
Hyperbolic Graph Neural Networks

Qi Liu∗, Maximilian Nickel and Douwe Kiela
Facebook AI Research

{qiliu,maxn,dkiela}@fb.com

Abstract

Learning from graph-structured data is an important task in machine learning and
artificial intelligence, for which Graph Neural Networks (GNNs) have shown great
promise. Motivated by recent advances in geometric representation learning, we
propose a novel GNN architecture for learning representations on Riemannian
manifolds with differentiable exponential and logarithmic maps. We develop a
scalable algorithm for modeling the structural properties of graphs, comparing
Euclidean and hyperbolic geometry. In our experiments, we show that hyperbolic
GNNs can lead to substantial improvements on various benchmark datasets.

1 Introduction

We study the problem of supervised learning on entire graphs. Neural methods have been applied
with great success to (semi) supervised node and edge classification [26, 51]. They have also shown
promise for the classification of graphs based on their structural properties [18]. By being invariant to
node and edge permutations [3], GNNs can exploit symmetries in graph-structured data, which makes
them well-suited for a wide range of problems, ranging from quantum chemistry [18] to modelling
social and interaction graphs [50].

In this work, we are concerned with the representational geometry of GNNs. Results in network
science have shown that hyperbolic geometry in particular is well-suited for modeling complex
networks. Typical properties such as heterogeneous degree distributions and strong clustering
can often be explained by assuming an underlying hierarchy which is well captured in hyperbolic
space [28, 35]. These insights led, for instance, to hyperbolic geometric graph models, which allow
for the generation of random graphs with real-world properties by sampling nodes uniformly in
hyperbolic space [1]. Moreover, it has recently been shown that hyperbolic geometry lends itself
particularly well for learning hierarchical representations of symbolic data and can lead to substantial
gains in representational efficiency and generalization performance [32].

Motivated by these results, we examine if graph neural networks may be equipped with geometrically
appropriate inductive biases for capturing structural properties, e.g., information about which nodes
are highly connected (and hence more central) or the overall degree distribution in a graph. For this
purpose, we extend graph neural networks to operate on Riemannian manifolds with differentiable
exponential and logarithmic maps. This allows us to investigate non-Euclidean geometries within a
general framework for supervised learning on graphs – independently of the underlying space and
its curvature. Here, we compare standard graph convolutional networks [26] that work in Euclidean
space with different hyperbolic graph neural networks (HGNNs): one that operates on the Poincaré
ball as in [32] and one that operates on the Lorentz model of hyperbolic geometry as in [33]. We
focus specifically on the ability of hyperbolic graph neural networks to capture structural properties.

Our contributions are as follows: we generalize graph neural networks to be manifold-agnostic, and
show that hyperbolic graph neural networks can provide substantial improvements for full-graph

∗Work done as an AI Resident.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

classification. Furthermore, we show that HGNNs are more efficient at capturing structural properties
of synthetic data than their Euclidean counterpart; that they can more accurately predict the chemical
properties of molecules; and that they can predict extraneous properties of large-scale networks, in this
case price fluctuations of a blockchain transaction graph, by making use of the hierarchical structure
present in the data. Code and data are available at https://github.com/facebookresearch/
hgnn.

2 Related Work

Graph neural networks (GNNs) have received increased attention in machine learning and artificial
intelligence due to their attractive properties for learning from graph-structured data [7]. Originally
proposed by [19, 41] as a method for learning node representations on graphs using neural networks,
this idea was extended to convolutional neural networks using spectral methods [9, 13] and the
iterative aggregation of neighbor representations [26, 34, 45]. [22] showed that graph neural networks
can be scaled to large-scale graphs. Due to their ability to learn inductive models of graphs, GNNs
have found promising applications in molecular fingerprinting [14] and quantum chemistry [18].

There has been an increased interest in hyperbolic embeddings due to their ability to model data with
latent hierarchies.

[32] proposed Poincaré for learning hierarchical representations of symbolic data. Furthermore,
[33] showed that the Lorentz model of hyperbolic geometry has attractive properties for stochastic
optimization and leads to substantially improved embeddings, especially in low dimensions. [16]
extended Poincaré embeddings to directed graphs using hyperbolic entailment cones. The representa-
tion trade-offs for hyperbolic embeddings were analyzed in [12], which also proposed a combinatorial
algorithm to compute embeddings.

