Constraining Dense Hand Surface Tracking with Elasticity

BREANNAN SMITH, Facebook Reality Labs Research
CHENGLEI WU, Facebook Reality Labs Research

HE WEN, Facebook Reality Labs Research

PATRICK PELUSE, Facebook Reality Labs Research
YASER SHEIKH, Facebook Reality Labs Research
JESSICA K. HODGINS, Facebook Al Research
TAKAAKI SHIRATORI, Facebook Reality Labs Research

Fig. 1. A subject brings her hands together, bends her middle fingers, pivots her hands around this region of contact, intertwines her remaining fingers,
and wiggles her middle fingers. Top row: Input images. Bottom row: Our tracking results. Our approach is able to track through the significant amount of

self-contact and and self-occlusion induced by this two-handed performance.

Many of the actions that we take with our hands involve self-contact and
occlusion: shaking hands, making a fist, or interlacing our fingers while
thinking. This use of of our hands illustrates the importance of tracking
hands through self-contact and occlusion for many applications in com-
puter vision and graphics, but existing methods for tracking hands and
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faces are not designed to treat the extreme amounts of self-contact and self-
occlusion exhibited by common hand gestures. By extending recent advances
in vision-based tracking and physically based animation, we present the
first algorithm capable of tracking high-fidelity hand deformations through
highly self-contacting and self-occluding hand gestures, for both single
hands and two hands. By constraining a vision-based tracking algorithm
with a physically based deformable model, we obtain an algorithm that is
robust to the ubiquitous self-interactions and massive self-occlusions exhib-
ited by common hand gestures, allowing us to track two hand interactions
and some of the most difficult possible configurations of a human hand.
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1 INTRODUCTION

Hands are essential in our daily life: we use our hands to manipulate
and interact with the world around us, and we also communicate
with our hands, using non-verbal gestures to transmit, clarify, and
emphasize our ideas and thoughts during conversation. Our hands
are suited to both these functions due to their high degree of ar-
ticulation, which leads to dexterity for manipulation and a high
bandwidth for communicating information. However, it is precisely
due to this high degree of articulation that hands exhibit frequent
incidence of occlusion. This occlusion may be caused by contact
with other objects, other parts of the body, and often with other
parts of the hand itself. Indeed, if you consider where your hands
are right now, they are almost certainly in contact with something.
It is rare that hands are in a state where they are not in significant
contact with another object.

It is for this reason that precisely tracking hand motion in the
presence of significant contact and occlusion is a core—perhaps the
core—challenge in analyzing and synthesizing hand behavior. Tech-
nically, this challenge presents as the problem of precisely tracking
two deformable surfaces undergoing dynamic contact. Visual obser-
vations do not fully constrain the deformation and obtaining precise
ground truth in these interactions is nearly impossible.

Addressing this problem will enable the production of more im-
mersive and engaging digital doubles, will help add lifelike realism
to characters in movies, and will unlock new forms of interaction
modalities in virtual and augmented reality. The ability to track
hands with a high degree of fidelity under self-contact and self-
occlusion will also help in understanding subtle non-verbal gestures
and human-human interactions in the social sciences, as well as
enable new applications in medicine and physical rehabilitation. It
will provide data for ideation, training, and validation for dexterous
humanoid manipulators.

Many efforts have targeted hand tracking via methods that achieve
varying degrees of visual and skeletal fidelity. Most existing ap-
proaches utilize generic skeleton-based models, e.g., linear blend
skinning (LBS) approaches [Taylor et al. 2016; Tan et al. 2016; Tay-
lor et al. 2017] and MANO-based approaches [Romero et al. 2017;
Mueller et al. 2019; Hasson et al. 2019; Baek et al. 2019]. While these
approaches can replicate a hand’s geometry by estimating a skeletal
pose, they are not able to reproduce the true detail and fine-grained
surface deformations of a hand, particularly when the fingers and
palm deform as they interact with one another. While this issue can
be alleviated by developing higher-fidelity hand models, the lack of
a high-fidelity hand surface tracker impedes progress. At the same
time, image-based tracking techniques have delivered high-fidelity
dense correspondences for face tracking [Beeler et al. 2011; Wu
et al. 2018]. These techniques are difficult to apply directly to hands,
however, because unlike the face, hands significantly self-interact
and self-occlude in many common poses, making image- and depth-
based approaches less effective. These problems grow even more
apparent when we consider two interacting hands.

Fortunately, the deformation of the human hand is governed by
the laws of physics, suggesting that a physically based approach
has the potential to circumvent these challenges and allow us to
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achieve highly detailed and high fidelity deformations for dense
hand surface tracking under self-contact and self-occlusion.

In this paper, we present a new method to track dense hand sur-
faces to a high degree of fidelity from multi-view image sequences
using a physically based model. Specifically, we constrain the so-
lution space of a vision-based tracking algorithm with an elastic
volume deformation model and a collision response model, regu-
larizing the entire hand geometry and deforming occluded regions
of the hand stably and plausibly. The remaining visible regions are
tracked based on visual data from multi-view cameras. To the best
of our knowledge, our method is the first to track details such as
creasing, bulging, and deformations under extreme self-contact and
self-occlusion for one and two hand motion sequences.

To constrain a vision-based tracking method with a deformable
physics model, we employ two representations of the hand: a tem-
plate surface mesh and a volumetric tetrahedral mesh. Given an
initialized template mesh, our tracking optimization minimizes pho-
tometric and geometric errors using the vertices of the surface mesh,
while the entire hand geometry is regularized using an elastic de-
formation energy and a penetration avoidance term defined on the
tetrahedral mesh. To enable communication between these repre-
sentations, we impose a coupling term during the optimization pro-
cedure. We employ an optimization method that alternates [Bezdek
and Hathaway 2003] between minimizations of the vision-based
terms with the physics terms frozen, and minimizations of the
physics terms with the vision-based terms frozen. This alternat-
ing procedure allows us to employ state-of-the-art optimization
techniques for vision-based tracking and physically based simu-
lation, thus effectively minimizing the total energy. Our method
successfully tracks challenging poses and motion sequences for a
single hand and for two interacting hands, even with large occluded
areas, over multiple individuals with varying appearances.

2 RELATED WORK

We survey the hand tracking literature and summarize the current
state of the art in tracking with deformable elastic simulations,
highlighting the techniques most closely related to ours.

