grupen, 2015).
Building on these early efforts, our goal is to introduce a continual planning approach for
solving MDPs that is amenable to an analytical evaluation and could provide performance
guarantees. In contrast, early work on continual planning often resulted in complex planning
and execution architectures that are hard to analyze from a theoretical perspective.

To this end, we propose a continual planning strategy specifically designed for Mk
l -

reductions. A high-level version of this approach, named Mk
l -REPLAN, is shown in Algo-

rithm 1. We use the notation P to represent the choice of primary outcomes for a reduction;
that is, a mapping2 P : A → 2{e

a
1 ,...,e

a
m}, relating each action to a set of primary outcomes.

Mk
l -REPLAN relies on function CREATE-REDUCED-MDP, which takes as input an MDP,M,

an initial state, s, the chosen primary outcomes, P, and the exception counter, k; its output
is the corresponding reduced MDP, with initial state s.

Mk
l -REPLAN begins by creating a reduced model (line 1) and solving it optimally (see

COMPUTE-OPTIMAL-PLAN in line 2). This plan is then executed (line 4), and whenever the
exception counter reaches the lower bound, j = 0, the algorithm generates a new reduced
model in line 6 (for reasons explained below) and an optimal plan for this reduced model
(line 7). At this point in execution there will still be an action ready in the current plan, so
we can compute the new plan while simultaneously executing an action from the existing
plan. As long as the new plan is ready when the action finishes executing, plan execution
will resume without delay. Action execution relies on function EXECUTE-ACTION, which
receives the current state and an action, applies this action to the system, and returns the
state reached after the action is executed, updating the exception counter appropriately.

2. This is a slight abuse of notation, since the set of possible outcomes {ea1 , ..., eam} is indexed by action a.
We do this in the interest of readability and make sure that the intended meaning is clear from the
context in the rest of the paper.

278

Probabilistic Planning with Reduced Models

Algorithm 1: Mk
l -REPLAN: A continual planning approach for handling more

than k exceptions

input: M = 〈S,A, T , C, s0,G〉, k, P
1 M ← CREATE-REDUCED-MDP(M, s0,P, k)
2 π ← COMPUTE-OPTIMAL-PLAN(M, 〈s0, 0〉)
3 〈s, j〉 ← 〈s0, 0〉

while s /∈ G do
if j 6= 0 then

4 〈s, j〉 ← EXECUTE-ACTION(〈s, j〉, π(〈s, j〉))
else

5 Create new state ŝ with one zero-cost action â s.t.
∀s′∈S : Pr(〈s′, k〉|ŝ, â) = T (s′|s, π(〈s, j〉))

6 M ← CREATE-REDUCED-MDP(M, ŝ,P, k)
do in parallel

7 π′ ← COMPUTE-OPTIMAL-PLAN(M, ŝ)
8 〈s, j〉 ← EXECUTE-ACTION(〈s, j〉, π(〈s, j〉));
9 π ← π′

10 〈s, j〉 ← 〈s, k〉

Note that, after re-planning, the algorithm sets the exception counter of the current state
to j = k, since the new plan can handle up to k additional exceptions.

There is one complication in this continual planning process. Since the new plan will be
activated from a start state that is not yet known (when the planning process starts), all
the possible start states need to be taken into account, including those reached as a result
of another exception. Therefore, we create a new dummy start state (line 5) that leads via
a single zero-cost action to all the start states we may encounter when the execution of the
current action terminates; we then create a new reduced model using the dummy state as
initial state (line 6).

For the sake of clarity of the algorithm and its analysis, we described a straightforward
implementation where the execution time of one action is sufficient to generate a plan for
the reduced model. When planning requires more time, it may delay the execution of the
new plan. In Section 3.2, we introduce a variant of Algorithm 1 that is designed to address
this specific issue.

3.1 Evaluating the Performance of the Continual Planning Approach

Unlike existing continual planning methods (Chanel, Lesire, & Teichteil-Königsbuch, 2014),
the proposed approach facilitates a precise analytical evaluation of reduced models. Let πk
be a universal plan (Schoppers, 1987) for a reduced model M ∈Mk

l —one that covers every
possible state of the reduced model M . While universal planning is considered impractical
in large domains (Ginsberg, 1989), we are using it here to propose an offline technique to

279

Pineda & Zilberstein

evaluate the performance of the continual planning method in hindsight; finding πk is not
needed when solving a given problem instance using Algorithm 1.

While the continual planning and execution algorithm does not generate a universal
plan, we observe that it always executes actions that agree with πk as it conforms to the
following rule: whenever it reaches a state 〈s, 0〉 (in which no more exceptions will be
considered), it executes πk(〈s, 0〉) and, if the outcome state is s′ (as a result of either a
primary or exceptional outcome), it moves to state 〈s′, k〉 (of the newly generated plan)
and executes πk(〈s′, k〉). This is essentially what the continual planning process does, by
producing online a new partial plan for any outcome of the last action according to the
previous plan.

More formally, this planning and execution approach generates a trajectory of the fol-
lowing Markov chain defined over states of the form 〈s, j〉, with initial state 〈s0, k〉 and the
following transition function, for any s ∈ S, 0 ≤ j ≤ k:

∀s, j, s′, j′ Pr(〈s′, j′〉|〈s, j〉) =

T ′(〈s, j〉, πk(〈s, j〉), 〈s′, j′〉) j > 0

T (s, πk(〈s, j〉), s′) j = 0 ∧ j′ = k

0 otherwise

.

The middle case represents the transition from 〈s, 0〉 to (s′, k), which also indicates the
transition to a new plan. Let VM

cp denote the value function defined over this continual
planning Markov chain with respect to a given reduction M . Then we have:

Proposition 1. VM
cp (〈s0, k〉) provides the expected value of the continual planning and exe-

cution approach for a given reduced model M , when the plan is executed in the original (not
reduced) problem domain.

Existing continual planning methods often involve heuristic decisions about the inter-
leaving of planning and execution, making it necessary to evaluate them empirically. The
ability to derive an exact expected value for the proposed planning and execution approach
makes it easier to compare different reduced models, knowing that the expected value is
not biased by the sampling method.

3.2 An Anytime Version of Mk
l -REPLAN

The structure ofMk
l -reductions can also be leveraged to produce an anytime planner; that

is, a planner that can be interrupted at any point and still have an action ready, producing
better plans with larger allowances of planning time. We refer to this anytime variant
of Mk

l -REPLAN as Mk
l -ANYTIME, which is outlined in Algorithm 2. As in Mk

l -REPLAN,
Mk

l -ANYTIME considers planning in parallel to action execution. However, this new anytime
version does not assume that the execution time of an action is sufficient to generate a new
plan. Instead, the planner can be preempted whenever an action is requested (line 7), and
the agent always chooses an action greedily based on the most recent value estimates (line
4). Note that, as in the case of Mk

l -REPLAN, the algorithm tries to create a plan for the
states that can be encountered after the current action is executed (line 5). But, unlike
Mk

l -REPLAN, the anytime version plans during the execution of every action (as opposed
to only when j = 0), and therefore it always uses the greedy action corresponding to 〈s, k〉.

280

Probabilistic Planning with Reduced Models

Algorithm 2: Mk
l -ANYTIME

input: M = 〈S,A, T , C, s0,G〉, k, P, τ
1 M ← CREATE-REDUCED-MDP(M, s0,P, k)
2 PLAN-FOR-LIMITED-TIME(M, 〈s0, k〉, τ)
3 s← s0

while s /∈ G do
4 a← GREEDY-ACTION(M, 〈s, k〉)
5 Create new state ŝ with one zero-cost action â s.t.

∀s′∈S : Pr(〈s′, k〉|ŝ, â) = T (s′|s, a)
6 M ← CREATE-REDUCED-MDP(M, ŝ,P, k)

do in parallel
7 PLAN-UNTIL-PREEMPTED(M, 〈s, k〉)
8 s← EXECUTE-ACTION(s, a)

4. The Choice of Reduced Model Matters

In this section we show evidence that a careful choice of reduced model can result in policies
that have significantly better cost than policies generated by popular determinization-based
approaches. First, in Section 4.1, we show how this can be accomplished by planning with
more than one primary outcome (i.e., going beyond single-outcome determinization), but
without accounting for the full original model. Second, in Section 4.2, we show that, in
some problems, the choice of primary outcome has a large impact in the quality of resulting
plans, even when using only a single-outcome determinization for planning.