Ganea et al. [17] and Gulcehre et al. [21] proposed hyperbolic neural networks and hyperbolic
attention networks, respectively, with the aim of extending deep learning methods to hyperbolic space.
Our formalism is related to the former in that layer transformations are performed in the tangent
space. We propose a model that is applicable to any Riemannian manifold with differentiable log/exp
maps, which also allows us to easily extend GNNs to the Lorentz model2. Our formalism is related to
the latter in that we perform message passing in hyperbolic space, but instead of using the Einstein
midpoint, we generalize to any Riemannian manifold via mapping to and from the tangent space.

Hyperbolic geometry has also shown great promise in network science: [28] showed that typical
properties of complex networks such as heterogeneous degree distributions and strong clustering can
be explained by assuming an underlying hyperbolic geometry and used these insights to develop a
geometric graph model for real-world networks [1]. Furthermore, [27, 6, 28] exploited the property
of hyperbolic embeddings to embed tree-like graphs with low distortion, for greedy-path routing in
large-scale communication networks.

Concurrently with this work, Chami et al. [10] also proposed an extension of graph neural networks to
hyperbolic geometry. The main difference lies in their attention-based architecture for neighborhood
aggregation, which also elegantly supports having trainable curvature parameters at each layer. They
show strong performance on link prediction and node classification tasks, and provide an insightful
analysis in terms of a graph’s δ-hyperbolicity.

3 Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes [18]. We
base our framework on graph convolutional networks as proposed in [26], where node representations
are computed by aggregating messages from direct neighbors over multiple steps. That is, the
message from node v to its receiving neighbor u is computed as mk+1

v = WkÃuvh
k
v . Here hk

v is
the representation of node v at step k, Wk ∈ Rh×h constitutes the trainable parameters for step k
(i.e., the k-th layer), and Ã = D−

1
2 (A+ I)D−

1
2 captures the connectivity of the graph. To get Ã,

the identity matrix I is added to the adjacency matrix A to obtain self-loops for each node, and the

2Other Riemannian manifolds such as spherical space are beyond the scope of this work but might be
interesting to study in future work.

2

https://github.com/facebookresearch/hgnn
https://github.com/facebookresearch/hgnn

resultant matrix is normalized using the diagonal degree matrix (Dii =
∑

j(Aij + Iij)). We then
obtain a new representation of u at step k + 1 by summing up all the messages from its neighbors
before applying the activation function σ: hk+1

u = σ(
∑

v∈I(u) m
t+1
v), where I(u) is the set of

in-neighbors of u, i.e. v ∈ I(u) if and if only v has an edge pointing to u. Thus, in a more compact
notation, the information propagates on the graph as:

hk+1
u = σ

 ∑
v∈I(u)

ÃuvW
khk

v

 . (1)

3.1 Graph Neural Networks on Riemannian Manifolds

A graph neural network comprises a series of basic operations, i.e. message passing via linear maps
and pointwise non-linearities, on a set of nodes that live in a given space. While such operations
are well-understood in Euclidean space, their counterparts in non-Euclidean space (which we are
interested in here) are non-trivial. We generalize the notion of a graph convolutional network such
that the network operates on Riemannian manifolds and becomes agnostic to the underlying space.
Since the tangent space of a point on Riemannian manifolds always is Euclidean (or a subset of
Euclidean space), functions with trainable parameters are executed there. The propagation rule for
each node u ∈ V is calculated as:

hk+1
u = σ

expx′(
∑

v∈I(u)

ÃuvW
k logx′(hk

v))

 . (2)

At layer k, we map each node representation hk
v ∈ M, where v ∈ I(u) is a neighbor of u, to the

tangent space of a chosen point x′ ∈ M using the logarithmic map logx′ . Here Ã and Wk are
the normalized adjacency matrix and the trainable parameters, respectively, as in Equation 1. An
exponential map expx′ is applied afterwards to map the linearly transformed tangent vector back to
the manifold.