Hand Surface Tracking. Human hands, due to their structure and
range of motion, are surprisingly difficult to densely track, demon-
strating self-similarity in both geometry and appearance and ex-
periencing self-occlusions by the fingers and the palm. A majority
of hand tracking works focus on estimating skeletal poses with
or without geometry. We refer readers interested in pose tracking
alone (i.e., estimating 3D joint positions or angles from visual data)
to [Yuan et al. 2018]. We will focus primarily on hand surface track-
ing here. We further delineate our work from the existing dense
hand tracking literature by noting that we focus on tracking hands
to the highest possible fidelity with a multi-view capture system.
For recent, state-of-the-art results on dense hand tracking with a
monocular system, we refer readers to [Ge et al. 2019].

With a surface deformation model, a low-dimensional parameter-
ized space is estimated so that the hand geometry can be obtained
from the deformation model. Many existing approaches incorpo-
rate linear blend skinning, which deforms a mesh based on a linear
combination of rigid transformations of associated bones, on top of



various skeletal representations, including geometric primitives [Ia-
son Oikonomidis and Argyros 2011], a sphere-mesh [Tkach et al.
2016, 2017], and a set of 3D Gaussians [Sridhar et al. 2013]. This
representation can produce reasonable deformations for articulated
objects if skinning weights are carefully designed, making it suitable
for hand surface tracking [Taylor et al. 2016; Tan et al. 2016; Taylor
et al. 2017]. More recently, Romero et al. augmented an LBS-based
hand model with statistical identity- and pose-dependent geomet-
ric correctives, leading to a system they name MANO [Romero
et al. 2017]. The MANO model has been used to track hands in
scenarios including two-hand interactions [Mueller et al. 2019],
hand-object interactions [Hasson et al. 2019] and in-the-wild single
color images [Baek et al. 2019]. These existing approaches are fully
constrained by the underlying models, however, and often fail to
replicate subtle details of hand geometry like creases and bulging.

Different than these works, our method takes the first step to-
wards densely estimating hand surface correspondences in scenarios
with heavy self-contact and self-occlusion. Dense correspondence
techniques have made great recent progress in tracking faces [Beeler
et al. 2011; Fyffe et al. 2015; Wu et al. 2018; Fyffe et al. 2017], of-
ten targeted at driving visual effects for films [Beeler et al. 2014].
These methods are specifically designed for capturing facial per-
formances, however, which is a simpler setting than hands as the
face encounters minimal self-occlusions and self-collisions. Our
method takes the first strides towards using physically based laws
to estimate dense correspondences for highly occluded and heavily
self-colliding objects like hands, where existing approaches would
fail.

Applying physics to hand surface tracking to preserve physical
correctness, conserve volume, and avoid penetration is a challeng-
ing task. Some hand tracking approaches tackle the problem of
penetration avoidance by detecting collisions using a sparse set of
proxy spheres [Oikonomidis et al. 2011], approximate proxy geome-
tries [Tzionas et al. 2016], sphere-meshes [Tkach et al. 2017] and 3D
Gaussians [Mueller et al. 2019]. Unlike existing approaches we do
not approximate penetration testing, instead using the full degrees
of freedom of a tetrahedralized hand model to avoid penetration.
We also consider physical properties of human tissue, including in-
compressibility, which existing tracking approaches neglect. These
considerations allow us to reproduce physically plausible deforma-
tions under contact, which existing methods can not achieve.

Tracking with Deformable Elastic Simulations. Deformable elas-
tic simulations have been employed in both reconstruction and
tracking applications. Notable early works simulate ‘symmetry-
seeking’ 3D elastic models embedded in force fields defined by
image intensity gradients to reconstruct [Terzopoulos et al. 1987]
and track [Terzopoulos et al. 1988] cylindrically-shaped objects. A
similar technique simulates 2D quasistatic elastic splines to track im-
age contours using forces derived from user constraints and image
intensity gradients [Kass et al. 1988]. In the context of reconstruc-
tion, Szeliski et al. [1991] derive conditions under which minimizing
a quasistatic elastic model subject to constraints from a sensor is
equivalent to imposing the elastic model as a prior on a probabilistic
model. This work further derives a sequential tracking algorithm
by designing a Kalman filter where a deformable elastic simulation
is used as the system model. Schulman et al. [2013] derive a similar

Constraining Dense Hand Surface Tracking with Elasticity « 219:3

probabilistic approach to track rods and flat sheets of material. Sub-
sequent work expands on the Kalman filter approach [Metaxas and
Terzopoulos 1993], tracking a torso and arms using a low resolu-
tion deformable elastic surface. In the context of full body tracking,
de Aguiar et al. [2008] use a volumetric tetrahedral mesh with an
as-rigid-as-possible (ARAP) deformation model [Sorkine and Alexa
2007] and constraints derived from SIFT features and silhouettes
to obtain an initialization for a surface-based tracking algorithm.
This work does not handle self-collisions and recent work [Smith
et al. 2018] has shown that ARAP and its co-rotational extension
produce unacceptable artifacts when used to model human flesh,
making this technique less than ideal for modeling a hand. A similar
method instead performs an initial pass of surface tracking with a
data term and surface regularizer followed by a solve with a volumet-
ric tetrahedral mesh and a linear elastic model to improve tracking
quality in unobserved regions [Wuhrer et al. 2015]. Linear elasticity
is not suited for modeling large deformations [Miiller et al. 2002],
however, and this work is thus forced to reinitialize the mesh’s rest
state at each frame, leading to artificial plasticity and limiting the
method to small deformations. Barrielle et al. [2016] derive forces
from and drive simulations with linear combinations of blendshapes
and optimize for sets of blendshape weights that make the resulting
simulation most closely match face tracking results computed from
sparse surface correspondences. While blendshapes are well suited
for animating faces [Lewis et al. 2014], even with rigid transforms
factored off hands experience massive nonlinear local changes in
shape, making direct applications of linear blendshapes difficult.

We are heavily inspired by and draw from the rich literature on
tracking with deformable simulations, but to track a highly artic-
ulated and deformable object like a hand through self-occlusion
and self-contact, we will necessarily need to treat a degree of non-
linearity not considered in previous works. These non-linearities
are present in both our vision-based tracking formulation, where we
directly enforce a photometric consistency term, and in our deforma-
tion formulation, where we model the hand as a volume-preserving
material that seeks to avoid self-penetration.

3 TRACKING OVERVIEW

In this section, we briefly outline our hand surface tracking algo-
rithm before discussing each component in depth in Section 4. We
visualize the flow of data through our pipeline in Figure 2.