4.1 The Value of Going Beyond Single-Outcome Determinization

The defining property of most determinization-based algorithms is the use of fully determin-
istic models in planning, entirely ignoring what we call exceptional outcomes. In fact, even
the widely used all-outcomes determinization treats each probabilistic outcome as a fully de-
terministic one, completely ignoring the relationship between outcomes of the same action.
Hence, we argue that an M0

1-reduction is not always desirable, and that an M0
l -reduction

with l > 1 could be significantly better for some domains.

To illustrate this point—that determinization could sometimes lead to poor performance
relative to other reduced models—we use a modified version of the racetrack domain (Barto
et al., 1995), a well-known reinforcement learning benchmark. The problem involves a
simulation of a race car on a discrete track of some length and shape, where a starting
line has been drawn on one end and a finish line on the opposite end of the track. The
state of the car is determined by its location and its two-dimensional velocity. The car can
change its speed in each dimension by at most 1 unit, giving a total of nine possible actions.
After applying an action there is a probability pslip that the resulting acceleration is zero,
simulating failed attempts to accelerate/decelerate because of unpredictably slipping on the
track. Additionally, we include a probability per that the resulting acceleration is off by
one dimension w.r.t. the intended acceleration. The goal is to go from the start line to the
finish line in as few moves as possible.

281

Pineda & Zilberstein

o
2

o
5

o
0

o
3

o
4

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
1

o
9

o
6

o
10

o
8

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
7

o
13

o
11

Acceleration in x direction

A
cc

el
er

at
io

n
in

 y
 d

ire
ct

io
n

-1 0 +1

-1

0

+1

o
12

o
14

Group 1
No acceleration

Group 2
Accelerate in

only 1 direction

Group 1
No acceleration

Group 3
Accelerate in 2

directions

Figure 2: Action groups in the racetrack domain: dark squares represent the intended action, gray
squares represent the acceleration outcome associated with slipping, and the light gray
squares represent the remaining outcomes.

|S| VM1
cp 〈s0, 0〉 VM2

cp 〈s0, 0〉 V̂ ao(s0)

small 239 9.22% 5.40% 126.8%

medium 2219 28.18% 7.42% 118.6%

large 24587 48.91% 11.53% 102.8%

Table 1: Comparison of the best determinization (M1) and the best M0
2-reduction (M2) for three

racetrack problems.

To decrease the number of reductions to consider, instead of treating the outcomes of
all nine actions separately, we can group symmetrical actions and apply the same reduc-
tion to all actions in the same group. The racetrack domain has three groups of symmetric
actions: four actions that accelerate/decelerate in both directions, four actions that acceler-
ate/decelerate in only one direction, and one action that keeps the current speed. Figure 2
illustrates these groups of actions and their possible outcomes; for each group, a decompo-
sition is specified by the set of outcomes, relative to the intended outcome (shown in darker
color), that are labeled as primary. In our experiments we used three racetrack problems
of different sizes (see Figure 3).

We compared the following two reductions, M1 and M2:

M1 = min
M∈M0

1

VM
cp (〈s0, k〉) and M2 = min

M∈M0
2

VM
cp (〈s0, k〉);

that is, we compared the best possibleM0
1-reduction (determinization) of this problem, with

its best possible M0
2-reduction. For reference, we also report the expected cost (estimated

using 1000 simulations) of a policy obtained with an all-outcomes determinization of the
problem; we denote this cost as V̂ ao(s0)).

Table 1 shows the increase in cost of these reductions with respect to the optimal ex-
pected cost obtained by solving using the full model. In all of the three tracks considered,

282

Probabilistic Planning with Reduced Models

small track

medium track

large track

goal

start

start

start

goal

goal

Figure 3: Three instances of the racetrack domain.

Primary outcome P01 P02 P03 P04 P05 P06 P07 P08 P09 P10

(not (not-flattire)) 50 50 50 50 50 50 50 50 50 28

(not-flattire) 30 10 4 0 0 0 0 0 0 0

Table 2: Number of successful trials, out of a maximum of 50, using two different M0
1-reductions

on ten TRIANGLE-TIREWORLD problems.

the use of single-outcome determinization resulted in a 9% or higher increase in cost, while
the maximum cost increase for the best M0

2-reduction was less than 12% in all cases. Ad-
ditionally, note that using an all-outcome determinization, which cannot be represented as
an Mk

l -reduction, results in particularly poor performance in this domain. To see why,
consider that under the error model considered in this example, the no-acceleration action
includes a unique low probability outcome for each possible direction the agent can move
to. Thus, for instance, a planner based on the all-outcomes determinization can poten-
tially choose a plan that always decides not to accelerate, since this plan has a non-zero
probability of reaching a goal. Admitedly, there are techniques that can alleviate this issue
(e.g., increasing the cost of actions associated to low probabity outcomes), but the goal of
the previous analysis is to highlight the importance of the choice of reduced model, ceteris
paribus.

4.2 Choosing the Right Outcomes

In some problems determinization works well. That is, the cost of using continual planning
with the best M0

1-reduction may be close to the optimal cost V ∗. However, the choice of
primary outcomes by simply inspecting the domain description may still present a non-
trivial challenge. For example, the commonly used most-likely-outcome heuristic may not
work well.

283

Pineda & Zilberstein

Figure 4: Three instances of the TRIANGLE-TIREWORLD domain. Locations with spare tires
are marked in black (Little & Thiébaux, 2007).

To illustrate this issue we experimented with different determinizations of the
TRIANGLE-TIREWORLD domain (Little & Thiébaux, 2007). This problem involves a car
traveling between locations on a graph shaped like a triangle (see Figure 4). Every time
it moves there is a certain probability of getting a flat tire when the car reaches the next
location (60% in the experiments in this section), but only some locations include a spare
tire that can be used to repair the car. Note that, since the car cannot change its location
when it has a flat tire, this domain has dead-ends. We address this issue using a well-known
technique for planning in this type of problem. In particular, we use a cap on state costs, D,
and modify the Bellman backup operator as follows

V (s) = min
{
D,min

a∈A

{
C(s, a) +

∑
s′∈S
T (s, a, s′)V (s′)

}}
,

which guarantees the convergence of heuristic search algorithms (Kolobov, Mausam, &
Weld, 2012).

This domain has two possible determinizations, depending on whether getting a flat
tire is considered an exception or a primary outcome. Table 2 shows the results (number
of trials reaching the goal) of evaluating the two determinizations on 10 instances of this
domain, using LAO* as the underlying optimal planner (Hansen & Zilberstein, 2001). The
best determinization is undoubtedly the one in which getting a flat tire is considered the
primary outcome. The resulting plan enabled the car to reach the goal in most of the
large majority of simulated rounds (from a maximum of 50 rounds to be solved within a 20
minutes time limit), while the other determinization resulted in complete failure to reach
the goal for (P04 ... P10). Note that the failure of the best planner in problem P10 was
solely due to it not having enough time to find an optimal plan.

As it turns out, the right determinization for this problem is not very intuitive, as one
typically expects for primary outcomes to correspond to the most likely outcome of an

284

Probabilistic Planning with Reduced Models

action or to its intended outcome when it succeeds (the most likely outcome is not having
a flat tire with probability 60%.) This counterintuitive result might lead one to consider
the use of conservative heuristics, labeling the worst-case outcome as primary. Although
this would indeed work very well in the TRIANGLE-TIREWORLD domain, it would perform
poorly in other domains such as the racetrack problem. Additionally, note that an all-
outcomes determinization does not work well in this problem either, as our experimental
results with FF-REPLAN (Section 7.2) show.

To sum up, some determinizations can indeed result in optimal performance, but there
seems to be no all-purpose “rule of thumb” to choose the best one. This suggests that a
more principled value-based approach is needed in order to find a good determinization or a
good reduction in general. We explore two different strategies for choosing reduced models
in Section 6.

5. Algorithms that Directly Leverage Mk
l -Reductions

So far, we have assumed thatMk
l -reductions will be solved optimally using a regular MDP

solver, such as LAO*. However, in some cases it is possible to leverage the structure of a
reduction even further in order to devise more efficient planning algorithms. In this section
we present one such algorithm, specifically tailored to Mk

1-reductions, which employs a
classical planner to accelerate computation for states in which no more exceptions will
be considered, i.e., in which the exception counter j = 0. The main advantage of using
determinization is that it makes it possible to leverage highly efficient classical planners for
the solution of probabilistic problems. As it turns out, we can also incorporate this approach
into our reduced models framework, particularly when using Mk

1-reductions. Note that a
Mk

1-reduction becomes a deterministic problem for any state with exception counter j = 0.
Thus, a classical planner can be used for solving the deterministic parts of the augmented
state space.