The activation σ is applied after the exponential map to prevent model collapse: if the activation
was applied before the exponential map, i.e. hk+1

u = expx′

(
σ(
∑

v∈I(u) ÃuvW
k logx′(hk

v))
)

, the
exponential map expx′ at step k would have been cancelled by the logarithmic map logx′ at step k+1
as logx′(expx′(h)) = h. Hence, any such model would collapse to a vanilla Euclidean GCN with
a logarithmic map taking the input features of the GCN and an exponential map taking its outputs.
An alternative to prevent such collapse would be to introduce bias terms as in [17]. Importantly,
when applying the non-linearity directly on a manifoldM, we need to ensure that its application is
manifold preserving, i.e., that σ :M→M. We will propose possible choices for non-linearities in
the discussion of the respective manifolds.

3.2 Riemannian Manifolds

A Riemannian manifold (M, g) is a real and smooth manifold equipped with an inner product
gx : TxM×TxM→ R at each point x ∈M, which is called a Riemannian metric and allows us to
define the geometric properties of a space such as angles and the length of a curve.

We experiment with Euclidean space and compare it to two different hyperbolic manifolds (note that
there exist multiple equivalent hyperbolic models, such as the Poincaré ball and the Lorentz model,
for which transformations exist that preserve all geometric properties including isometry).

Euclidean Space The Euclidean manifold is a manifold with zero curvature. The metric tensor is
defined as gE = diag([1, 1, . . . , 1]). The closed-form distance, i.e. the length of the geodesic, which
is a straight line in Euclidean space, between two points is given as:

d(x,y) =

√∑
i

(xi − yi)2 (3)

The exponential map of the Euclidean manifold is defined as:

expx(v) = x+ v (4)

3

The logarithmic map is given as:
logx(y) = y − x (5)

In order to make sure that the Euclidean manifold formulation is equivalent to the vanilla GCN model
described in Equation 1, as well as for reasons of computational efficiency, we choose x′ = x0 (i.e.,
the origin) as the fixed point on the manifold in whose tangent space we operate.

Poincaré Ball Model The Poincaré ball model with constant negative curvature corresponds to
the Riemannian manifold (B, gBx), where B = {x ∈ Rn : ‖x‖ < 1} is an open unit ball. Its metric
tensor is gBx = λ2xg

E , where λx = 2
1−‖x‖2 is the conformal factor and gE is the Euclidean metric

tensor (see above). The distance between two points x,y ∈ B is given as:

dB(x,y) = arcosh

(
1 + 2

‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
. (6)

For any point x ∈ B, the exponential map expx : TxB → B and the logarithmic map logx : B → TxB
are defined for the tangent vector v 6= 0 and the point y 6= 0, respectively, as:

expx(v) = x⊕
(
tanh

(λx‖v‖
2

) v

‖v‖

)
logx(y) =

2

λx
arctanh(‖ − x⊕ y‖) −x⊕ y

‖ − x⊕ y‖
,

(7)

where ⊕ is the Möbius addition for any x,y ∈ B:

x⊕ y =
(1 + 2〈x,y〉+ ‖y‖2)x+ (1− ‖x‖2)y

1 + 2〈x,y〉+ ‖x‖2‖y‖2
(8)

Similar to the Euclidean case, and following [17], we use x′ = x0. On the Poincaré ball, we employ
pointwise non-linearities which are norm decreasing, i.e., where |σ(x)| ≤ |x| (which is true for e.g.
ReLU and leaky ReLU). This ensures that σ : B→ B since ‖σ(x)‖ ≤ ‖x‖.

Lorentz Model The Lorentz model avoids numerical instabilities that may arise with the Poincaré
distance (mostly due to the division) [33]. Its stability is particularly useful for our architecture, since
we have to apply multiple sequential exponential and logarithmic maps in deep GNNs, which would
normally compound numerical issues, but which the Lorentz model avoids. Let x,y ∈ Rn+1, then
the Lorentzian scalar product is defined as:

〈x,y〉L = −x0y0 +
n∑

i=1

xnyn (9)

The Lorentz model of n-dimensional hyperbolic space is then defined as the Riemannian manifold
(L, gLx), where L = {x ∈ Rn+1 : 〈x,x〉L = −1, x0 > 0} and where gL = diag([−1, 1, . . . , 1]).
The induced distance function is given as:

dL(x,y) = arcosh(−〈x,y〉L) (10)

The exponential map expx : TxL → L and the logarithmic map logx : L → TxL are defined as:

expx(v) = cosh(‖v‖L)x+ sinh(‖v‖L)
v

‖v‖L

logx(y) =
arcosh(−〈x,y〉L)√
〈x,y〉2L − 1

(y + 〈x,y〉Lx),
(11)

where ‖v‖L =
√
〈v,v〉L.