Data Capture. We first capture a hand in motion using our multi-
view camera system that consists of 124 calibrated cameras with
hardware synchronization, capable of capturing 2668 x 4096 RGB
images at 30 frames per second. We perform all image-based opera-
tions at a base down-sampled resolution of 1334 X 2048 to conserve
memory. A hand is captured at the center of the cameras and lit
uniformly from static LED light sources. After capturing images,
we perform PatchMatch-based multi-view stereo [Galliani et al.
2015] to obtain a 3D scan mesh for every frame. The images and 3D
scan serve as input data to our tracking algorithm. Figure 2 shows
example images from our capture system and a resulting 3D scan.
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Fig. 2. Overview of our dense hand surface tracking method. Starting with 124 images from our multi-view capture system for the current frame we compute
keypoints and a 3D scan mesh with PatchMatch multi-view stereo [Galliani et al. 2015]. (a) We then use these keypoints and the 3D scan to predict the
pose of a subject’s hand using a generic hand rig that is skinned through linear blend weights (Section 4.2). (b) We then use this pose estimate, along with a
linear deformation model computed from tracking results in previous frames (if available) to obtain an initial mesh for warm starting our dense tracking
optimization (Section 4.2). (c) We finally feed the initial surface estimate, the captured images at the previous and current frame, and the 3D scan into our
model-free mesh tracking algorithm, which outputs our final mesh (Section 4.1).

Hand Representation. Similar to existing work on 3D tracking, we
track a hand in motion using a template mesh. In our setting, the
template mesh is a generic surface triangle mesh.

For every subject, we capture both the neutral pose of the hand as
well as multiple motion sequences. Given a 3D scan of the neutral
pose, we manually register the template surface to the scan using the
commercial ZBrush! modeling package, producing a personalized
surface mesh. This step could be further automated by fitting to
an initial scan [Beeler et al. 2011; Wu et al. 2018] or by leveraging
existing commercial solutions?.

After registering the surface mesh, we create a volumetric tetra-
hedral mesh by feeding the personalized surface mesh to the TetGen
library [Si 2015]. Across all subjects we obtain high quality con-
strained Delauny terahedralizations using TetGen, and we are thus
able to directly read off exact correspondences from the personalized
surface mesh to the tetrahedral mesh. We have also successfully
tracked sequences using tetrahedral meshes computed with the
TetWild [Hu et al. 2018] algorithm and inexact correspondences,
but given the similar quality of output from both terahedralization
routines for our meshes, we report results in this work with the
output of TetGen alone.

Tracking Initialization. With personalized surface and tetrahedral
meshes in hand, given a sequence of images and 3D scans, we next
initialize the template meshes for these sequences using a two-
stage, model-based tracking optimization (Algorithm 1). In the first
stage, we deform the template using an LBS model that applies a
skeleton-based transformation to local regions of the hand mesh.

Lhttps://pixologic.com/
https://www.russian3dscanner.com/
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We use a generic embedded skeleton model and skinning weights
designed once by an artist. Per tracking sequence, this generic model
is personalized based on non-rigid registration to several frames
in the beginning of the input sequence. This personalization step
minimizes a geometric error based on the input 3D scan and the
landmark error in a similar fashion to Taylor et al’s method [2016]
(Figure 2a).

In the second stage, we use a region-based linear deformation
model [Tena et al. 2011; Wu et al. 2016] to further match the template
mesh to the image and 3D scan data by optimizing the region-based
model’s parameters and the rigid transformations estimated in the
first stage.

Algorithm 1 Initialize Surface (X!,X'71,...,0% 0'1)

1: X'*! « skeletal Transformation (X‘,0!,071)
22 X'l « PCA Deformations (X!*1, X!, X!71, ..
3. return X!*!

With the surface initialization complete, we warp the tetrahedral
mesh so its surface exactly corresponds to the initialized, person-
alized surface triangle mesh (Figure 2b). Section 4.2 describes the
initialization step in detail.

Constraining Tracking with an Elastic Physical Model. After ini-
tializing the template, we track across a sequence by solving an
optimization at each frame that includes vision-based energies, a
deformable elastic energy, and an energy to couple the two rep-
resentations. This optimization alternates between refinements of
surface vertex positions using the input data and updates of all



Fig. 3. Tracking results for a two-hand American Sign Language sequence.
Throughout this sequence, the subject’s hands execute fast and sudden
motions, change shape dramatically, and come in and out of contact. Our
algorithm successfully tracks the hands in the face of these challenges.

tetrahedral vertex positions using the physics term (Algorithm 2).
The former optimization ensures pixel-accurate locations for visible
vertices of the template mesh, while the latter optimization deforms
invisible vertices in a physically feasible manner while resolving
self-collisions (Figure 2c). The optimization is structured in a man-
ner that ensures a decrease in total combined energy across each
alternating iteration. Section 4.1 describes the details of the energies
and optimization.

Algorithm 2 Track_Frame (X!, X!71,..., ©f,0!71,V?)

1: Xt*1 « Initialize Surface (Xt,Xt_l, .. .,@f,ef—l)

2 VI argmin (Epy (V) + Ejni (XPPLV)) > Init. from V*
\%

3: forh=1,2,...,5do
4: fora=1,2do

> Image res. hierarchy, coarse-to-fine
> Alternating optimization

5: X! argmin(Eyision (X, 1) + Ejini (X, VIT1))
X

6: VI*! — argmin(Ephysics (V) + Elink (X', V)
\%

7: end for

s: end for

9: return X!*1, vi+l

4 METHOD

In this section, we describe our initialization and optimization strate-
gies for hand surface tracking. Note that two hand tracking does
not require special treatment with our algorithm. For two-handed
sequences, we simply concatenate meshes for the left and right
hands and run the same algorithm as the single hand case.

4.1 Optimization for Dense Hand Surface Tracking

We formulate the combination of vision-based tracking and physi-
cally based simulation as an energy minimization problem. Denoting
the surface mesh’s vertices as X and the tetrahedral mesh’s vertices
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as V, the total energy is expressed as:
Etotal = Evision X) + Ephysics V) + Elink X, V). (1

Here Eyision is an image data term, which evaluates the degree to
which the input multi-view data is explained by the 3D surface esti-
mates. This term is computed over the surface template mesh only.
Epnysics is a term that enforces physical plausibility for volumetric
hand deformations. This term is computed over the tetrahedral rep-
resentation. Owing to the use of two separate representations for
our vision and physics terms, we impose an additional term Ejjc
that relates 3D surface positions to their corresponding vertices in
the tetrahedral mesh. In the following, we describe each term in
detail and explain our final optimization strategy for tracking from
frame t to frame ¢ + 1 assuming that tracking for frame t and ini-
tialization for frame ¢ + 1 are completed. Note that the initialization
step is described in Section 4.2.