To illustrate this idea, we describe a modified version of LAO* that leverages the FF

classical planner (Hoffmann & Nebel, 2001). This solver, FF-LAO* (Algorithms 3-6), receives
as input an Mk

1-reduction, M = 〈S ′,A, T ′, C′, 〈s0, k〉,G′〉—i.e., one where ∀a ∈ A, |Pa| = 1;
an exception bound, k; and an error tolerance, ε. We use M to denote the original MDP
from which M is derived.

FF-LAO* works almost exactly as LAO*3, except that FF is used to compute values and
actions for states that have reached the exception bound—i.e., states of the form 〈s, 0〉.
This occurs in lines 4 and 8 of Algorithm 3, where the state expansion and test conver-
gence procedures are replaced with versions that use FF (Algorithms 4 and 5, respectively).
Readers familiar with LAO* may notice differences with respect to the usual expansion and
convergence test procedures. In particular, note the inclusion of if statements in line 7
(both procedures), where the successors of the expanded state are only added to the stack
if j > 0. The reason is that states 〈s, 0〉 will be solved by calling FF, so there is no need
to expand their successors. It is possible, of course, to remove these if statements and
let FF-LAO* continue the search; in that case, FF will be used as an inadmissible heuristic.

3. We use the so-called improved LAO* algorithm, where the greedy solution graph is searched in depth-
first fashion, and Bellman backups are performed in post-order traversal, both for the state expansion
step and the convergence test step.

285

Pineda & Zilberstein

However, this does not improve the theoretical properties of the algorithm (neither version
is optimal, due to the use of FF), and results in higher computation times, so we prefer the
version shown in the pseudocode.

The actual call to FF is done in Algorithm 6 (FF-BELLMAN-UPDATE). This procedure
performs a Bellman update, as in Eq. (1), for any state 〈s, j〉 with j > 0, and stores
the updated cost estimate and best action in global variables V [〈s, j〉] and π[〈s, j〉], re-
spectively (lines 6-7). We assume, as is common for heuristic search algorithms, that the
values V [〈s, j〉] are initialized using an admissible heuristic for M .

For states 〈s, 0〉, the FF-BELLMAN-UPDATE procedure creates a PDDL file4, denoted as
D, representing the deterministic problem induced by M when j = 0, with initial state s
(CREATE-PDDL in line 3). The procedure then calls FF with input D (line 4) and memoizes
costs and actions for all the states visited in the plan computed by FF (lines 5-7). More
concretely, for each state si visited by this plan, we set V [〈si, 0〉] to be the cost, according
to C ′, of the plan computed by FF for that state (line 6), and set π[〈si, 0〉] to be the corre-
sponding action (line 7). Additionally, note that the estimates V [〈s, 0〉] are not admissible,
even with respect to the input Mk

1-reduction, since FF is not an optimal planner for deter-
ministic problems. Finally, in the case that FF returns failure, we set V [〈s, 0〉] = ∞ and
π[〈s, 0〉] = NOP.

FF-BELLMAN-UPDATE also returns the residual, defined as the absolute difference be-
tween the previous cost estimate, and the estimate after applying the Bellman equation.
This residual is used by FF-TEST-CONVERGENCE to check the stopping criterion of the
algorithm.

Handling plan deviations during execution For the experiments with FF-LAO* we
use a slightly different continual planning approach than the one described in Section 3;
this new approach is illustrated in Algorithm 7. The idea is simple: during execution, check
if the current state has an action already computed with j = k. If that is the case, this
action is executed (line 7). Otherwise, FF-LAO* is called to solve the reduced model with
initial state 〈s, k〉 (lines 5-6). FF-LAO*-REPLAN receives the choice of determinization as
input (P), and creates an Mk

1-reduction accordingly (line 1).

Theoretical considerations We now show conditions under which FF-LAO* is guaran-
teed to succeed. The following definition will be useful: a proper policy rooted at s is one
that reaches a goal state with probability 1 from every state it can reach from s.

Proposition 2. Given an admissible heuristic for the reduced model M , if M has at least
one proper policy rooted at 〈s0, k〉, then FF-LAO* is guaranteed to find one in finite time.

Proof. Whenever FF-LAO* expands a state 〈s, 0〉 and calls FF on this state, if the call
succeeds, the states si, for i ∈ [1, ..., L], that are part of the plan computed by FF essentially
become terminal states of the problem, with final costs set as in line 6 of Algorithm 6; thus,
this induces a new MDP in which the states si, si+1, ..., sL are additional goals. Since FF is
a sub-optimal planner, we have that

∑
i≤x≤LC

′(〈sx, 0〉, ai) ≥ V [〈si, 0〉], and thus the values
of all other states 〈s, j〉, with j > 0, are guaranteed to be admissible with respect to the new
updated value of the added terminal states. In other words, the current value function is

4. In practice, we create the PDDL file representing M before calling FF-LAO* and store its name in
memory. CREATE-PDDL is shown for simplicity of presentation.

286

Probabilistic Planning with Reduced Models

Algorithm 3: FF-LAO*

input: M=〈S′, A, T ′, C ′, 〈s0, k〉, G′〉, k, ε
1 while true do

// Node expansion step
2 while true do
3 visited ← ∅
4 cnt ← FF-EXPAND

(
M, 〈s0, k〉, k, visited

)
5 if cnt = 0 then

// No tip nodes were expanded, so current policy is closed
break

// Convergence test step
6 while true do
7 visited ← ∅
8 error ← FF-TEST-CONVERGENCE

(
M, 〈s0, k〉, k, visited

)
9 if error < ε then

return // solution found

10 if error =∞ then
break // change in partial policy, go back to expansion step

Algorithm 4: FF-EXPAND

input: M=〈S′, A, T ′, C ′, 〈s0, k〉, G′〉, 〈s, j〉, k, visited
1 if 〈s, j〉 ∈ visited then

return 0

2 visited← visited ∪ {〈s, j〉}
3 cnt← 0
4 if π[〈s, j〉] = ∅ then

// Expand this state for the first time
5 FF-BELLMAN-UPDATE

(
M, 〈s, j〉, k

)
6 return 1

7 else if j > 0 then
8 forall 〈s′, j′〉 s.t. T ′(〈s′, j′〉|〈s, j〉, π[〈s, j〉]) > 0 do
9 cnt ← cnt + FF-EXPAND

(
M, 〈s, j〉, k, visited

)
10 FF-BELLMAN-UPDATE

(
M, 〈s′, j′〉, k

)
11 return cnt

admissible with respect to new MDP induced by the solution found by FF. Therefore, after
every successful call to FF, the resulting set of values and terminal states form a well-defined
SSP, which LAO* is able to solve.

Moreover, in the case that a call to FF fails for some state ŝ, this state will be assigned
an infinite cost, and thus the improved version of LAO* will avoid ŝ as long as there is some
other path to the goal. Because FF is complete, any state belonging to a proper policy will

287

Pineda & Zilberstein

Algorithm 5: FF-TEST-CONVERGENCE

input: M=〈S′, A, T ′, C ′, 〈s0, k〉, G′〉, 〈s, j〉, k, visited
1 if 〈s, j〉 ∈ visited then

return 0

2 visited← visited ∪ {〈s, j〉}
3 error← 0
4 a← π[〈s, j〉]
5 if a = ∅ then

// The test reached a state that hasn’t been expanded yet
6 return ∞
7 else if j > 0 then
8 forall 〈s′, j′〉 s.t. T ′(〈s′, j′〉|〈s, j〉, π[〈s, j〉]) > 0 do
9 error ← max

(
error, FF-TEST-CONVERGENCE

(
M, 〈s, j〉, k, visited

))
10 error←max

(
error, FF-BELLMAN-UPDATE

(
M, 〈s, j〉, k

))
11 if π[〈s, j〉] 6= a then
12 return ∞ // the policy changed

13 return error

Algorithm 6: FF-BELLMAN-UPDATE

input: M=〈S′, A, T ′, C ′, 〈s0, k〉, G′〉, 〈s, j〉, k
output: error

1 V ′ ← V [〈s, j〉]
2 if j = 0 then
3 D ← CREATE-PDDL(M, s)
4 {s1, a1, s2, a2, ..., sL, aL} ← CALL-FF(D)
5 for i ∈ {1, ..., L} do
6 V [〈si, 0〉]←

∑
i≤x≤LC

′(〈sx, 0〉, ai)
7 π[〈si, 0〉]← ai

8 else
9 V [〈s, j〉]← minaC

′(〈s, j〉, a) +
∑
〈s′,j′〉 T

′(〈s′, j′〉|〈s, j〉, a)V [〈s′, j′〉]
10 π[〈s, j〉]← arg minaC

′(〈s, j〉, a) +
∑
〈s′,j′〉 T

′(〈s′, j′〉|〈s, j〉, a)V [〈s′, j′〉]

11 return |V [〈s, j〉]− V ′|

be assigned a positive cost, so ŝ could not have been part of a proper policy for M . Thus,
under the conditions of the theorem, every call to FF transforms the problem into an MDP
with avoidable dead-ends (Kolobov et al., 2012), which LAO* is able to solve.