The origin, i.e., the zero vector in Euclidean space and the Poincaré ball, is equivalent to (1, 0, ..., 0)
in the Lorentz model, which we use as x′. Since activation functions such as ReLU and leaky ReLU
are not manifold-preserving in the Lorentz model, we first use Equation 12 to map the point from
Lorentz to Poincaré and apply the activation σ, before mapping it back using Equation 13:

pL→B(x0, x1, ..., xn) =
(x1, ..., xn)

x0 + 1
(12)

pB→L(x0, x1, ..., xn) =
(1 + ‖x‖2, 2x1, ..., 2xn)

1− ‖x‖2
(13)

4

Dimensionality
3 5 10 20 256

Euclidean 77.2 ± 0.12 90.0 ± 0.21 90.6 ± 0.17 94.8 ± 0.25 95.3 ± 0.17
Poincare 93.0 ± 0.05 95.6 ± 0.14 95.9 ± 0.14 96.2 ± 0.06 93.7 ± 0.05
Lorentz 94.1 ± 0.03 95.1 ± 0.25 96.4 ± 0.23 96.6 ± 0.22 95.3 ± 0.28

Table 1: F1 (macro) score and standard deviation of classifying synthetically generated graphs
according to the underlying graph generation algorithm (high is good).

3.3 Centroid-Based Regression and Classification

The output of a hyperbolic graph neural network withK steps consists of a set of node representations
{hK

1 , ...,h
K
|V |}, where each hK

i ∈M. Standard parametric classification and regression methods in
Euclidean space are not generally applicable in the hyperbolic case. Hence, we propose an extension
of the underlying idea of radial basis function networks [8, 36] to Riemannian manifolds. The key
idea is to use a differentiable function ψ :M→ Rd that can be used to summarize the structure of
the node embeddings. More specifically, we first introduce a list of centroids C = [c1, c2, ..., c|C|],
where each ci ∈ M. The centroids are learned jointly with the GNN using backpropagation. The
pairwise distance between ci and hK

j is calculated as: ψij = d(ci,h
K
j). Next, we concatenate

all distances (ψ1j , ..., ψ|C|j) ∈ R|C| to summarize the position of hK
j relative to the centroids. For

node-level regression,
ŷ = wT

o (ψ1j , ..., ψ|C|j), (14)

where wo ∈ R|C|, and for node-level classification,

p(yj) = softmax
(
Wo(ψ1j , ..., ψ|C|j)

)
, (15)

where Wo ∈ Rc×|C| and c denotes the number of classes.

For graph-level predictions, we first use average pooling to combine the distances of different
nodes, obtaining (ψ1, ..., ψ|C|), where ψi =

∑|V |
j=1 ψij/|V |, before feeding (ψ1, ..., ψ|C|) into fully

connected networks. Standard cross entropy and mean square error are used as loss functions for
classification and regression, respectively.

3.4 Other details

The input features of neural networks are typically embeddings or features that live in Euclidean
space. For Euclidean features xE, we first apply expx′(xE) to map it into the Riemannian manifolds.
To initialize embeddings E within the Riemannian manifold, we first uniformly sample from a range
(e.g. [−0.01, 0.01]) to obtain Euclidean embeddings, before normalizing the embeddings to ensure
that each embedding ei ∈M. The Euclidean manifold is normalized into a unit ball to make sure
we compare fairly with the Poincaré ball and the Lorentz model. This normalization causes minor
differences with respect to the vanilla GCN model of Kipf & Welling [26] but as we show in the
appendix, in practice this does not cause any significant dissimilarities. We use leaky ReLU as
the activation function σ with the negative slope 0.5. We use RAMSGrad [4] and AMSGrad for
hyperbolic parameters and Euclidean parameters, respectively.

4 Experiments

In the following experiments, we will compare the performance of models using different spaces
within the Riemannian manifold, comparing the canonical Euclidean version to Hyperbolic Graph
Neural Networks using either Poincaré or Lorentz manifolds.