4.1.1  Vision Tracking Term. Inspired by Wu et al’s method [2018],
we seek to directly optimize vertex positions X‘*! and their surface
orientations R/*! on the surface mesh by minimizing the vision-
based energy Eyision that consists of photo-consistency, geometric
consistency, and surface regularization terms, namely Epp,o, Egeo,
and Eyeg, respectively:

Evision = WphoEpho *+ Egeo + Ereg-

Photo-consistency Terms Epp,. Using a 3D local tangent plane for
each surface vertex as a proxy, we use a homography to transform
an image patch around the 2D projection of X in image I between ¢
and ¢ + 1 to compute Epp,. Unlike faces, the hand can easily execute
rapid rotational motions, influencing the visibility of the vertices
for each view. To compensate for this issue, we develop an adaptive
view selection strategy to appropriately match image patches and
incorporate the selected camera parameters when computing the
homography. Specifically, for vertex X and camera c at frame t, we
compute the viewing angle 6% based on the vertex normal and the
camera view direction. At frame t + 1, given initialized vertex X+l
we compute the viewing angle in the same way for all the cameras,
and choose the camera ¢, that has the closest viewing angle to 6
(see Section 4.2 for initialization). We then compute the homography
H¢ ¢ from the parameters of cameras ¢ and ¢, and from {X*, X**1}
and {R!,R‘*1} at frames t and ¢ + 1. This approach selects image
patches that share similar projective distortion and thus enables
more precise computation of Epp,. Using this view selection strategy
together with enhanced correlation coefficients [Evangelidis and
Psarakis 2008] for robust image error, Epp, is formulated as

Epho = Z Z l//(

v ceC(Xt)
where C(X) is a set of cameras where X is visible in the previous
frame and P is the camera matrix of camera c. Note that I in Epp, is
mean-subtracted. i/(-) is a robust kernel to handle outliers [Zollhéfer
et al. 2014], formulated as

Yle) = min2e’e? /y* + (1 - 0*)?),

I (Pe,XGH)  IL(HG e (PXL))
I e, XD (IEHE  (PXE))]

where y for Epp, is set to 0.1. We use a patch size of 15X15 pixels
for the photo-consistency term.

ACM Trans. Graph., Vol. 39, No. 6, Article 219. Publication date: December 2020.



219:6 « Breannan Smith, Chenglei Wu, He Wen, Patrick Peluse, Yaser Sheikh, Jessica K. Hodgins, and Takaaki Shiratori

Fig. 4. Top row: A subject massages her left palm in a circular motion using her right thumb. As a result, we observe on-surface deformations of the subject’s
flesh. Bottom row: Our tracking results overlaid on the captured images. We are able to successfully track this motion through significant amounts of sustained

self-contact. Notice that we begin to capture surface-level deformations, a result that would be difficult to achieve with a model-based tracking algorithm.
Additional modeling for both skin and friction could capture finer scale creases and folds than we demonstrate here, while techniques from the face tracking

literature could reduce some of the surface drift we observe around the thumb. See Section 6 for a more detailed discussion.

Geometric Consistency Term Egeo. Similar to the geometric con-
sistency terms used for hand surface tracking [Tzionas et al. 2016;
Mueller et al. 2019], we consider point-to-point and point-to-plane
distances for each vertex X on the surface mesh. Given a position
map D rendered from a 3D scan at frame ¢ + 1 for each view c, the
point-to-point distance Ep; is formulated as

Ew=y. > ¢(IXE = DEIRXEI),

vV ceC(XL

while the point-to-plane distance E) is formulated as

Ea=, ». v(Inf - (X5 - DEIRXE) ).

v ceC(XEL)

Here nifz} is the normal of vertex v obtained from the normal map

of DE*1, and y in the robust kernel for Ept and Ej) is set to 5 and 1,
respectively. Finally, Ege, is defined as

Egeo = WptEpt + WplEpl-

Surface Regularization Term Ereg. To avoid the generation of im-
plausible surface shapes in unobserved or textureless regions, we
regularize our surface estimation with a conventional as-rigid-as-
possible (ARAP) [Sorkine and Alexa 2007] term by comparing to
the surface in the previous frame:

Ereg=wa y ., Il = X)) —RIFIXET =X,
v ieN(v)

where wjy is a weight for the ARAP regularization term (set to 0.5),
and N(v) is a set of neighbors of vertex v. Note that, while this term
allows the vision-only optimization stage to handle unseen surfaces,
this surface-only regularization is not sufficient to obtain physi-
cally plausible deformations in highly occluded regions, in highly
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deformed regions, or in regions subject to many self-collisions. See
Figure 10 for detailed comparisons.

4.1.2  Elastic Physics Term. Owing to the failure of the surface-only
term to handle highly occluded and colliding regions, we add an
additional physically based energy to our system. To serve as a
useful physically based model for a hand, a deformation model
should have a few important properties: the model should preserve
volume well [Irving et al. 2007], the model should be minimal in
the sense that it does not over-constrain the solution space, the
model should remain robust in the face of heavy self-collisions and
under large changes in shape, and the model should be suitable for
inclusion in a numerical optimization setting. Smith et al. [2018]
recently demonstrated that Neo-Hookean elastic models satisfy
these properties in the context of body and hand simulation, so
we have selected a variant of Neo-Hookean elasticity as the core
of our physics based energy term. Note that we omit ¢ + 1 in this
section for simplicity, but all physics terms are computed based on
the tetrahedral mesh at frame ¢ + 1 and the neutral state.
A Neo-Hookean energy density can be written as

w
Yoh = 7" (TrFTF - 3) — wy log ] + % log? J.

where w, is the shear modulus, w) is Lamé’s first parameter, F is
the deformation gradient, and J = detF. The deformation gradient F
transforms a frame in an object’s rest configuration to its deformed
configuration, and we can thus see that | measures relative changes
to an object’s volume and that the Neo-Hookean model strongly
penalizes changes in a material’s volume, as desired. We compute
the deformation gradient F per tetrahedron as a linear function
of each tetrahedron’s vertices [Sifakis and Barbi¢ 2012]. The total
internal elastic energy is now given by evaluating the energy density
at each tetrahedron, multiplying by the tetrahedron’s rest volume



Vi, and summing over all tetrahedra according to

Enp = Z Vi¥on (F (%)) .