Unfortunately, as is the case for virtually all re-planning algorithms, not much can
be guaranteed about the quality of plans found by FF-LAO*-REPLAN for M. However, as
we show in our experiments, by carefully choosing the input determinization, P, and the

288

Probabilistic Planning with Reduced Models

Algorithm 7: FF-LAO*-REPLAN

input: M=〈S,A, T,C, s0, G〉,P, k, ε
1 M ← CREATE-REDUCED-MDP(M, s0,P, k)
2 s← s0

3 while s /∈ G do
4 if 〈s, k〉 /∈ π then
5 M ← CREATE-REDUCED-MDP(M, s,P, k)
6 FF-LAO*(M,k, ε)

7 s← EXECUTE-ACTION(s, π[〈s, k〉])

bound k, FF-LAO*-REPLAN can find successful policies extremely quickly, even in domains
well-known for their computational hardness and the presence of dead-end states.

6. Learning Good Reduced Models

In this section, we explore the problem of finding good reduced models to use for planning,
with the ultimate objective of producing plans that perform close to optimal when evaluated
on the original problem. We present two approaches, both of which learn a reduction on
a small instance of a target domain, which can then be applied to larger instances of the
domain.

6.1 A Greedy Approach for Learning Reduced Models

The first approach is a greedy algorithm for finding a model M ∈ Mk
l with a low cost

VM
cp (〈s0, k〉) for some given k and l. The main premise of the approach is that problems in a

given domain share some common structure, and that the relative performance of different
Mk

l -reductions generalizes across different problem instances. Although this is a strong
assumption, experiments we report in Section 7 confirm that it works in practice.

Given k and l, every reduction M ∈ Mk
l is uniquely determined by the mapping

PM : A→ 2{e
a
1 ,...,e

a
m}, which associates every action with the set of its primary outcomes.

Since outcomes are indexed by the action they are associated to, this mapping can also be
uniquely represented as a set EM ≡

⋃
a∈A PM (a), so that ea ∈ EM =⇒ ea ∈ PM (a). Using

this notation, finding a goodMk
l -reduction amounts to solving the following combinatorial

optimization problem:

max
EM⊆E

−VM
cp (〈s0, k〉), E ≡

⋃
a∈A

outcomes(a)

s.t. ∀a ∈ A, 1 ≤ |{e : e ∈ EM ∩ outcomes(a)}| ≤ l.
(5)

This optimization problem is particularly hard to solve due to two complications. First,
it is possible that some reductions M introduce dead-ends even if the original MDP had
none. This can happen, for example, if all the outcomes that can make progress towards the
goal are outside the set of primary outcomes, and the only path towards the goal requires
the occurrence of more than k of these outcomes. Second, as we show below, the maximized
objective function is not submodular (Nemhauser, Wolsey, & Fisher, 1978), making it harder

289

Pineda & Zilberstein

to develop a bounded approximation scheme. A function f : 2W → R, where W is a finite
set, is submodular if for every A ⊆ B ⊆W and e ∈W \B, the following diminishing returns
property holds (Krause & Golovin, 2014),

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B).

Submodular functions are attractive because they lead to good approximate greedy maxi-
mization algorithms. Unfortunately, as mentioned above, the objective function described
by Eq. (5) is not submoduar, as the following proposition shows.

Proposition 3. The function f(EM) , −VM
cp (〈s0, k〉) is not submodular.

Proof. We provide an example contradicting submodularity, using the MDP shown in Fig-
ure 5. Consider two M0

2-reductions M1 and M2, where EM1 = {eA1 , eB1 , eB2 } and
EM2 = {eA1 , eB2 }. It is not hard to see that f(EM1) = f(EM2) = −51, since both reduc-
tions result in action B being chosen, with a resulting expected cost of 51. Now consider
adding outcome eA2 to both EM1 and EM2 . Let ρe(S) = f(S ∪ {e})− f(S). Then we have
ρeA2

(EM1) = −19 + 51 = 31, since action A is chosen under EM1 ∪ {eA2 }—i.e., the full

model—with expected cost of 19, while ρeA2
(EM2) = 0, since action B is still chosen under

EM2 ∪{eA2 }. But this implies that ρeA2
(EM2) < ρeA2

(EM1) and EM2 ⊂ EM1 , which contradicts
submodularity.

Similar counterexamples can be constructed for larger values of k. Intuitively, lack of
submodularity results because the benefit of adding a particular outcome to the reduction
might not become evident unless some other outcomes had been previously added. Nev-
ertheless, we have found empirical evidence that a simple greedy approach works well in
practice, despite the difficulty in obtaining a bound with respect to optimal solution of the
combinatorial optimization problem described in Eq. (5).

Our method, described in Algorithm 8, starts with M equal to the full probabilistic

model, and iteratively removes from EM the outcome e that minimizes V M̂
cp (〈s0, k〉) (the

expected cost of the induced continual planning approach); M̂ represents the reduced model
resulting after removing e from M . In the pseudo-code, the best outcome to remove is
denoted as eαbest, where α is the action this outcome is associated to. This process is
continued as long as: (1) the maximum number of primary outcomes is larger than the
desired l (lines 19 and 21), and (2) the relative increase in expected cost with respect to
the value of the full model is lower than some threshold (line 21).

goalstart

cost =100

cost =10

cost =95

cost =5

e1
A

e2
A

e1
B

e2
B

P(e1
A
)=0.1

P(e2
A
)=0.9

P(e1
B
)=0.5

P(e2
B
)=0.5

Figure 5: Example showing that −VM
cp (〈s0, k〉) is not submodular. Actions A and B have cost 1.

290

Probabilistic Planning with Reduced Models

We use VALUE-ITERATION to compute V M̂
cp (〈s0, k〉), as doing so requires a universal plan

(see Section 3.1). Therefore, during this greedy process we also discard any reduction that
makes the problem unsolvable (line 12), thereby ensuring that the value VM

cp (〈s0, k〉) remains
well-defined. A reduction becomes unsolvable if any state of the model is a dead-end (i.e.,
a state from which no policy can reach the goal) under that reduction, and it is solvable
otherwise.

To check if a reduction M̂ is solvable, we perform a strongly connected component
analysis on a modified version of M̂ . Specifically, we add an artificial initial state, s̄0, and
an action, ā, and modify the transition function so that T ′(s′|s̄0, ā) = 1

|S′| for all s′ ∈ S′. In
other words, s̄0 leads to all states in the reduced model with equal probability. Furthermore,
we modify the transition function so that T (s̄0|sg, a) = 1 for all states sg ∈ G′, that is, goals
transition back to the artificial initial state.

As it turns out, it is easy to detect dead-ends in M̂ by performing a strongly connected
component analysis on the all-outcomes determinization of this new problem (e.g., using
Tarjan’s algorithm (Tarjan, 1972)). If M̂ has no dead-ends, then this modified problem will
have a single component. Conversely, if there is more than one component in the problem,
then there must be a dead-end state. To see why no dead-ends implies a single component,
note that having goals connected back to s̄0 implies that any state with a path to the goal
is strongly connected to s̄0; the converse is easily proven from the same observation. Note
that we added s̄0, rather than connect the goal with the initial state, because computing

V M̂
cp (〈s0, k〉) requires a universal plan for the reduction, rather than one that covers only

those states reachable from 〈s0, k〉.
Obviously, this greedy approach could be costly in terms of computation time, since ev-

ery evaluation of the objective function involves computing a universal plan for the reduced
model, and for k > 0 this is in fact more costly than solving the original problem using value
iteration. In order to overcome this difficulty, the greedy approach is meant to be applied
to relatively small problem instances that can be solved quickly, allowing the planner to
learn a good reduced model for the domain. The underlying assumption is that if a small
problem instance captures the relevant structure of the domain, then a good reduction for
this instance generalizes to larger problems.

6.2 Learning a Good Determinization

The second approach is specifically targeted towards learning a good single-outcome de-
terminization, although its main idea can be directly applied in learning Mk

l -reductions.
The approach is motivated by the observation that many stochastic domains have inherent
structures that make some of their determinizations significantly more effective than others.
As illustrated in Section 4.2, one such domain is the TRIANGLE-TIREWORLD problem (Little
& Thiébaux, 2007), where the optimal policy can be obtained by planning as if a flat tire
will always occur. The interesting part is that this is true for all instances of this problem,
regardless of size.