4.1 Synthetic Structures

First, we attempt to corroborate the hypothesis that hyperbolic graph neural networks are better at
capturing structural information of graphs than their Euclidean counterpart. To that end, we design a

5

(a) Barabási-Albert (b) Watts-Strogatz (c) Erdős-Rényi

Figure 1

synthetic experiment, such that we have full control over the amount of structural information that is
required for the classification decision. Specifically, our task is to classify synthetically generated
graphs according to the underlying generation algorithm. We choose 3 distinct graph generation
algorithms: Erdős-Rényi [15], Barabási-Albert [2] and Watts-Strogatz [46] (see Figure 1).

The graphs are constructed as follows. For each graph generation algorithm we uniformly sample
a number of nodes between 100 and 500 and subsequently employ the graph generation algorithm
on the nodes. For Barabási-Albert graphs, we set the number of edges to attach from a new node to
existing nodes to a random number between 1 and 100. For Erdős-Rényi, the probability for edge
creation is set to 0.1− 1. For Watts-Strogatz, each node is connected to 1− 100 nearest neighbors in
the ring topology, and the probability of rewiring each edge is set to 0.1− 1.

Table 1 shows the results of classifying the graph generation algorithm (as measured by F1 score
over the three classes). For our comparison, we follow [32] and show results for different numbers
of dimensions. We observe that our hyperbolic methods outperform the Euclidean alternative by
a large margin. Owing to the representational efficiency of hyperbolic methods, the difference is
particularly big for low-dimensional cases. The Lorentz model does better than the Poincaré one in
all but one case. The differences become smaller with higher dimensionality, as we should expect,
but hyperbolic methods still do better in the relatively high dimensionality of 256. We speculate that
this is due to their having better inductive biases for capturing the structural properties of the graphs,
which is extremely important for solving this particular task.

4.2 Molecular Structures

Graphs are ubiquitous as data structures, but one domain where neural networks for graph data have
been particularly impactful is in modeling chemical problems. Applications include molecular design
[31], fingerprinting [14] and poly pharmaceutical side-effect modeling [52].

Molecular property prediction has received attention as a reasonable benchmark for supervised
learning on molecules [18]. A popular choice for this purpose is the QM9 dataset [37]. Unfortunately,
it is hard to compare to previous work on this dataset, as the original splits from [18] are no longer
available (per personal correspondence). One characteristic with QM9 is that the molecules are
relatively small (around 10 nodes per graph) and that there is high variance in the results. Hence,
we instead use the much larger ZINC dataset [44, 24, 23], which has been used widely in graph
generation for molecules using machine learning methods [25, 31]. However, see the appendix for
results on QM8 [40, 39] and QM9 [40, 38].

ZINC is a large dataset of commercially available drug-like chemical compounds. For ZINC, the
input consists of embedding representations of atoms together with an adjacency matrix, without
any additional handcrafted features. A master node [18] is added to the adjacency matrix to speed
up message passing. The dataset consists of 250k examples in total, out of which we randomly
sample 25k for the validation and test sets, respectively. On average, these molecules are bigger
(23 heavy atoms on average) and structurally more complex than the molecules in QM9. ZINC is
multi-relational, i.e. there are four types of relations for molecules, i.e. single bond, double bond,
triple bond and aromatic bond.

6

logP
3 5 10 20 256

Euclidean 6.7 ± 0.07 4.7 ± 0.03 4.7 ± 0.02 3.6 ± 0.00 3.3 ± 0.00
Poincare 5.7 ± 0.00 4.6 ± 0.03 3.6 ± 0.02 3.2 ± 0.01 3.1 ± 0.01
Lorentz 5.5 ± 0.02 4.5 ± 0.03 3.3 ± 0.03 2.9 ± 0.01 2.4 ± 0.02

QED
3 5 10 20 256

Euclidean 22.4 ± 0.21 15.9 ± 0.14 14.5 ± 0.09 10.2 ± 0.08 6.4 ± 0.06
Poincare 22.1 ± 0.01 14.9 ± 0.13 10.2 ± 0.02 6.9 ± 0.02 6.0 ± 0.04
Lorentz 21.9 ± 0.12 14.3 ± 0.12 8.7 ± 0.04 6.7 ± 0.06 4.7 ± 0.00

SAS
3 5 10 20 256

Euclidean 20.5 ± 0.04 16.8 ± 0.07 14.5 ± 0.11 9.6 ± 0.05 9.2 ± 0.08
Poincare 18.8 ± 0.03 16.1 ± 0.08 12.9 ± 0.04 9.3 ± 0.07 8.6 ± 0.02
Lorentz 18.0 ± 0.15 16.0 ± 0.15 12.5 ± 0.07 9.1 ± 0.08 7.7 ± 0.06

