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ABSTRACT

In free-space optical communication systems, narrow beam diameters necessitate precision pointing over a

relatively wide field of regard. Control systems with such large dynamic range requirements sometimes employ

multi-stage architectures, where a “coarse” mechanism provides low-bandwidth control over a large range of

travel, and a “fine” mechanism provides high-bandwidth disturbance rejection over a limited range of travel. In

such systems, the two stages must be coordinated in their dynamic response, so as to avoid undesirable coupling

and even interference with each other. This topic has been studied in various literature – especially in the field of

hard disk drives, but also for optical pointing systems. However, most of this literature considers systems where

the output of the two stages combines by simple linear sum. Dual-stage control becomes even more challenging

when the two stages combine via nonlinear kinematic relationships, as they would in an optical pointing system

employing multiple gimbaled steering mirrors. This paper presents an approach for handling these nonlinear

kinematic effects, and demonstrates the viability of this approach via simulation.
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1. INTRODUCTION

In free-space optical communication (FSOC) systems, narrow beam diameters necessitate precision pointing

(down to single-digit microradians) over a relatively wide field of regard (up to hemispherical coverage).1

Control systems with such large dynamic range requirements sometimes employ multi-stage architectures, where

a “coarse” mechanism provides low-bandwidth control over a wide range of travel, and a “fine” mechanism

provides higher-bandwidth precision positioning and disturbance rejection over a much narrower range of travel.

The main challenge of this approach is that the two stages must be coordinated in their dynamic response, so

as to avoid undesirable coupling and even interfering with each other.

This topic of dual-stage control has been studied in various literature, perhaps most heavily in the field of

hard disk drives (HDD). In a typical HDD system, there is a read/write head that needs to be precisely positioned

over a spinning disk. The read/write head is articulated by a voice-coil-actuated rotary stage, coupled with an

additional piezo-electric micro-actuator stage. This arrangement has been used to achieve higher bandwidth,

faster track seeking, and improved disturbance rejection, all over the full range of travel, and for less input

power, compared to single-stage systems.2–4 These results have been achieved with various different control

strategies,5–10 but common among virtually all of these studies was the fact that the system consisted of two

parallel 1-degree-of-freedom plants, whose outputs combine via simple linear sum. Figure 1 illustrates the dual-

stage hard-disk drive, along with a basic master-slave control architecture.

Dual-stage control has been applied to optical pointing systems as well, in the form of redundant gimbal

configurations, or a gimbal working with a fast-steering mirror (FSM) in an “image-motion compensation”

system.12,13 As with the HDD systems above, the plants in these two optical pointing systems also combine

linearly.
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Figure 1. Dual-Stage Hard-Disk Drive System. The image on the left (adapted from Ref. 11) shows the voice-coil motor

coarse stage, along with the micro-actuator fine stage. The diagram on the right depicts a basic master-slave control

architecture, where P1 represents the fine actuator, and P2 represents the coarse actuator. Not all HDDs are able to

measure the fine actuator position x1 directly, so in some cases the output of the fine stage controller is fed to the coarse

stage instead.

However, there are many optical pointing system configurations,14 and in some cases the combination of the

two outputs in a dual-stage system is not a simple linear relationship, but a more complicated nonlinear kinematic

operation. Some past papers describe the pointing and stabilization kinematics associated with various gimbal

and steering mirror arrangements,15–18 however these studies focus primarily on single-stage systems, and they

do not describe how to augment such a system with a dual-stage mechanism.

What has yet to be published is a paper that extends the results mentioned above to describe a dual-stage

control approach for an optical pointing system that involves nonlinear kinematic combination of the two plant

outputs, and does so in such a way as to ensure the two stages don’t end up “fighting” each other. This is

precisely the intended scope of this paper.

2. SYSTEM OVERVIEW

This paper will focus on a reference optical pointing system consisting of a heliostat for coarse pointing, an FSM

for fine pointing, and an optical track sensor for closed-loop optical feedback. Figure 2 illustrates the system

layout and kinematic modeling nomenclature.