TRIANGLE-TIREWORLD is a great example of a domain where all problem instances
share a probabilistic structure that can be captured by a single-outcome determinization.
In practical terms, this means that it is possible to learn a determinization on the smaller
problems, and then use it for solving larger ones. Moreover, one advantage of learning

291

Pineda & Zilberstein

Algorithm 8: GREEDY-LEARN: A greedy method for finding good reduced models

input: MDP problem M = 〈S,A, T , C, s0,G〉, k, l, τ
output: Reduced model M

1 EM ←
⋃
a∈A outcomes(a)

2 M ← Mk
l -reduction of M with primary outcomes EM

3 Vopt ← VM
cp (〈s0, k〉)

4 while true do
5 Vbest ←∞
6 α← ∅
7 eαbest ← ∅
8 for a ∈ A do
9 for ea ∈ (outcomes(a) ∩ EM) do

10 Ê ← EM \ {e}
11 M̂ ← CREATE-REDUCED-MDP(M, s0, Ê , k)

12 if SOLVABLE(M̂) ∧ V M̂
cp (〈s0, k〉) < Vbest then

13 Vbest ← V M̂
cp (〈s0, k〉)

14 α← a
15 eαbest ← ea

16 if Vbest =∞ then
17 break // Removing any outcome makes problem unsolvable

18 EM ← EM \ {eαbest}
19 lmax ← maxa |outcomes(a) ∩ EM |
20 M ← CREATE-REDUCED-MDP(M, s0, EM , k)

21 if
(Vbest−Vopt

Vopt

)
> τ ∧ lmax ≤ l then

22 break

determinizations over more complexMk
l -reductions is that it is easier to enumerate all the

possible determinizations of a domain, and that each of these can be solved much faster
(e.g., by using FF-LAO*-REPLAN).

Building on these observations, Algorithm 9 illustrates LEARNING-DET, a brute-force
approach to learn a determinization P for problem D. Given an input Ml, representing
the problem used for learning, this procedure does a comprehensive search over the space
of all of the domain’s determinizations, at the level of parameterized action schemata. For
each, we estimate the probability of success (Pi) and the expected execution cost (Ci) of
executing a continual planning approach (e.g.,Mk

l -REPLAN or FF-LAO*-REPLAN) on Ml; the
costs and probabilities are estimated using Monte-Carlo simulations. Finally, we pick the
determinization with the lowest expected cost, among the ones with the highest probability
of success.

There are some subtleties involved in this process. Note that both of the continual
planning approaches described here assume that there is a proper policy for the given
problem. This will most likely not be the case for many of the determinizations explored

292

Probabilistic Planning with Reduced Models

Algorithm 9: LEARNING-DET

input: D,Ml = 〈S,A, T,C, s0, G〉, k
output: P

1 {P1, ...,Pµ} ← Create all possible determinizations of D
2 forall i ∈ {1, ..., µ} do
3 M ← CREATE-REDUCED-MDP(Ml, s0,Pi, k)
4 Estimate probability of successs and expected cost of a continual planning

approach with input M , k

5 P ∗ ← maxi Pi
6 P ← Pmini Ci s.t. Pi=P ∗

by LEARNING-DET; in fact, under some determinizations the goals might be completely
unreachable from any state. To circumvent this, we use the same technique we described
in Section 4.2, where a cap is put on the maximum cost that can be assigned to a state.
While this introduces a new parameter impacting the planner’s decisions, and hides the true
impact of dead-end states, note that LEARNING-DET still attempts to maximize the multi-
objective evaluation criterion typically used when unavoidable dead-ends exist (Kolobov
et al., 2012; Steinmetz, Hoffmann, & Buffet, 2016).

7. Experimental Results

In this section we present experiments for evaluating the performance of Mk
l -REPLAN and

Mk
l -ANYTIME (Section 7.1), and FF-LAO*-REPLAN (Section 7.2). We also evaluate the

accuracy of our strategies for learning reduced models: the greedy approach described
in Section 6.1 (evaluated in Section 7.1), and LEARNING-DET, described in Section 6.2
(evaluated in Section 7.2)5.

7.1 Evaluating Mk
l -REPLAN

We evaluate the use of our continual planning approach, Mk
l -REPLAN with several re-

ductions of the racetrack domain, and compare their performance with LAO* using the full
transition model; we also use LAO* to solve the reduced models.6 For the racetrack problem,
we used pslip = 0.1 and per = 0.05 (see description in Section 4.1). We evaluateMk

l -REPLAN

using two possible sets of primary outcomes, one with l = 1 and one with l = 2, and val-
ues of k ∈ {0, 1, 2, 3} for each of them; in our discussion we use the notation Mk

l to refer
to the planner using the Mk

l -reduction. In all cases, we used the optimal solution of the
all-outcomes determinization as the initial heuristic, which is admissible for every possible
reduction of the domain.

5. Source code for reproducing these experiments is available at https://github.com/luisenp/mdp-lib.
6. While FF-LAO* is in principle applicable to the racetrack domain, our implementation of the domain

is not represented in PPDDL, thus we do not include results for FF-LAO* in this section. Note that
representing the racetrack domain in PPDDL is somewhat cumbersome, particularly due to the need
for collision detection with walls. Since we later experiment with much larger PPDDL domains, we
conjecture that not much insight would be gained from such an effort.

293

Pineda & Zilberstein

start

G2

G1

G3

Figure 6: An instance of the racetrack domain.

We learned the two sets of primary outcomes using GREEDY-LEARN (Algorithm 8), on
a smaller track with 1,367 states, using k = 0 and τ = 1.05. In the case of l = 2 (i.e.,
at most two primary outcomes), GREEDY-LEARN found that using determinization was
within the desired tolerance (τ); therefore we used the last Mk

2-reduction found such that
at least one action had two primary outcomes. In particular, the Mk

1-reduction used was
the most-likely-outcome determinization (outcomes o0, o6, and o11 in Figure 2), and the
Mk

2-reduction added to that the possibility of slipping when accelerating in one direction
(outcomes o0, o6, o11, and o7 in Figure 2). The racetrack used in our experiments is shown
in Figure 6, which has 34,897 states. We evaluated the planner over the three different goal
configurations shown in the figure.

Table 3 (bottom) shows the total CPU time spent on planning, which includes the time
used to compute an initial plan, as well as the time needed for re-planning. The time
reported is the average taken over 500 simulations (the observed standard error was negli-
gible, so it’s not reported). In the large majority of cases, the planning time is significantly
shorter than the time necessary to plan with the full model; in fact, for values of k = 0 and
k = 1 this time is shorter by multiple orders of magnitude. The only case considered in
which planning with the reduced model is slower corresponds to problem G3, where using
k = 3 was slower than using the full model.

The expected costs of the resulting policies are shown in Table 3 (top), which are com-
puted exactly using the Markov Chain discussed in Section 3.1. Note that planning with
the most-likely-outcome determinization (M0

1), while being extremely fast, always results
in more than 19% increase in cost with respect to the optimal cost (and in one case 34.6%).

294

Probabilistic Planning with Reduced Models

Expected Cost

LAO* M0
1 M1

1 M2
1 M3

1 M0
2 M1

2 M2
2 M3

2

G1 16.03 19.16 16.42 16.19 16.10 18.35 16.35 16.26 16.08

G2 14.96 20.14 15.51 15.12 15.03 19.28 15.40 15.15 15.01

G3 20.00 23.83 20.69 20.30 20.15 24.09 20.51 20.31 20.21

CPU Time

LAO* M0
1 M1

1 M2
1 M3

1 M0
2 M1

2 M2
2 M3

2

G1 7,610 1 26 495 3,640 5 120 1,978 7,285

G2 8,244 1 136 1,309 4,871 2 151 1,138 4,400

G3 6,813 1 126 1,723 8,093 8 489 5,306 18,501

Table 3: Expected cost and average planning time obtained with several reduced models of
the racetrack domain.

Adding a single outcome, without increasing k (M0
2), decreases the expected cost by at

least 5% in two of the problems considered, with marginal increase in total planning time.
Notice, however, that M0

2 resulted in a slight increase in expected cost for problem G3,
which indicates that simply adding an outcome is not guaranteed to result in a better plan.
On the other hand, increasing k generally results in better policies in these experiments, a
trend that is observed in all the problems and with all values of k. With k = 1, the policies
are always within 4% of optimal. With k = 3, the difference with respect to the optimal
cost reduces to less than 1%, even when the underlying model is deterministic (M3

1). Inter-
estingly, for G3, the use of k = 3 results in longer planning times compared with optimal
planning.