To handle collisions, we employ a fast, reference-map based
penalty approach [Hirota et al. 2001; Irving et al. 2004; McAdams
et al. 2011; Smith et al. 2018]. We begin by detecting which vertices
of the tetrahedral mesh’s surface x™€™°r are interior by casting a
ray along each vertex’s angle-weighted normal n™€°" [Jin et al.
2005] and tallying the number of ray-face intersections with the
surface, where an odd number of intersections indicates a vertex
is interior. For each interior surface vertex, we compute the non-
incident tetrahedron with which the vertex collides, and using the
barycentric coordinates in this tetrahedron, we compute the interior
position within the rest configuration. We next project this rest in-
terior position to the closest surface face, and using the barycentric
coordinates of the surface face map the position back to the de-
formed pose, giving us an estimated target position for the interior
vertex. As the deformation map is not guaranteed to preserve clos-
est features, we iteratively check neighboring features of the target
position, updating the target position if any features are closer to
the interior point. This process typically terminates in one or two
iterations. This final position x'3"8! is the desired target position of
the interior vertex. In the presence of very large inter-penetrations
(e.g. a finger penetrating more than halfway through another finger),
we have found that this algorithm can produce target positions that
will lead to deeper penetrations. We thus perform an additional
filtering step on top of existing works. Letting § = x'arget _ yinterior
and denoting the surface normal of the target feature as n , we
discard collisions where either § T n'2'8¢t > 0 or § TniMerOT < 0, This
simple filter produces significantly more robust behavior during
fast motion sequences where portions of the hand undergo large
changes in position. We accelerate all ray-surface intersection tests
using the Embree library [Wald et al. 2014], we accelerate point vs.
tetrahedron intersection queries using a fast spatial hash, and we
accelerate point vs. mesh closest point projections using a k-d tree.
Summing over all collisions, we compute the total collision penalty
energy as

target

. . 2
_ target interior
Ecollision = § Weol (Xj - X; )
J

Our complete physics-based energy is now the combination of the
internal Neo-Hookean energy and the collision penalty:

Ephysics = Enn + Ecollision-

While alternative penalty formulations are possible, including
barrier formulations [Harmon et al. 2009], we found this simple
form to work well in practice. Alternative collision detection strate-
gies bring unique advantages, and while our strategy has proven
effective for hand tracking where significant portions of the fingers
can intersect during intermediate stages of the optimization, it is
interesting to consider scenarios in which alternatives could im-
prove results. If the mesh were to experience extreme amounts of
deep self-penetration, a contour-based strategy that first computes
explicit contours of intersection and then computes closest points
between opposing surface patches could prove more robust [Baraff
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et al. 2003]. Alternatively, a method that propagates constraint in-
formation to interior tetrahedral mesh vertices using the mesh’s
connectivity could prove more robust, but at the cost of an extra
propagation step through the colliding volume [Heidelberger et al.
2004]. In performance sensitive applications, image-based strategies
could further accelerate collision detection [Faure et al. 2008], and
are especially appealing for their potential use on the GPU.

4.1.3  Coupling Term Ejj, and Optimization. As our vision term
and physics term act on different representations, we need to link
the representations to reap the benefits of each energy. To achieve
this link, as noted previously, we constrain our tetrahedral mesh
generation step to create a volume mesh V where each surface
vertex of V has an exact correspondence to a vertex in the vision-
based surface representation X. We then define a coupling term that
penalizes deviations in the /2 norm between vertices of the mesh
position X and corresponding surface vertices VS*f of V:

1,2
Blink = Wiink ), X0 = V3|12,
v

We could solve Equation (1) by simultaneously optimizing the sur-
face vertex and tetrahedral vertex positions, but this is a large-scale,
non-convex objective that presents many challenges. Fortunately,
if we consider the physics-based term to be fixed, the remaining
vision terms are readily solved with existing numerical machinery.
Similarly, if we fix the vision-based term, the remaining physics-
based term optimization is equivalent to a quasi-static optimiza-
tion, the solution of which has received significant attention in the
graphics community. We thus employ an alternating optimization
method [Bezdek and Hathaway 2003] to solve the total optimization
by first freezing the tetrahedral physics degrees of freedom and
optimizing the remaining Evigsion + Elink terms, and next freezing
the vision-based surface degrees of freedom and optimizing the
remaining Ejny + Ephysics terms. Alternating in this fashion, if each
stage of the optimization decreases the energy, E;, Will decrease
with each iteration, guaranteeing progress with tracking.

To this end, we first solve the vision system to optimize the surface
mesh X by fixing the tetrahedral mesh V and applying a Gauss-
Newton method, which can be efficiently solved for the large number
of parameters with a GPU-based implementation that computes
the Jacobian matrix of each term in parallel and solves parameter
updates with preconditioned conjugate gradient [Zollhofer et al.
2014]. We then solve the physics system by optimizing V with X
fixed as a data constraint. To optimize the physics-based energy,
we use a projected Newton solver [Teran et al. 2005] with fast
analytical Eigenvalues [Smith et al. 2019] and an inversion-avoiding
line search [Smith and Schaefer 2015] that preserves local injectivity.
As the Hessian is projected to positive-definiteness at each iteration
of the Newton solve, we use preconditioned conjugate gradient to
efficiently solve this system on the GPU. We run this alternating
optimization in a coarse-to-fine manner on an image resolution
hierarchy with 5 layers to capture features across scales and to
improve convergence [Bergen et al. 1992; Bouguet 2001].
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4.2 Tracking Initialization with Deformation Model

As Equation (1) is highly nonlinear, we need to provide a good
initial guess to converge to a good local minimum. For this, we first
build a region-based linear deformation model [Tena et al. 2011; Wu
et al. 2016] and seek to minimize Eyjigjon by model-based tracking,
followed by a solve of the physics system E,, + Ejjnk With Ecollision
disabled.

Given a set of tracked surface meshes, we first uniformly segment
the meshes in UV space, and select up to 10 meshes for each region
as a linear deformation basis via shape similarity analysis. We pa-
rameterize the deformation of each region with 16 parameters: 6 for
rigid transformations and 10 for deformation coefficients. To run
this model-based tracking stably and efficiently, we first optimize
the 6 rigid transformation parameters for each region via LBS-based
tracking, and then optimize all the parameters of all the regions
simultaneously to match to the visual data.