Table 2: Mean absolute error of predicting molecular properties: the water-octanal partition coefficient
(logP); qualitative estimate of drug-likeness (QED); and synthetic accessibility score (SAS). Scaled
by 100 for table formatting (low is good).

logP QED SAS
DTNN [43] 4.0 ± 0.03 8.1 ± 0.04 9.9 ± 0.06
MPNN [18] 4.1 ± 0.02 8.4 ± 0.05 9.2 ± 0.07
GGNN [29] 3.2 ± 0.20 6.4 ± 0.20 9.1 ± 0.10

Euclidean 3.3 ± 0.00 6.4 ± 0.06 9.2 ± 0.08
Poincare 3.1 ± 0.01 6.0 ± 0.04 8.6 ± 0.02
Lorentz 2.4 ± 0.02 4.7 ± 0.00 7.7 ± 0.06

Table 3: Mean absolute error of predicting molecular properties logP, QED and SAS, as compared to
current state-of-the-art deep learning methods. Scaled by 100 for table formatting (low is good).

First, in order to enable our graph neural networks to handle multi-relational data, we follow [42]
and extend Equation 2 to incorporate a multirelational weight matrix Wk

r where r ∈ R is the
set of relations, which we sum over. As before, we compare the various methods for different
dimensionalities. The results can be found in Table 2.

We also compare to three strong baselines on exactly the same data splits of the ZINC dataset: graph-
gated neural networks (GGNN) [29], deep tensor neural networks (DTNN) [43] and message-passing
neural networks (MPNN) [18]. GGNN adds a GRU-like update [11] that incorporates information
from neighbors and previous timesteps in order to update node representations. DTNN takes as the
input a fully connected weighted graph and aggregates node representations using a deep tensor
neural network. For DTNN and MPNN we use the implementations in DeepChem3, a well-known
open-source toolchain for deep-learning in drug discovery, materials science, quantum chemistry, and
biology. For GGNN, we use the publicly available open-source implementation4. A comparison of
our proposed approach to these methods can be found in Table 3.

We find that the Lorentz model outperforms the Poincaré ball on all properties, which illustrates
the benefits of its improved numerical stability. The Euclidean manifold performs worse than
the hyperbolic versions, confirming the effectiveness of hyperbolic models for modeling complex
structures in graph data. Furthermore, as can be seen in the appendix, the computational overhead of
using non-Euclidean manifolds is relatively minor.

3https://deepchem.io/
4https://github.com/microsoft/gated-graph-neural-network-samples

7

Dev Test
Node2vec 54.10 ± 1.63 52.44 ± 1.10
ARIMA 54.50 ± 0.16 53.07 ± 0.06

Euclidean 56.15 ± 0.30 53.95 ± 0.20
Poincare 57.03 ± 0.28 54.41 ± 0.24
Lorentz 57.52 ± 0.35 55.51 ± 0.37

“Whale” nodes All nodes
Norm 0.20129 0.33178

Table 4: Accuracy of predicting price fluctations
(up-down) for the Ether/USDT market rate based
on graph dynamics.

Table 5: Average norm of influential “whale”
nodes. Whales are significantly closer to the
origin than average, indicating their importance.

GGNN obtains comparable results to the Euclidean GNN. DTNN performs worse than the other
models, as it relies on distance matrices ignoring multi-relational information during message passing.

4.3 Blockchain Transaction Graphs

In terms of publicly accessible graph-structured data, blockchain networks like Ethereum constitute
some of the largest sources of graph data in the world. Interestingly, financial transaction networks
such as the blockchain have a strongly hierarchical nature: the blockchain ecosystem has even
invented its own terminology for this, e.g., the market has long been speculated to be manipulated
by “whales”. A whale is a user (address) with enough financial resources to move the market in
their favored direction. The structure of the blockchain graph and its dynamics over time have been
used as a way of quantifying the “true value” of a network [49, 47]. Blockchain networks have
uncharacteristic dynamics [30], but the distribution of wealth on the blockchain follows a power-law
distribution that is arguably (even) more skewed than in traditional markets [5]. This means that
the behavior of important “whale” nodes in the graph might be more predictive of fluctations (up or
down) in the market price of the underlying asset, which should be easier to capture using hyperbolic
graph neural networks.