The results discussed above offer evidence that Mk
l -reductions can be used to compute

near-optimal plans, and do so orders of magnitude faster than optimal planning under the
full model. However, note that in these experiments the planners were allowed as much
time as needed for planning, which is not necessarily the most practical approach. Indeed,
a standard setting encountered in the planning literature is to study the performance of
a planner when there is only a limited window of time available for planning before each
action.

To this end, we also evaluatedMk
l -ANYTIME (Algorithm 2) using the same set of race-

track problems illustrated in Figure 6, assuming a fixed time per action ranging from 0.05
seconds to 6.4 seconds (increased in multiples of 2). We used the LRTDP algorithm (Bonet
& Geffner, 2003) as the underlying optimal planner, since it has better anytime properties
than LAO*. The results for the best performing reductions are shown in Figure 7, along
with the results obtained using the full model. The plots show the expected costs obtained
with all the reductions, averaged over 10,000 simulations, along with error bars representing
95% confidence intervals.

295

Pineda & Zilberstein

full M1
2 M2

1 M1
1 M0

2+

Figure 7: Anytime performance of severalMk
l -reductions usingMk

l -ANYTIME to solve three
instances of the racetrack problem. From left to right, results corresponding to
G1, G2, and G3 in Figure 6.

296

Probabilistic Planning with Reduced Models

As seen in Figure 7, in the large majority of scenarios the best anytime performance was
obtained using k = 1, both with one and two primary outcomes (planners M1

1 and M1
2,

respectively). Planner M1
1, in particular, significantly outperformed all other planners for

all times lower or equal to 200 milliseconds per action. Planners M1
2 and M2

1 were able to
perform better when the time increased, and for times of 800 milliseconds per action, or
higher, the performance of M1

1, M1
2, and M2

1 was comparable (M2
1 was slightly better in

problems G2 and G3, but not at the 95% significance level). On the other hand, planning
with the full model required much larger times per action in order to result in comparable
performance (at least 3.2 seconds per action), and its performance was much worse than
the other models for lower times. Note that Figure 7 does not include the results for M0

1,
and M0

2. We did not include these results to maintain clarity in the figure, but note that
the observed performance matched that shown in Table 3 (a straight horizontal line), which
was worse than all other planners considered. Unlike the more complex models, using k = 0
meant that the planner could not take advantage of having more time per action, when
available.

Interestingly, to address some of the downsides of choosing a low value of k, we exper-
imented with a variant of Mk

l -ANYTIME that leverages labels produced by an algorithm
like LRTDP. In particular, when a plan is about to be computed (line 7 of Algorithm 2),
instead of using 〈s, k〉, the new algorithm checks for the lowest value of j ≥ k such that
〈s, j〉 has not been previously labeled as solved, and uses 〈s, j〉 as the initial state for plan-
ning. When picking an action (line 4 of Algorithm 2), the algorithm uses the best action
associated with 〈s, j′〉, where j′ ≥ k is the highest value such that 〈s, j′〉 has been labeled as
solved; if no such value exists, then it uses a greedy action on 〈s, k〉. This means that the
planner can continuously increase k throughout execution in order to compute more robust
plans. As it turns out, this strategy is effective, and the results are illustrated in the plot
labeled as M0

2+. While the results are not better than those of the other reduced models
considered, the approach has good anytime performance, and may be a good choice when
it is not clear what a good value for k is.

7.2 Evaluating FF-LAO* on IPPC’08 Benchmarks

In this section we evaluate FF-LAO* on a set of challenging PPDDL problems. Note that,
while Mk

l -REPLAN is in principle applicable to the domains considered in this section,
the scale of the problem instances is such that even their determinizations are difficult to
solve optimally in a short amount of time. On the other hand, FF-LAO* circumvents this
complexity by leveraging a classical planner, thus we focus the following discussion in on
the performance of this algorithm.

7.2.1 Domains and Methodology

We evaluated FF-LAO* and LEARNING-DET on a set of problems taken from IPPC’08 (Bryce
& Buffet, 2008). Specifically, we used the first 10 problem instances of the following four
domains: TRIANGLE-TIREWORLD, BLOCKSWORLD, EX-BLOCKSWORLD, and ZENOTRAVEL.
Unfortunately, the rest of the IPPC’08 domains are not supported by our PPDDL parser
(Bonet & Geffner, 2005). Additionally, we modified the EX-BLOCKSWORLD domain to avoid
the possibility of blocks to be put on top of themselves (Trevizan & Veloso, 2014).

297

Pineda & Zilberstein

Domain Chosen Determinization

TRIANGLE-TIREWORLD The car always gets a flat tire (p = 0.5)

EX-BLOCKSWORLD

Blocks detonate when trying to put them on the
table (p = 0.4), but they do not detonate when
trying to put them on another block (p = 0.9)

BLOCKSWORLD

Actions PICK-UP and PUT-TOWER-ON-BLOCK fail
(p = 0.25 and p = 0.9, respectively), and all other
three actions succeed (p = 0.75, p = 0.75, p = 0.1)

ZENOTRAVEL
All five complete actions succeed (p = 0.5, p = 0.25,
p = 1/25, p = 1/15, p = 1/7)

Table 4: Determinizations learned by LEARNING-DET on IPPC’08 benchmarks.

The evaluation methodology was similar to the one used in past planning competitions:
we give each planner 20 minutes to solve 50 rounds of each problem (i.e., reach a goal state
starting from the initial state). Then we measure its performance in terms of the number of
rounds that the planner was able to solve during that time. All experiments were conducted
on an Intel Core i7-6820HQ machine running at 2.70GHz with a 4GB memory cutoff.

We evaluated the planners using the MDPSIM (Younes et al., 2005) client/server pro-
gram for simulating SSPs, by having planners repeatedly perform the following three steps:
1) connect to the MDPSIM server to receive a state, 2) compute an action for the received
state and send the action to the MDPSIM server, and 3) wait for the server to simulate the
result of applying this action and send a new state. A simulation ends when a goal state is
reached, when an invalid action is sent by the client, or after 2500 actions have been sent
by the planner.

We compared the performance of FF-LAO* with our own implementations of FF-REPLAN

and RFF, as well as the original author’s implementation of SSIPP (Trevizan & Veloso, 2014).
We evaluated two variants of FF-REPLAN, one using the most likely outcome determiniza-
tion, MLO, (FFS) and another one using the all-outcomes determinization, AO, (FFA). For
RFF we used MLO and the Random Goals variant, in which before every call to FF, a ran-
dom subset (size 100) of the previously solved states are added as goal states. Additionally,
we used a probability threshold ρ = 0.2. The choice of these parameters was informed by
analysis in the original work (Teichteil-Königsbuch et al., 2010). For SSIPP we used t = 3
and the hadd heuristic, parameters also informed by the original work (Trevizan & Veloso,
2014).

For FF-LAO*, we learned a good determinization to use by applying LEARNING-DET on
the first problem of each domain (p01), with k = 0. This choice of k was motivated both
by time considerations, and by the rationale that k = 0 should better reflect the impact of
each determinization (since FF-LAO* becomes a fully determinization-based planner). We
used a dead-end cap D = 500 throughout our experiments. We initialized values with
the non-admissible FF heuristic (Bonet & Geffner, 2005). The learned determinizations,
and their probabilities under the original model, are listed in Table 4. Note that these
determinizations do not correspond to a single one-size-fit-alls rule, such as most-likely- or
least-likely-outcomes.

298

Probabilistic Planning with Reduced Models

A diverse range of behaviors can be observed in these determinizations. In
TRIANGLE-TIREWORLD, the best determinization induces a conservative policy, while in
ZENOTRAVEL an optimistic model is a better choice. This is not surprising, since nega-
tive outcomes in ZENOTRAVEL are not catastrophic, so ignoring them does not have the
large impact it would have in TRIANGLE-TIREWORLD; we emphasize that the choice of
reduction was determined automatically by LEARNING-DET, without using any prior do-
main knowledge. For EX-BLOCKSWORLD and BLOCKSWORLD the chosen determinizations
present a mix between low and high probability outcomes, some desirable and some not. In
EX-BLOCKSWORLD the chosen determinization pushes the planner towards favoring blocks
on the table (as support of other blocks), which is a less risky behavior.