Similar to Taylor et al’s method [2016], the LBS-based tracking
in the first step seeks to minimize the geometric distance between
the 3D scan and the LBS-deformed mesh and the hand keypoint
distance, together with several priors such as smoothness and joint
limits. For the hand keypoints, we use the convolutional pose ma-
chine algorithm [Wei et al. 2016] with the multi-view bootstrapping
training method [Simon et al. 2017]. Note that these hand keypoints
are used only in this initialization step.

Once the LBS-based tracking is complete, we compute a rigid
transformation for each region through Procrustes alignment, and
use these transforms as initial guesses for tracking with the region-
based model. Instead of optimizing the full set of surface vertices X
and their orientations R, this model-based initialization instead opti-
mizes Eyision With respect to this reduced set of degrees of freedom,
a significantly faster procedure.

Finally, we seek to optimize tetrahedral mesh vertices V by min-
imizing E., + Ejjnk via a projected Newton solve to update the
tetrahedral mesh state. Note that during initialization we disable
Eollision, Which in our tests stabilizes the optimization if any surface
mesh vertices initially collide.

If the initial pose is far from the ground truth the photometric
consistency term grows less effective, and the geometric consistency
term is forced to behave in a similar fashion to a non-rigid iterative
closest point formulation to recover the hand’s pose. In this scenario,
more alternating iterations are required to obtain similar quality
results to those we present. We have found that sub-optimal initial-
ization with insufficient iterations can lead to jittering geometry
artifacts and surface level sliding artifacts as the large initial error is
reduced over multiple subsequent frames. Our tests have revealed
more leeway in the linear deformation analysis: while including the
linear deformation bases in the initialization accelerates the first few
iterations of our optimization, capturing the overall pose is much
more important to achieving an artifact-free tracking result.

5 RESULTS

All captures and tracking runs were performed at 30 frames per
second using 124 cameras unless noted otherwise, and all results are
presented at the same frame rate. We ran all tests using six threads
on a 2.2GHz Intel E5-2698 Xeon processor and a single NVIDIA
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Tesla V100 GPU. Please see the supplemental video for footage of
results.

We tuned all of our parameters to achieve high quality tracking
results on one subject, and subsequently found these parameters
to perform well on all other tested subjects and motion sequences.
Additional subject-specific parameter tuning did not materially alter
the quality of the tracking results, and we found our algorithm
to be fairly parameter insensitive. In all tests we set wjj,, = 1 in
Elink, Wpho = 10, wpt = 10, wp) = 1, and wa = 0.5 in Eyjsion, and
Weol = 1250, wy, = 100, and wj = 1000 in Eppysics. Our choices of
wy, and wy correspond to a Poisson’s ratio of ~ 0.455.

We note that setting w), to extreme values can lead to suboptimal
tracking results. Setting w), to excessively large values prevents non-
rigid deformations, in which case the tracking results reduce to a six
degree of freedom rigid alignment of the reference configuration of
the hand to the current configuration. Setting wy, to an excessively
small value results in the hand not faithfully preserving its shape
under large deformations. After bisecting an effective value for wy,
relative to the parameters in Eyigjon, We tuned w) to a large enough
value that preserved volume well without introducing numerical
difficulties.

Robustness over variations in appearance and shape. We tested our
algorithm across eight subjects from young to old, whose hands
vary greatly in size, skin tone, shape, fat content, uniformity of
appearance, and amount of wrinkles. See Figure 5 for results from
five subjects and Figures 1, 3 and 4 for the remaining three subjects.
All subjects moved their hands through a wide range of motions,
across multiple poses, and through varying amounts of self-contact
and self-occlusion, confirming our algorithm’s robustness.

Two hand stress test: intertwined fingers. To stress test our algo-
rithm, we asked a subject to intertwine her fingers in the most
complex fashion she could envision (Figure 1). The subject brought
her hands together, folded her middle fingers against one another
and wedged them between opposing fingers, and proceeded to pivot
her hands 180 degrees about this region of self-contact. With her
hands now oppositely oriented, the subject proceeded to wiggle her
middle fingers while maintaining hand contact before pulling her
hands apart. Despite the significant and sustained self-contact and
the occlusions from one hand to another, our algorithm successfully
tracks this performance. The surface mesh for this test contains
115,618 vertices and 230,912 faces, while the tetrahedral mesh con-
tains 174,615 vertices and 615,703 tetrahedra. Each frame takes, on
average, 788 seconds to track.

Two hand stress test: one hand massaging the other. To further
stress test our algorithm under self-contact, we asked a subject to
vigorously massage one of her hands with the other (Figure 4). The
subject quickly rotated her left hand 90 degrees and grabbed her left
palm with her right hand. With her left hand firmly squeezed by
her right hand, the subject proceeded to massage the entirety of her
lower hand before moving on to squeeze and massage her fingers.
Our algorithm is robust to these sustained periods of strong self-
contacts between two hands. Further observe that in this sequence
our algorithm tracks deformations on the skin surface itself due to
self-collisions. The surface mesh for this test contains 126,327 ver-
tices and 152,372 faces, while the tetrahedral mesh contains 169,239
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Fig. 5. Tracking results obtained by our method for five subjects. Top row: Reference images for all five subjects. Bottom row: Our tracking results overlaid on
the reference images. Observe that our method robustly handles a wide range of hand shapes, ages and appearances. Further observe the range of hand poses
we are able to track, including poses with significant self-occlusions and large numbers of self-collisions. All surface meshes for these subjects contain 57,809
vertices and 115,456 faces. From left to right, each tetrahedralization contains 85,935, 87,569, 85,388, 90,428, and 87,452 vertices, while each tetrahedralization
contains 305,102, 308,512, 300,503, 323,642, and 308,527 tetrahedra. Finally, from left to right the average time to compute a frame for each subject is 457s, 295s,
391s, 542s, and 494s.

vertices and 581,344 tetrahedra. Each frame takes, on average, 843
seconds to track.

Two hand stress test: American Sign Language. To test our algo-
rithm’s robustness to large motions of the hands, in a real-world
example we asked a subject to convey a sentence non-verbally using
American Sign Language (Figure 3). During this capture, the subject
deformed each of her hands significantly while also quickly trans-
lating and rotating the base of her wrist. Throughout this sequence,
the subject brings her hands in and out of contact. The surface mesh
for this test contains 115,618 vertices and 230,912 faces, while the
tetrahedral mesh contains 181,564 vertices and 645,817 tetrahedra.
Each frame takes, on average, 1,284 seconds to track.