Here, we study the problem of predicting price fluctuations for the underlying asset of the Ethereum
blockchain [48], based on the large-scale behavior of nodes in transaction graphs (see the appendix
for more details). Each node (i.e., address in the transaction graph) is associated with the same
embedding over all timepoints. Models are provided with node embeddings and the transaction graph
for a given time frame, together with the Ether/USDT market rate for the given time period. The
transaction graph is a directed multi-graph where edge weights correspond to the transaction amount.
To encourage message passing on the graphs, we enhance the transaction graphs with inverse edges
u→ v for each edge v → u. As a result, Equation 1 is extended to the bidirectional case:

hk+1
u = σ

expu(
∑

v∈I(u)

ÃuvW
k logx′(hk

v) +
∑

v∈O(u)

ÃuvW̃
k logx′(hk

v))

 , (16)

where O(u) is the set of out-neighbors of u, i.e. v ∈ O(u) if and if only u has an edge pointing to v.
We use the mean candlestick price over a period of 8 hours in total as additional inputs to the network.

Table 4 shows the results. We compare against a baseline of inputting averaged 128-dimensional
node2vec [20] features for the same time frame to an MLP classifier. We found that it helped if we
only used the node2vec features for the top k nodes ordered by degree, for which we report results
here (and which seems to confirm our suspicion that the transaction graph is strongly hierarchical). In
addition, we compare against using the autoregressive integrated moving average (ARIMA), which is
a common baseline for time series predictions. As before, we find that Lorentz performs significantly
better than Poincaré, which in turn outperforms the Euclidean manifold.

One of the benefits of using hyperbolic representations is that we can inspect the hierarchy that the
network has learned. We use this property to sanity check our proposed architecture: if it is indeed
the case that hyperbolic networks model the latent hierarchy, nodes for what would objectively be
considered influential “whale” nodes would have to be closer to the origin. Table 5 shows the average
norm of whale nodes compared to the average. For our list of whale nodes, we obtain the top 10000

8

addresses according to Etherscan5, compared to the total average of over 2 million addresses. Top
whale nodes include exchanges, initial coin offerings (ICO) and original developers of Ethereum. We
observe a lower norm for whale addresses, reflecting their importance in the hierarchy and influence
on price fluctuations, which the hyperbolic graph neural networks is able to pick up on.

5 Conclusion

We described a method for generalizing graph neural networks to Riemannian manifolds, making
them agnostic to the underlying space. Within this framework, we harnessed the power of hyperbolic
geometry for full graph classification. Hyperbolic representations are well-suited for capturing high-
level structural information, even in low dimensions. We first showed that hyperbolic methods are
much better at classifying graphs according to their structure by using synthetic data, where the task
was to distinguish randomly generated graphs based on the underlying graph generation algorithm.
We then applied our method to molecular property prediction on the ZINC dataset, and showed
that hyperbolic methods again outperformed their Euclidean counterpart, as well as state-of-the-art
models developed by the wider community. Lastly, we showed that a large-scale hierarchical graph,
such as the transaction graph of a blockchain network, can successfully be modeled for extraneous
prediction of price fluctuations. We showed that the proposed architecture successfully made use of
its geometrical properties in order to capture the hierarchical nature of the data.

References

[1] Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. Hyperbolic graph generator. Computer
Physics Communications, 196:492–496, 2015.

[2] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[3] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[4] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019, 2019.

[5] Stjepan Begušić, Zvonko Kostanjčar, H Eugene Stanley, and Boris Podobnik. Scaling properties
of extreme price fluctuations in bitcoin markets. Physica A: Statistical Mechanics and its
Applications, 510:400–406, 2018.

[6] M Boguñá, F Papadopoulos, and D Krioukov. Sustaining the internet with hyperbolic mapping.
Nature communications, 1:62, 2010.

[7] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: Going beyond euclidean data. IEEE Signal Process. Mag., 34(4):18–
42, 2017.

[8] D.S. Broomhead and D Lowe. Multi-variable functional interpolation and adaptive networks.
Complex Systems, 2:321–355, 1988.

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[10] Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional
neural networks. The Thirty-third Conference on Neural Information Processing Systems, 2019.