We ran LEARNING-DET offline, prior to the MDPSIM evaluation. Note, however, that
the time taken by the brute force search plus the time used to solve problem p01 with the
chosen determinization was, in all cases, well below the 20 minute limit (approx. 2 minutes
in the worst case). The remaining parameter for FF-LAO* is the value of k. We report the
best performing configuration in the range k ∈ [0, 3], which was k = 0 for most domains,
with the exception of EX-BLOCKSWORLD, which required k = 3. Note that FF-LAO* with
k = 0 is essentially equivalent to FF-REPLAN, so any advantage obtained over FFS and FFA

is completely derived from the choice of determinization.

7.2.2 Results and Discussion

Figure 8 shows the number of successful rounds obtained by each planner in the benchmarks.
In general, FF-LAO* either tied for the best, or outperformed the baselines. All planners
had a 100% success rate in BLOCKSWORLD, so there is not much room for comparison.

In the TRIANGLE-TIREWORLD domain, FF-LAO* and FFS had 100% success rate, while
RFF ran out of time in the last 3 problems. On the other hand, the performance of SSIPP and
FFA deteriorated quickly as the problem instance increased. It is worth pointing out that the
performances of FFS and RFF in this domain are quite sensitive to tie-breaking—there are
only two outcomes to choose from, each occurring with 0.5 probability. As the results of FFA

suggest, a different choice would have resulted in a much worse success rate. On the other
hand, the use of LEARNING-DET gets around this issue by automatically choosing the best
determinization to use, a process that took seconds. While we do note that the best goals
parameterization of RFF gets around this issue, its computational cost is much harder, so it
is not obvious that it would actually improve performance in this case (Teichteil-Königsbuch
et al., 2010).

In the EX-BLOCKSWORLD domain, FF-LAO* (with k = 3) and SSIPP significantly outper-
form the other two planners, solving 252 and 250 rounds, respectively, against 187 for both
FFS and RFF, and 200 for FFA. Interestingly, in this domain the determinization found by
LEARNING-DET is not sufficient to obtain good performance; in fact, only 3 problems had a
non-zero success rate with k = 0. This highlights the utility of doing probabilistic reasoning
with FF-LAO*. Although not shown in the figure for the sake of clarity, the performance of
FF-LAO* with k = 1 (214 successful rounds) was already better than most of the baselines,
except for SSIPP.

In ZENOTRAVEL, FF-LAO* and FFA were remarkably better than the other two planners:
they achieved 100% success rate in all domain instances, while the other baselines failed

299

Pineda & Zilberstein

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
triangle-tireworld

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
ex-blocksworld

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
blocksworld

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10
0

25

50
zenotravel

RFF FFs FFa SSiPP FF-LAO*

Figure 8: Number of solved rounds by 5 different planners in IPPC’08 benchmarks.

almost all of the rounds. In the case of the determinization-based planners, this is due to the
goal becoming unreachable under MLO, so the choice of determinization has a significant
impact on performance.

Finally, we also tried to perform a comparison with FF-H+, a state-of-the-art planner
based on hindsight optimization that has been shown to outperform RFF on the IPPC
benchmarks (Yoon et al., 2010). Unfortunately, we were not able to obtain or replicate the
code and thus we report results for FF-H+ from the original paper. While this means that
our results are not directly comparable, they still provide some useful insights. In particu-
lar, the results obtained by FF-LAO* appear to be comparable to those reported for FF-H+

on the same domains. Considering a maximum of 30 rounds per problem, as reported for
FF-H+ in (Yoon et al., 2010), FF-LAO* was able to solve 1,078 rounds successfully, under
a time limit of 20 minutes per problem instance (30 rounds each). Conversely, FF-H+ is
reported to have solved 1,084 instances—at most—using a 30 minute limit per instance;
note that the reported planning times for FF-H+ are higher than 20 minutes in all cases,
except for TRIANGLE-TIREWORLD. In general, the results suggest that FF-LAO* can obtain
comparable success rate, with potentially less overall planning time. With the caveat men-
tioned earlier, this comparison suggests that it is beneficial to plan with determinizations
that are automatically tailored to the specific characteristics of a domain.7

7. The results reported in (Yoon et al., 2010) are not broken down by problem instance. Since they ex-
perimented on 15 problem instances for each domain, rather than 10, as we did, we have computed

300

Probabilistic Planning with Reduced Models

8. Conclusions

We introduce a spectrum of MDP reduced models that can help reduce planning time and
improve the overall performance of stochastic planning algorithms, when the cost of planning
is taken into consideration. Each reduced model is characterized by two parameters: the
maximum number of primary outcomes per action and the maximum number of exceptional
outcomes in the plan. We show that reduced models can accelerate planning by orders of
magnitude. We also introduce a continual planning approach that generates new plans in
parallel to plan execution when the number of exceptions reaches the maximum allowed.
A benefit of this approach is that it is amenable to an exact analytical evaluation of the
benefits of planning with reduced models.

Some commonly used determinization approaches are instances of this spectrum of re-
ductions, with one primary outcome per action and zero exceptional outcomes. We show
that reduced models with either more than one primary outcome per action or with some
exceptional outcomes (or both) can be beneficial, producing significantly higher compre-
hensive value relative to the best possible determinization.

We also investigate how to generate a good reduced model, be it a determinization or not,
showing that the choice of primary outcomes is non-trivial, even when reductions are limited
to determinization. To address the challenge of choosing the set of primary outcomes, our
work introduces and evaluates a greedy algorithm that can produce good reduced models
automatically, with the results indicating that performance can be improved relative to a
baseline determinization technique, or to directly solving the original model. These results
extend previous work demonstrating the value of model simplification in reinforcement
learning (Ravindran & Barto, 2002) and planning under uncertainty (Dean et al., 1997;
Dean & Givan, 1997; Givan et al., 2003). In particular, they place work on determinization
in a broader context and lay the foundation for further work to increase the benefits offered
by planning with reduced models.

There are a number of aspects of our approach that can be further improved. We are
exploring better ways to redistribute the probabilities of exceptional outcomes among the
primary outcomes based on various measures of structural similarity of the outcomes (e.g.,
similarity in outcome states or their values). Additionally, there is potential in extending
our continual planning approach to handle a more diverse set of strategies, such as re-
planning as soon as the first exception occurs, rather than waiting for k exceptions. In fact,
planning could even start before any exception happens, simply by projecting the most
likely exceptions to happen and planning ahead just in case, as in the continual computation
framework (Horvitz, 2001). Finally, we are developing more efficient ways to explore the
space ofMk

l -reductions and find good ones, for example, by using sampling to estimate the
regret of labeling an outcome as primary. These promising research avenues will further
increase the impact of planning with reduced models.

the maximum possible number of successful rounds obtained in the first 10 problems as rounds =
min{300, rounds}.

301

Pineda & Zilberstein

Acknowledgments

We thank Kyle Wray and Sandhya Saisubramanian for their helpful feedback and sugges-
tions on earlier versions of this work. This work was supported by the National Science
Foundation Grants No. IIS-1405550 and IIS-1524797.

References

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, 72, 81–138.

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

Bonet, B., & Geffner, H. (2003). Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling, pp. 12–21, Trento, Italy.

Bonet, B., & Geffner, H. (2005). mGPT: A probabilistic planner based on heuristic search.
Journal of Artificial Intelligence Research, 24, 933–944.

Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable
decision processes using compact representations. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 1168–1175, Portland, Oregon.

Brenner, M., & Nebel, B. (2009). Continual planning and acting in dynamic multiagent
environments. Autonomous Agents and Multi-Agent Systems, 19 (3), 297–331.

Bryce, D., & Buffet, O. (2008). Sixth international planning competition: Uncertainty part.
In Proceedings of the Sixth International Planning Competition (IPC’08).

Chanel, C. P. C., Lesire, C., & Teichteil-Königsbuch, F. (2014). A robotic execution
framework for online probabilistic (re)planning. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling, pp. 454–462,
Portsmouth, New Hampshire.

Cheung, T. L., Okamoto, K., Maker, F., Liu, X., & Akella, V. (2009). Markov decision
process (MDP) framework for optimizing software on mobile phones. In Proceedings
of the Seventh ACM International Conference on Embedded Software, pp. 11–20.

Chien, S., Knight, R., Stechert, A., Sherwood, R., & Rabideau, G. (2000). Using iterative
repair to improve responsiveness of planning and scheduling. In Proceedings of the
Fifth International Conference on Artificial Intelligence Planning and Scheduling, pp.
300–307, Breckenridge, Colorado.

Dean, T., & Boddy, M. (1988). An analysis of time-dependent planning. In Proceedings
of the Seventh National Conference on Artificial Intelligence, pp. 49–54, Saint Paul,
Minnesota.

Dean, T., & Givan, R. (1997). Model minimization in Markov decision processes. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp. 106–
111, Providence, Rhode Island.