The heliostat will be modeled as two rotary inertias, each actuated by a brushless DC torque motor, with

low-friction bearings to facilitate smooth rotation. The range of motion of the heliostat is large about the outer

(“azimuth”) axis b1 (±180◦), and narrower in the inner (“elevation”) axis b2 (±15◦, mirror motion). The inputs

to this mechanism are the torques provided by the motors, and the outputs of this mechanism are the rotation

angles α and β about the two axes b1 and b2, respectively. The dynamic plant model for this system consists

of a double integrator with a fixed gain for the inertia. Dynamic coupling between the two axes is neglected,

as this can be minimized in a mechanically balanced design. The control bandwidth for each of the individual

drive axes is assumed to be around 20 Hz, limited by the mechanism structural modes assumed to exist in the

50 - 100 Hz range.19

The FSM will be modeled as a two decoupled spring-mass-damper systems, each actuated by a voice-coil

actuator, with a central pivot flexure to facilitate frictionless tip/tilt rotation. The inputs to this mechanism

are the torques provided by the voice coil actuators, and the outputs are the tip/tilt angles τ1 and τ2 about the

rotation axes a1 and a2, respectively. The FSM range of travel is limited to less than ±1.5◦ (±26 mrad) in each

axis. Due to the restoring force of the pivot flexure, the system dynamics look like a lightly-damped second-order

system. The control bandwidth for each of the FSM axes is assumed to be around 500 Hz.



Figure 2. Dual-Stage Heliostat + FSM Pointing System

The track sensor is assumed to measure the relative line-of-sight (LOS) angle of the target in the track sensor

coordinate frame. Practically, this track sensor could be a quad cell photodiode, a lateral effect cell, or a camera

focal plane. For this system we assume a field of view of ±0.115◦ (±2 mrad), where the controller must keep the

LOS error to less than this amount, otherwise the system will lose optical feedback and have to re-acquire.

The heliostat, FSM, and track sensor are all rigidly mounted to a common optical bench, which is itself

rigidly attached to a host platform (e.g., a satellite or an aircraft) that can rotate in inertial space. The target

is located at some large distance away, and it is assumed that the task of achieving initial spatial acquisition

(i.e., pointing accurately enough in the first place for the track sensor to be able to “see” the target and provide

pointing feedback1) is already solved.

Once the systems have completed spatial acquisition, the task of the dual-stage controller is to reject both

low-frequency, large-amplitude disturbances (e.g., host platform rotations) in the DC to 10−1 Hz range, as well

as higher-frequency, small-amplitude disturbances (e.g., vibration-induced opto-mechanical jitter) in the 101 to

103 Hz range. The smaller the residual pointing error, the stronger the communication signal received at each

terminal, and the higher the data rate that can be transmitted through the link.

3. FORWARD KINEMATICS MODEL

The forward kinematics of the system can be modeled in three parts: calculating the relative pointing vector of

the optical payload with respect to the local coordinate frame (CF), calculating the LOS vector to the target

in the local CF, and calculating the track sensor measurement of the relative LOS to the target. The forward

kinematics model will be used to motivate the control architecture development in Sec. 4, to develop inverse-

kinematic models in Sec. 5, and to simulate the system pointing response in Sec. 6.

3.1 LOS Pointing in Local CF

The optical pointing system output-space line of sight (LOS) can be modeled as a 3-dimensional unit vector,

starting with the nominal LOS of the track sensor p0, which is reflected off each of the two mirrors to become p2,



as in Eq. (1). Each reflection can be modeled as pre-multiplication by a reflection matrix, where the reflection

matrix is defined as a function of the mirror normal, as in Eq. (2).15,17,18,20

The normal vectors for each of the two mirrors (i.e., n1 and n2) can also be modeled as 3-dimensional unit

vectors, which are rotated versions of the nominal vectors n10 and n20. The FSM mirror normal vector is rotated

about axis a2 by angle τ2, and then about axis a1 by angle τ1, per Eq. (3). Similarly, the heliostat mirror normal

is rotated about axis b2 by angle β, and then about axis b1 by angle α, per Eq. (4). The formula for generating

a rotation matrix for a given axis-angle argument is provided in Eq. (5). Note that all of the vectors in this

model are unit-length column vectors, defined with respect to the local CF which is fixed to the optical bench /

platform structure.

p2 = M2(n2)M1(n1)p0 (1)

M(n) = I − 2nnT (2)

n1 = R(a1, τ1)R(a2, τ2)n10 (3)

n2 = R(b1, α)R(b2, β)n20 (4)

R(u, θ) =

 cos θ + u2x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uyux(1− cos θ) + uz sin θ cos θ + u2y(1− cos θ) uyuz(1− cos θ)− ux sin θ

uzux(1− cos θ)− uy sin θ uzuy(1− cos θ) + ux sin θ cos θ + u2z(1− cos θ)

 (5)

3.2 Target Location in Local CF

When operating in optical closed-loop, the pointing system does not actually need to know the target location

in output space. However, for the purpose of modeling the system response to large-angle disturbance, it helps

to model the platform and target positions, as well as the platform orientation, in an inertially fixed coordinate

frame. To this end,the platform and target positions in the inertial CF are denoted as sP and sT , respectively,

and the rotation from inertial CF to local CF is represented as a direction cosine matrix RLI . Thus, the unit

vector describing the “ideal” LOS from platform to target is the normalized difference of sT minus sP , rotated

into the local CF by RLI , as in Eq. (6).

pT = RLI
sT − sP
||sT − sP ||

(6)

3.3 LOS Error in Track Sensor CF

The track sensor essentially measures the projection of the target LOS vector pT onto the track sensor X/Y axes.