Single hand stress test: extreme self-occlusion and self-contact. In
this test, we asked a subject to exercise his hand in a manner that
produced as much self-occlusion and self-contact as possible. The
subject completely tucked his thumb below his fingers so it was
entirely occluded from all views (Figure 6). Even with an entirely
non-visible thumb in contact with all other fingers, our inclusion of
a physically based deformation and collision energy enables a robust
result. As the sequence continued, the subject tightly squeezed his
hand into a fist, brusquely rubbed his fingers against one another,
and squeezed his thumb between his other fingers (Figure 5g/h,
Figure 6), all while his wrist was rotating and translating. Even
with this massive amount of tight self-contact, we are able to track
through the sequence. The surface mesh for this test contains 57,809
vertices and 115,456 faces, while the tetrahedral mesh contains

90,428 vertices and 323,642 tetrahedra. Each frame takes, on average,
542 seconds to track.

Ablation Study. To evaluate the impact of each of our energy terms
on the final tracking results, we track a sequence with multiple vari-
ants of the total energy. We track a sequence with no physics energy
term, with a volumetric ARAP (¥arap = ||[F—R||) deformation term
and no collision term, with a Neo-Hookean deformation term and
no collision term, with no geometric consistency term, and with
no photo-consistency term. See Figure 10. Without a physics term,
after the fingers collide with the base of the hand, extreme artifacts
emerge as the pose relaxes. While the addition of an ARAP term re-
moves the more glaring artifacts, we observe unnatural deformation
in the fingers and joints, where each segment of the finger takes
on a bubble-like appearance. With the addition of a Neo-Hookean
term, the local deformations of the fingers are greatly improved, but
we still observe self-penetration. The addition of our collision avoid-
ance energy resolves the remaining self-penetration, and we observe
good agreement with the reference images. Removing the geomet-
ric consistency term, the fingers assume entirely incorrect poses.
Removing the photo-consistency term, we observe subtle errors in
the surface shape, including unnatural bumps near fingernails. We
note that the photo-consistency term is important for anchoring
tangential motion of the surface and preventing unnatural sliding.
Please see the video for details.

Camera Count Study. While we employ a multi-view capture
system with 124 calibrated cameras, smaller systems can produce
similar quality results. We explore the effect of camera count on

ACM Trans. Graph., Vol. 39, No. 6, Article 219. Publication date: December 2020.
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Fig. 6. A subject closes his hand, tucking his thumb beneath his fingers. Top row: Input images from a fixed camera. Bottom row: Our tracking results overlaid
on the input images. Our algorithm robustly tracks this sequence through extreme occlusions around the thumb and the upper palm, and our algorithm is
robust in the face of sustained collisions between the fingers, the thumb and the palm.

result quality by tracking a sequence with randomly sampled subsets
of cameras from 3 to 124 cameras and comparing the final mesh
to that from tracking with 124 cameras (Figure 7). We observe that
improvement in distance to the 124 camera result flattens at 43
cameras, the camera count at which the hand becomes fully visible.
We further observe that, visually, the 43 camera and 124 camera
results are very similar (Figure 8). We hypothesize that hand-selected
camera subsets designed to maximize coverage would lead to a
flattening of progress even sooner and could reduce the variance in
the maximum distance.

Synthetic Data Tests. The presence of highly occluded and highly
self-colliding regions of the hand complicates ground truth data
collection, as these regions are by definition not visible. While al-
ternative sensor types, including those in personalized glove form
factors [Glauser et al. 2019a,b], can provide data in difficult to im-
age regions, we require higher resolution data than these sensors
currently provide, and worse, the presence of these sensors changes
the behavior of the underlying physical system we are trying to
measure. To that end, we instead use a synthetic, animated hand
mesh sequence as a source of ground truth to study our proposed
formulation Ejgy,).

We animated a pre-purchased, off-the-shelf hand mesh and rig to
move from an open hand pose to a closed fist pose over 45 frames
and rendered this sequence in V-Ray® at 1334 x 2048 resolution using
45 virtual cameras corresponding to a subset of those in our capture
system. See Figure 9 for example images from this synthetic capture
system. Finally, given these images of a synthetic capture session,

3https://www.chaosgroup.com/
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Tracking Convergence with Camera Count
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Fig. 7. As we increase the number of cameras used to track a sequence, we
measure the maximum (pink diamond), average (blue circle), and minimum
(green triangle) vertex distance to the result obtained with 124 cameras.
After 43 cameras, progress flattens noticeably and we obtain similar meshes
to the 124 camera result.

we ran our complete hand tracking pipeline for each variant of the
formulation from our ablation study, producing a mesh sequence
for each variant of the formulation.

We summarize the results of this synthetic capture session in
Table 1. For each algorithm variant, we report the average and
standard deviation of the per-vertex distances between the final
tracked mesh and the ground-truth synthetic mesh, as well as the
total residual penetration depth in the final frame. Notably, our pro-
posed variant of E;y, produces the closest mesh and least residual
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Fig. 8. Visual results for 3, 18, 43, and 124 cameras. While the 3 camera
result does not closely track the input data, the 18 camera result begins to
look plausible, while the 43 camera result is visually quite close to the 124
camera result.

Method Dist. Avg. | Dist. Std. Dev. | Pen. Depth
No Physics Term 6.8310 7.4095 N/A
Volume ARAP 3.7591 4.0804 14,498.9
N.H., No Col. Term || 3.3475 2.9240 44,557.5
No Photo Term 4.9100 3.4491 1.5828

No Geo. Term 3.5923 3.2300 0.9811

Our Full Energy 3.3357 2.8649 0.8726

Table 1. For the synthetic hand test and for each method variant from our
ablation study, we report the average per-vertex distance to the ground
truth mesh, the standard deviation of the per-vertex distance to the ground
truth, and the total penetration depth summed over all vertices. All reported
statistics are in millimeters.

total penetration depth. Further note the relative importance of
the photo-consistency term. While it is often difficult to visually
spot differences between the results with and without the photo-
consistency term, disabling this term leads to a 47% increase in the
average vertex distance to the ground truth.

Algorithm Timings. We report wall-clock timings for all examples
in Table 2. We break these profiles down into the total time, the time
spent minimizing the vision and link terms Eyjgjon + Ejink alone, the
time spent minimizing the physics and link terms Eppysics + Elink
alone, and the time spent on all other tasks (this includes network
and storage input/output, image processing, and more). As expected,
for easier highly visible sequences the cost of vision-based solves
dominates, while in harder examples with many self-collisions and
self-occlusions the physics-based term dominates.