[11] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A
meeting of SIGDAT, a Special Interest Group of the ACL, pages 1724–1734, 2014.

5https://etherscan.io

9

[12] Christopher De Sa, Albert Gu, Christopher Ré, and Frederic Sala. Representation tradeoffs for
hyperbolic embeddings. arXiv preprint arXiv:1804.03329, 2018.

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 3837–3845, 2016.

[14] David K. Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 2224–2232, 2015.

[15] Paul Erdős and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen),
6:290–297, 1959.

[16] O.-E. Ganea, G. Becigneul, and T. Hofmann. Hyperbolic entailment cones for learning hierar-
chical embeddings. In Proceedings of the 35th International Conference on Machine Learning
(ICML), volume 80 of Proceedings of Machine Learning Research, pages 1646–1655. PMLR,
July 2018.

[17] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks.
In Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada.,
pages 5350–5360, 2018.

[18] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[19] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint
Conference on, volume 2, pages 729–734. IEEE, 2005.

[20] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864. ACM, 2016.

[21] Çaglar Gülçehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter W. Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas.
Hyperbolic attention networks. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

[23] John J Irwin and Brian K Shoichet. Zinc- a free database of commercially available compounds
for virtual screening. Journal of chemical information and modeling, 45(1):177–182, 2005.

[24] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc:
a free tool to discover chemistry for biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

[25] Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. Junction tree variational autoencoder
for molecular graph generation. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pages 2328–2337, 2018.

[26] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[27] Robert Kleinberg. Geographic routing using hyperbolic space. In INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE, pages 1902–1909. IEEE, 2007.

[28] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

10

[29] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence
neural networks. In 4th International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[30] Jiaqi Liang, Linjing Li, and Daniel Zeng. Evolutionary dynamics of cryptocurrency transaction
networks: An empirical study. PloS one, 13(8):e0202202, 2018.

[31] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph
variational autoencoders for molecule design. In Advances in Neural Information Processing
Systems, pages 7795–7804, 2018.

[32] Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6338–6347.
Curran Associates, Inc., 2017.

[33] Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 3776–3785, 2018.

[34] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural
networks for graphs. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, pages 2014–2023, 2016.

[35] Fragkiskos Papadopoulos, Maksim Kitsak, M Ángeles Serrano, Marián Boguná, and Dmitri
Krioukov. Popularity versus similarity in growing networks. Nature, 489(7417):537, 2012.

[36] Tomaso Poggio and Federico Girosi. Networks for approximation and learning. Proceedings of
the IEEE, 78(9):1481–1497, 1990.

[37] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1:140022,
2014.

[38] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1:140022,
2014.

[39] Raghunathan Ramakrishnan, Mia Hartmann, Enrico Tapavicza, and O Anatole Von Lilienfeld.
Electronic spectra from tddft and machine learning in chemical space. The Journal of chemical
physics, 143(8):084111, 2015.

[40] Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration
of 166 billion organic small molecules in the chemical universe database gdb-17. Journal of
chemical information and modeling, 52(11):2864–2875, 2012.

[41] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80, 2009.

[42] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In The Semantic
Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018,
Proceedings, pages 593–607, 2018.

[43] Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R Müller, and Alexandre
Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nature com-
munications, 8:13890, 2017.

[44] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

[45] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[46] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440, 1998.

11

[47] Spencer Wheatley, Didier Sornette, M Reppen, T Huber, and RN Gantner. Are bitcoin bubbles
predictable. Combining a Generalised Metcalfe’s Law and the LPPLS Model, Swiss Finance
Institute Research Paper 18-22, 2018.

[48] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014.

[49] Ke Wu, Spencer Wheatley, and Didier Sornette. Classification of crypto-coins and tokens from
the dynamics of their power law capitalisation distributions. Technical report, Royal Society
open science, 2018.

[50] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974–983. ACM, 2018.

[51] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances
in Neural Information Processing Systems, pages 5165–5175, 2018.

[52] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):457–466, 2018.

12

	Introduction
	Related Work
	Hyperbolic Graph Neural Networks
	Graph Neural Networks on Riemannian Manifolds
	Riemannian Manifolds
	Centroid-Based Regression and Classification
	Other details

	Experiments
	Synthetic Structures
	Molecular Structures
	Blockchain Transaction Graphs

	Conclusion