Dean, T., Givan, R., & Leach, S. (1997). Model reduction techniques for computing ap-
proximately optimal solutions for Markov decision processes. In Proceedings of the

302

Probabilistic Planning with Reduced Models

Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 124–131, Provi-
dence, Rhode Island.

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A. (1995). Planning under time
constraints in stochastic domains. Artificial Intelligence, 76, 35–74.

desJardins, M. E., Durfee, E. H., Ortiz, C. L., & Wolverton, M. J. (1999). A survey of
research in distributed, continual planning. AI Magazine, 20 (4), 13–22.

Garland, A., & Lesh, N. (2002). Plan evaluation with incomplete action descriptions. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence, pp. 461–
467, Edmonton, Alberta.

Ginsberg, M. L. (1989). Universal planning: An (almost) universally bad idea. AI Magazine,
10 (4), 40–44.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model minimization in
Markov decision processes. Artificial Intelligence, 147 (1–2), 163–223.

Hansen, E. A., & Zilberstein, S. (1998). Heuristic search in cyclic AND/OR graphs. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 412–
418, Madison, Wisconsin.

Hansen, E. A., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129 (1-2), 35–62.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14 (1), 253–302.

Horvitz, E. (1987). Reasoning about beliefs and actions under computational resource
constraints. In Proceedings of the Third Conference on Uncertainty in Artificial In-
telligence, pp. 429–444, Seattle, Washington.

Horvitz, E. (2001). Principles and applications of continual computation. Artificial Intelli-
gence, 126 (1-2), 159–196.

Hostetler, J., Fern, A., & Dietterich, T. (2014). State aggregation in Monte Carlo tree search.
In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp.
2285–2292, Quebec City, Canada.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. MIT Press.

Hsu, D., Latombe, J.-C., & Kurniawati, H. (2006). On the probabilistic foundations of
probabilistic roadmap planning. International Journal of Robotics Research, 25 (7),
627–643.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101, 99–134.

Keller, T., & Eyerich, P. (2011). A polynomial all outcome determinization for probabilistic
planning. In Proceedings of the Twenty-First International Conference on Interna-
tional Conference on Automated Planning and Scheduling, pp. 331–334. AAAI Press.

Keyder, E., & Geffner, H. (2008). The HMDPP planner for planning with probabilities.
In Bryce, D., & Buffet, O. (Eds.), ICAPS Third International Probabilistic Planning
Competition. IPPC’08.

303

Pineda & Zilberstein

Koenig, S., Goodwin, R., & Simmons, R. G. (1996). Robot navigation with Markov models:
A framework for path planning and learning with limited computational resources.
In Dorst, L., Lambalgen, M., & Voorbraak, F. (Eds.), Reasoning with Uncertainty
in Robotics, Vol. 1093 of Lecture Notes in Computer Science, pp. 322–337. Springer
Berlin Heidelberg.

Kolobov, A., Mausam, & Weld, D. S. (2010). Classical planning in MDP heuristics: With a
little help from generalization. In Proceedings of the Twelfth International Conference
on Automated Planning and Scheduling, pp. 97–104, Toronto, Canada.

Kolobov, A., Mausam, & Weld, D. S. (2012). A theory of goal-oriented MDPs with dead
ends. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp.
438–447, Catalina Island, California.

Krause, A., & Golovin, D. (2014). Submodular function maximization. In Tractability:
Practical Approaches to Hard Problems, pp. 71–104. Cambridge University Press.

Little, I., & Thiébaux, S. (2007). Probabilistic planning vs. replanning. In Proceedings of
the ICAPS’07 Workshop on the International Planning Competition: Past, Present
and Future.

Littman, M. L. (1997). Probabilistic propositional planning: Representations and complex-
ity. In Proceedings of the Fourteenth National Conference on Artificial Intelligence,
pp. 748–754, Providence, Rhode Island.

Myers, K. L. (1999). CPEF: A continuous planning and execution framework. AI Magazine,
20 (4), 63–69.

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for
maximizing submodular set functions–I. Mathematical Programming, 14 (1), 265–294.

Nguyen, T. A., & Kambhampati, S. (2014). A heuristic approach to planning with in-
complete STRIPS action models. In Proceedings of the Twenty-Fourth International
Conference on Automated Planning and Scheduling, pp. 190–198, Portsmouth, New
Hampshire.

Nguyen, T. A., Kambhampati, S., & Do, M. B. (2013). Synthesizing robust plans un-
der incomplete domain models. In Proceedings of the Neural Information Processing
Systems, pp. 2472–2480, Lake Tahoe, Nevada.

Petrik, M., & Subramanian, D. (2014). RAAM: The benefits of robustness in approximating
aggregated MDPs in reinforcement learning. In Proceedings of Neural Information
Processing Systems, pp. 1979–1987, Montreal, Canada.

Petrik, M., & Zilberstein, S. (2011). Linear dynamic programs for resource management. In
Proceedings of the Twenty-Fifth Conference on Artificial Intelligence, pp. 1377–1383,
San Francisco, California.

Pineda, L., Takahashi, T., Jung, H.-T., Zilberstein, S., & Grupen, R. (2015). Continual
planning for search and rescue robots. In Proceedings of the IEEE-RAS Fifteenth
International Conference on Humanoid Robots, pp. 243–248, Seoul, Korea.

Pineda, L., & Zilberstein, S. (2014). Planning under uncertainty using reduced models:
Revisiting determinization. In Proceedings of the Twenty-Fourth International Con-

304

Probabilistic Planning with Reduced Models

ference on Automated Planning and Scheduling, pp. 217–225, Portsmouth, New Hamp-
shire.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA.

Ravindran, B., & Barto, A. G. (2002). Model minimization in hierarchical reinforcement
learning. In Proceedings of the 5th International Symposium on Abstraction, Refor-
mulation and Approximation, pp. 196–211, Kananaskis, Alberta.

Russell, S. J., & Wefald, E. (1991). Principles of metareasoning. Artificial Intelligence,
49 (1-3), 361–395.

Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable environments.
In Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
pp. 1039–1046, Milan, Italy.

Singh, J. P., Alpcan, T., Agrawal, P., & Sharma, V. (2010). A Markov decision process based
flow assignment framework for heterogeneous network access. Wireless Networks,
16 (2), 481–495.

Steinmetz, M., Hoffmann, J., & Buffet, O. (2016). Revisiting goal probability analysis
in probabilistic planning. In Proceedings of the 26th International Conference on
Automated Planning and Scheduling.

Sutton, R. S., & Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA.

Svegliato, J., Wray, K. H., & Zilberstein, S. (2018). Meta-level control of anytime algo-
rithms with online performance prediction. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, pp. 1499–1505, Stockholm,
Sweden.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1 (2), 146–160.

Teichteil-Königsbuch, F., Kuter, U., & Infantes, G. (2010). Incremental plan aggregation
for generating policies in MDPs. In Proceedings of the Ninth International Conference
on Autonomous Agents and Multiagent Systems, pp. 1231–1238, Toronto, Canada.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press, Cambridge,
MA, USA.

Trevizan, F. W., & Veloso, M. M. (2014). Depth-based short-sighted stochastic shortest
path problems. Artificial Intelligence, 216, 179–205.

Weber, C., & Bryce, D. (2011). Planning and acting in incomplete domains. In Proceedings
of the Twenty-First International Conference on Automated Planning and Scheduling,
pp. 274–281, Freiburg, Germany.

Yoon, S. W., Fern, A., & Givan, R. (2007). FF-Replan: A baseline for probabilistic planning.
In Proceedings of the Seventeenth International Conference on Automated Planning
and Scheduling, pp. 352–359, Providence, Rhode Island.

305

Pineda & Zilberstein

Yoon, S., Fern, A., Givan, R., & Kambhampati, S. (2008). Probabilistic planning via de-
terminization in hindsight. In Proceedings of the Twenty-Third National Conference
on Artificial Intelligence, pp. 1010–1016, Chicago, Illinois.

Yoon, S., Ruml, W., Benton, J., & Do, M. B. (2010). Improving determinization in hind-
sight for online probabilistic planning. In Proceedings of the Twentieth International
Conference on Automated Planning and Scheduling, pp. 209–216, Toronto, Canada.

Younes, H. L. S., Littman, M. L., Weissman, D., & Asmuth, J. (2005). The first probabilistic
track of the international planning competition. Journal of Artificial Intelligence
Research, 24 (1), 851–887.

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI Magazine, 17 (3),
73–83.

Zilberstein, S. (2011). Metareasoning and bounded rationality. In Cox, M., & Raja, A.
(Eds.), Metareasoning: Thinking about Thinking, pp. 27–40. MIT Press.

306