Fig. 9. Three frames from a synthetic hand ground truth test sequence and
our tracking result for the final frame of this sequence.

Example Total Vision Solve | Physics Solve | Other
Fig. 1 787.89 274.39 395.16 118.35
Fig. 3 1284.58 || 201.90 967.24 115.43
Fig. 4 843.29 214.99 524.01 104.30
Fig. 5a/b 457.28 158.88 188.63 109.77
Fig. 5¢/d 295.18 167.98 27.82 99.38
Fig. 5e/f 391.05 166.00 135.68 89.38
Figs. 6,5g/h || 541.74 158.88 284.53 98.34
Fig. 5i/j 493.97 174.06 219.39 100.52

Table 2. Wall-clock timings averaged over all frames. For each sequence, we
report the average time to track a single frame, the average time to minimize
the vision and link terms, the average time to minimize the physics and link
terms, and the average time spent on auxiliary tasks. We report all times in
seconds.

We plot a more detailed wall-clock profile for Figure 1 in Figure 11.
From this plot, we see that when the subject’s hands are separate and
visible, the minimization of the vision-based term dominates and
the physics-based term does not impose major overhead. When the
hands are in tight contact, we see that the cost of the vision-based
optimization dips while the physics-based optimization dominates,
as expected. The cost of the physics-based optimizations are in
turn dominated by Hessian construction and linear system solution,
suggesting that recent advances in numerical optimization for this
type of system could further accelerate our algorithm.

ACM Trans. Graph., Vol. 39, No. 6, Article 219. Publication date: December 2020.
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Fig. 10. Ablation study results. We label regions of interest with arrows. First column: (a) Result with no physics term. (b) Result with our full energy. Without

a physics term, the tracking result has completely deteriorated after experiencing self-contact and self-occlusion. Second column: (c) Result with a volume
ARAP physics term alone. (d) Result with our full energy. Observe that volume ARAP fails to maintain the fingers’ shapes near joints, where they take on a
balloon-like shape. The result in (d) for this preserves the finger shapes more effectively. Third column: (e) Result with no collision term. (f) Result with our full
energy. Without a collision term, observe that the thumb completely penetrates the middle finger. Fourth column: (g) Result with no geometric consistency
term. (h) Result with our full energy. Notice that without a geometric consistency term, fingers are in entirely incorrect positions. Fifth column: (i) Result with
no photo-consistency term. (j) Result with our full energy. Notice that the photo-consistency term results in better preservation of the fingernail shape, where

the result without this term has an extra bump.

Tracking Timings Across an Entire Sequence
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Fig. 11. Timing breakdown for each frame of Figure 1. We report the wall
clock time per frame (Total), the time to minimize the physics and link terms
(Phys. Total), the time to minimize the vision and link terms (Vis. Total),
and the remaining time per frame to run auxiliary tasks (Misc.). We further
report a subset of the total physics timings, including the time to build
the Hessian (Phys. Hess), the time to solve linear systems with conjugate
gradient (Phys. C.G.), and the time to detect collisions (Phys. C.D.).

6 DISCUSSION

We present an approach for precise hand tracking in situations
where significant regions are occluded or in self-contact by con-
straining a vision-based tracking algorithm with a physically-based
deformable hand model. We demonstrate the effectiveness of this
approach by testing on a variety of complicated and rapid hand
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motions, with one and two hands, and with a number of different
subjects with variations in the appearance of their hands. We further
performed ablation studies on real and synthetic data to demon-
strate the value of each term of our formulation, and we studied the
impact of camera count on the quality of our tracking results.

Despite the improvement in tracking performance over a pure
vision-based technique, our method has limitations. It is compu-
tationally expensive, as evident in Table 2. One advantage of our
approach is the ability to call bespoke numerical methods for the
vision-based and physically based optimizations. Incorporating re-
cent advances in asymptotic numerical methods [Chen et al. 2014]
and in quasi-Newton methods [Zhu et al. 2018] for optimizing our
physically based energy could lead to faster tracking times or allow
us to increase the resolution of our tracked meshes.

A second limitation of our proposed method is drift. In Figure 4,
observe that over the course of the sequence, the thumb appears
to twist around itself while the overall distance to the 3D scan re-
mains small. As our method tracks hands sequentially (i.e., we track
frame-to-frame from the beginning to the end of a sequence), drift
can accumulate over time. Existing methods on facial performance
tracking mitigate the drift problem by using anchor frames [Beeler
et al. 2011], by using a similarity graph between FACS scans and
frames in a sequence [Fyffe et al. 2015], and by initializing each
frame with a deep learning-based facial model [Wu et al. 2018].
Such approaches combined with our view selection strategy might
be able to reduce drift artifacts.



A third limitation is our ability to capture high frequency folds
and wrinkles. As we observe in Figure 4, detailed wrinkles from
the captured images are sometimes missing in the tracked meshes.
We believe that an advanced frictional simulation model [Macklin
et al. 2019], improved skin modeling with thin shells [Rémillard
and Kry 2013], or finer grained control of the output resolution of
the tetrahedral mesh [Molino et al. 2003; Alliez et al. 2005] could
enhance our ability to capture high frequency details.

While a uniform elastic Neo-Hookean model performs well in
our empirical tests, recent works suggest interesting directions to-
wards building more predictive physically based models. Wang et
al. [2019] build subject-optimized ‘bone rigs’ using magnetic res-
onance imaging and incorporate observable anatomical features
into a simulatable hand model. Previous works have explored the
data-driven construction of personalized anatomical models [Cong
et al. 2015; Kadlecek et al. 2016; Kadle¢ek and Kavan 2019], the use of
which could improve subject-specific tracking results. Other works
have championed the use of Fung hardening [Pan et al. 2015; Wang
and Yang 2016] and generalized Rivlin [Pai et al. 2018] models for
soft tissue, the benefits of which would be interesting to explore for
tracking. Finally, while we have found uniform material settings to
work well for tracking, Wang et al. [2019] found benetfits in using
spatially varying parameters for simulating folds in the hand, and it
would be interesting to see whether optimizing spatially varying
material parameters [Bickel et al. 2009; Wang et al. 2015; Pai et al.
2018; Sengupta et al. 2020; Weiss et al. 2020] could help us capture
higher frequency folds and wrinkles.
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