The track sensor output-space X/Y axes can be calculated using Eq. (1), replacing p0 with q0 or r0 to calculate

q2 or r2, respectively. Since these are all unit vectors, the projection reduces to simply the dot product, as in

Eq. (7).

y0 =

[
pT · q2
pT · r2

]
(7)

One interesting characteristic of this model is that any individual set of joint angles (τ1, τ2, α, β) to produce a

given LOS vector p2 is not unique. Therefore, it is not possible to calculate the α and β angles required to



achieve a given p2 without knowing (or specifying) values of τ1 and τ2. Another point is that the combination of

joint angles to produce a given p2 is nonlinear and coupled, which is the main difference between the dual-stage

systems mentioned before which combine via simple linear sum. Figure 3 illustrates the three parts of the forward

kinematic model in the context of the overall control block diagram.

4. CONTROL ARCHITECTURE

The proposed control architecture is similar to the “Master-Slave” model presented in HDD literature,3,6, 9 in

that the FSM is focused entirely on minimizing the optical track sensor error (with no “knowledge” that the

heliostat exists), and the heliostat is entirely focused on returning the FSM back to its null position.∗ However

we must make some slight modifications to the results mentioned above in order to handle the fact that (a) the

optical pointing system has a 4-DoF input, 2-DoF output, and 3-dimensional kinematics in-between, and (b) the

input variables interact to affect the output in a nonlinear, coupled fashion. We address this with the following

approach.

First, we assume that for any measured track sensor X/Y outputs, we have an accurate model of the FSM

pointing kinematics, which can be used to calculate the FSM mirror angles required to steer the track sensor

outputs to zero. This operation would account for factors such as focal length scaling of the track sensor,

“clocking” rotations between FSM X/Y axes and track sensor X/Y axes, and angle-of-incidence-related gains

that are difference between the two mirror axes. This operation will be denoted as K−11 (y), where the track

sensor output y includes additive disturbance, i.e., y = y0 + d.

Next, we assume that for any set of FSM and heliostat positions x1, x2 (where x1 is a shorthand notation for

the FSM joint angles τ1 and τ2, and x2 is a shorthand notation for the heliostat joint angles α and β) within the

allowable operating range, we have a kinematic model K−12 (x1, x2) of the system that we can use to calculate

the desired heliostat state x∗2 which achieves virtually the same output LOS pointing vector p2 with a FSM state

x1 = (0, 0). In other words, we assume the model K−12 satisfies Eqs. (8) and (9), where K(x1, x2) = p2 represents

the actual physical pointing kinematics of the system (i.e., the physical “truth” that we sought to model in Sec.

3.)

x∗2 = K−12 (x1, x2) (8)

K(0, x∗2) ≈ K(x1, x2) (9)

Neither inverse-kinematic model needs to be “perfect.” The FSM inverse-kinematic model K−11 only needs to

be accurate enough that the low-frequency / DC response of the FSM is sufficient to reject any residual model

error and bring the track sensor output to an acceptable steady-state error. To this end, we make sure to add an

integral term to the FSM track loop controller. Similarly, the heliostat inverse-kinematic model K−12 only needs

to be accurate enough that the low-frequency / DC response of the heliostat is sufficient to reject any residual

model error and bring the FSM to its null position in steady state. To this end, we add a PI compensator to the

FSM-to-heliostat offload path.

To summarize, this inverse-kinematic, dual-stage (IKDS) control architecture works essentially the same

way as the Master-Slave architecture described in HDD literature,6 except that there are two inverse-kinematic

transformations: one in the FSM track loop feedback path, and another in the FSM-to-heliostat offload path. A

block-diagram illustration of the IKDS approach is provided in Fig. 3.

∗Here we assume that relative position feedback of the fine actuator is readily available, which is not always the case

in HDD systems.



Figure 3. IKDS Control Architecture Block Diagram. In this diagram, the cyan blocks labeled P1 and P helio represent

the FSM and heliostat plant models. The yellow C1, and C helio blocks represent the FSM and heliostat controllers. The

yellow block labeled H represents the FSM-to-heliostat offload filter. The orange blocks labeled K, R platform, and T

represent the forward kinematic operations, and the red blocks labeled K inv 1 and K inv 2 represent inverse kinematic

operations. The pink blocks represent inputs to the model (e.g., target motion, host platform rotation or LOS jitter).

5. INVERSE KINEMATICS

As mentioned in Sec. 4, there are two inverse-kinematic transforms that must be modeled: one for the FSM,

and another for the heliostat. Although this paper presents one modeling approach for each of these operations,

alternative approaches could certainly be conceived which may work just as well. Indeed, if one is willing to

make assumptions (or enforce requirements) about how perfectly the hardware is built, then simpler kinematic

models may be used. However we chose to use the approach below as it allows for more accurate modeling of a

system with inevitable build imperfections.†

5.1 FSM/Track Sensor Inverse Kinematics

The FSM track controller operates on the two axes of rotation independently, and it must account for the angle-

of-incidence gains which are generally different in the two axes, relative orientation of the FSM axes versus the

track sensor axes (which may involve polarity flips and/or “clocking” rotations), and any residual scale factor

associated with the track sensor output (e.g., related to effective system focal length). The ensemble of these

effects may be modeled by representing the track sensor X/Y measurements as a vector, and pre-multiplying

that vector with a matrix that handles scaling and rotations, as in Eq. (10). This transformation matrix can

formulated analytically, or experimentally by moving the FSM in each axis individually and observing the LOS

motion at the track sensor. The outputs of K−11 (y) are then provided to the FSM track controller as error

signals.

K−11 (y) =

[
A B

C D

] [
y1
y2

]
(10)

†For example, it is commonly assumed that the rotation axes of a two-axis gimbal are perfectly orthogonal, and

perfectly aligned with a local CF. The inverse kinematic model presented herein does not rely on this assumption.



5.2 Heliostat Inverse Kinematics

The pointing model referred to in Sec. 4 as K−12 will be split into two parts. First, the measured FSM and

heliostat positions x1 and x2 will be used to calculate an estimate of the current output-space LOS vector p∗.

This model will be formulated exactly as described in Sec. 3.1. The second step is to calculate the heliostat

azimuth and elevation angles α̂ and β̂ required to achieve this LOS vector p∗ with the FSM at x1 = (0, 0). This

process is performed as follows.

First, calculate the nominal output LOS vector p20, using Eq. (11),

p20 = M(n20)M(n10)p0. (11)

Next, project both p20 and p∗ onto the plane defined by the heliostat inner rotation axis b1 (where Eq. (12)

provides the formula for projecting a vector v onto a plane defined by another vector w.)

v⊥w = v − v‖w = v − v · w
‖w‖2

w (12)

Now calculate the angle between the projections of p20 and p∗ in the plane of the b1 rotation axis. This angle is

α̂ (where Eq. (13) provides the formula for calculating the counter-clockwise angle from vector u to vector v, in

the plane of a third vector w, which is used for a sign convention).

θ =
∣∣∣ atan2 (||u× v||, u · v)

∣∣∣ sgn
(
w · (u× v)

)
; (13)

Next, rotate p∗ about b1 by −α̂, as in Eq. (14). This rotated version of p∗ should now be coplanar with p20.

p∗rotated = R(b1,−α̂)p∗; (14)

Finally, re-use Eq. (13) to calculate the angle between the rotated version of p∗ from the previous step, and

p20. This angle is equal to 2β̂. (Note: this factor of 2 comes from angle doubling due to in-plane reflection at

heliostat mirror). The resulting heliostat joint angles α̂ and β̂ are then provided to the heliostat controller as

position setpoints.

6. SIMULATION STUDY

A simulation was developed using Simulink‡ to prove out this control architecture concept. A screenshot of the

Simulink block diagram is provided in Fig 3.

6.1 Plant and Controller Modeling

The FSM plant was modeled as a lightly damped second-order spring-mass-damper system (as in Refs. 21–25),

with a transfer function shown in Eq. (15), with ωn = 251 and ζ = 0.02. The FSM controller was a PI plus lead

compensator, with a transfer function shown in Eq. (16), with Ktot = 59.8, Kp = 1, Ki = 164.6, ωz = 0.000825,

and ωp = .000123. The resulting 0 dB crossover of the FSM open-loop gain was 500 Hz, with a phase margin of

45 degrees (Fig. 4).

P1(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(15)

CPI+LL(s) = Ktot

(Kps+Ki

s

)(ωzs+ 1

ωps+ 1

)
(16)

‡MATLAB and Simulink are technical computing programs developed by The MathWorks, Inc., Natick, MA, USA



The heliostat plant was modeled as a double integrator (as in Ref. 13), with a transfer function shown in Eq.

(17), with J = 1. The heliostat controller was modeled as a PI plus lead compensator, with a transfer function

as shown in Eq. (16), with Ktot = 964.5, Kp = 1, Ki = 6.59, ωz = 0.1301, and ωp = .0005. The resulting 0 dB

crossover of the heliostat open-loop gain was 20 Hz, with a phase margin of 80◦.

Phelio(s) =
J

s2
(17)

In designing the offload filter, we considered the relative responses of the FSM and heliostat plants to a given

error signal. In a system where these two plants combine linearly, the function HP2 (where H is the offload filter

transfer function, and P2 is the closed-loop heliostat transfer function) represents the ratio of heliostat response

to FSM response. Where the magnitude of HP2 is equal to 0 dB, the responses of the heliostat and FSM will

be equal. Therefore, at the frequency where this 0 dB crossover occurs, if the phase of HP2 reaches −180◦, the

two plants could end up perfectly out-of-phase with each other, essentially canceling out each other’s control

authority.

In order to avoid this, we made sure to select H so that HP2 had more than 90◦ of phase margin where the

magnitude crosses over 0 dB.§ We ended up using a PI filter, as in Eq. (18), with Kp = 1 and Ki = 62.8, which

resulted in HP2 crossing over 0 dB at 16.5 Hz with 105◦ of phase margin. The integrator here also boosted the

DC gain of the offload path, helping ensure that the heliostat was able to return the FSM back to zero at steady

state.

H(s) =
Kps+Ki

s
(18)

Bode plots for the FSM open-loop system (P1C1), the heliostat closed loop system (P2), and the combination of

heliostat closed loop response and offload filter together (HP2) are shown in Fig. 4.

6.2 Simulation Scenarios

The initial condition for the simulation involved both mechanisms at their nominal / null positions, pointing

perfectly at the target. This was intended to simulate the disturbance response of an optical pointing system that

had already achieved successful spatial acquisition. From here, two disturbance scenarios were simulated: one of

a step response (representative of initial acquisition once the target enters the field of view of the track sensor),

and one of a composite of a low-frequency, large-amplitude sine wave plus a higher-frequency, smaller-amplitude

sine wave (representative of ongoing disturbances from the platform rigid body motion and vibration-induced

jitter, while closing a link in fine track mode). In both cases, the same magnitude of disturbance was applied to

both output axes simultaneously.

The step disturbance of height 0.115◦ (2 mrad) was injected into the track sensor measurement before being

fed back to the FSM track controller. The system response to this step disturbance is plotted in Fig. 5. In this

scenario, the FSM immediately jumps up to respond to the step input, bringing the LOS error measured at the

track sensor to near zero in a matter of a couple milliseconds. The heliostat reacts slightly slower, eventually

responding to bring the FSM back to its home position. By a time of about 100 millseconds seconds after the step

input, the dual-stage system has essentially reached steady-state, with the heliostat rejecting the step disturbance

and the FSM returned back to zero. Similar responses were observed when applying the step disturbance in the

other axis, or when starting at different heliostat positions.

The composite sine disturbance was injected in two places; the low-frequency sine wave (frequency = 0.5

Hz, amplitude = 20 mrad) was applied as a large-angle platform rotation (via the kinematics described in Sec.

3.2), and the high-frequency sine (frequency = 100 Hz, amplitude = 0.001 degrees) was injected to the track

sensor output (as with the step disturbance above). The time-domain response of this system to this composite

§We chose a large phase margin objective here to account for the fact that the relative response of the FSM and

heliostat will not be exactly HP2, since there are actually inverse kinematics in both FSM and heliostat paths.
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Figure 4. FSM, Heliostat, and Offload Filter Open-Loop Bode Plots

disturbance input is plotted in Figure 6. In this scenario, it is clear that the heliostat is responding primarily

to the low-frequency platform motion, whereas the FSM is responding primarily to the high-frequency jitter

disturbance. The net result is a very small residual pointing error over a wide range of travel.

7. CONCLUSION

In summary, results from past literature on hard disk drives and optical pointing systems were extended to

describe an inverse-kinematic approach for controlling dual-stage optical pointing systems with nonlinear combi-

nation of plant outputs. A reference system consisting of a heliostat and FSM was simulated in a proof-of-concept

study in Simulink. This approach is expected to generally apply to other configurations as well, such as systems

using coelostats or other non-gimbaled coarse pointing approaches.
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Figure 5. Heliostat + FSM System Simulated Step Response
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