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Abstract: In an open-world setting, it is inevitable that an intelligent agent (e.g., a
robot) will encounter visual objects, attributes or relationships it does not recognize.
In this work, we develop an agent empowered with visual curiosity, i.e. the ability
to ask questions to an Oracle (e.g., human) about the contents in images (e.g.,

‘What is the object on the left side of the red cube?’) and build visual recognition
model based on the answers received (e.g., ‘Cylinder’). In order to do this, the
agent must (1) understand what it recognizes and what it does not, (2) formulate
a valid, unambiguous and informative ‘language’ query (a question) to ask the
Oracle, (3) derive the parameters of visual classifiers from the Oracle response and
(4) leverage the updated visual classifiers to ask more clarified questions.
Specifically, we propose a novel framework and formulate the learning of visual
curiosity as a reinforcement learning problem. In this framework, all components of
our agent – visual recognition module (to see), question generation policy (to ask),
answer digestion module (to understand) and graph memory module (to memorize)
– are learned entirely end-to-end to maximize the reward derived from the scene
graph obtained by the agent as a consequence of the dialog with the Oracle.
Importantly, the question generation policy is disentangled from the visual re-
cognition system and specifics of the ‘environment’ (scenes). Consequently, we
demonstrate a sort of ‘double’ generalization – our question generation policy
generalizes to new environments and a new pair of eyes, i.e., new visual system.
Specifically, an agent trained on one set of environments (scenes) and with one
particular visual recognition system is able to ask intelligent questions about new
scenes when paired with a new visual recognition system.
Trained on a synthetic dataset, our results show that our agent learns new visual
concepts significantly faster than several heuristic baselines – even when tested on
synthetic environments with novel objects, as well as in a realistic environment.
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1 Introduction
As the various artificial intelligence sub-fields (vision, language, reasoning) mature, we are beginning
to see ambitious multi-disciplinary tasks being undertaken – at the intersection of vision-and-language
(e.g. image captioning [1, 2, 3], visual question answering [4, 5], visual dialog [6]), vision-and-
navigation [7, 8], and vision-language-and-navigation [9, 10, 11]. These tasks (and others) implicitly
rely on the assumption that agent’s visual recognition system is mature enough (i.e. can recognize
scenes, objects, their attributes, relationships, etc.) to support these higher-level AI tasks.
However, in an open world, it is inevitable that the agent will encounter some new visual content
(new scenes, objects, attributes) that it has never seen before. In such cases, it is natural to consider
whether the agent can simply ‘ask’ a human or an Oracle to identify the novel content and build visual
classifiers on the fly. Note that this is a challenging task since the agent must (1) understand what
it recognizes and what it does not, (2) formulate a valid, unambiguous and informative ‘language’
query (a question) to ask the Oracle, (3) derive the parameters of visual classifiers from the Oracle
response and (4) leverage the updated visual classifiers to ask more clarified questions.
Towards this goal, we develop an agent with the ability to ask questions about an image to an
Oracle and build visual classifiers based on the answers received. We call this ability – visual
curiosity. Fig. 1 left illustrates this setup. Given an image, the agent’s visual system generates object
proposals (or candidate bounding boxes). The agent is confident about labels of some candidate boxes
∗Equal contribution
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Figure 1: Left: an example scenario where the agent learns to recognize objects through a dialog with an Oracle.
Right: the proposed framework contains a visual recognition module (to see), question generation policy (to
ask), answer digester (to understand) and graph memory module (to memorize).

(‘orange fruit’, ‘lettuce’), but does not recognize the content in others. It generates a question ‘What
is the color of the leftmost object?’. The Oracle responds with the answer ‘red’, which the agent uses
to update its ‘red’ classifier. Furthermore, the agent uses the ‘red object’ as a referent in future rounds
of dialog to acquire labels of other objects (‘What is the object besides the red object?’).
One immediate question at this point may be – what is the relationship of this setup to active learning
[12, 13, 14, 15]? A full discussion is available in Section 3, but in short, our approach lies at
the intersection of active learning and meta-learning – i.e., instead of using a pre-specified active
learning protocol, we learn to actively learn [16, 17, 18]. Specifically, we formulate this task as a
reinforcement learning problem and learn a policy to ask questions to learn visual recognition. All
components of our agent (illustrated in Fig. 1 right) – visual recognition module (to see), question
generation policy (to ask), answer digester (to understand) and graph memory module (to memorize)
– are learned entirely end-to-end to maximize the reward derived from the scene graph generated by
the agent as a consequence of the dialog with the Oracle.
Importantly, the question generation policy is disentangled from the visual recognition system and
specifics of the environment (scenes). Consequently, we demonstrate a sort of ‘double’ generalization
– our question generation policy generalizes to new environments and a new pair of eyes. Specifically,
an agent trained on one set of environments (scenes) and with one particular visual recognition system
is able to ask intelligent questions about new scenes when paired with a new visual recognition
system (which may or may not recognize the same set of entities as the visual system during training).
Our results show that our agent – trained in a synthetic environment with a certain set of objects –
learns new visual concepts significantly faster than several heuristic baselines when deployed in a
synthetic environment with novel objects as well as in a more realistic environment.
In order to make progress on this challenging problem, we make a number of simplifying assumptions
that are described in detail in Section 2 but highlighted here for completeness and full disclosure –
we use templated questions with slots that are filled by the agent, and model only simple geometric
relationships between object proposals (right, left, front, behind) that are trivial for the agent to extract
from bounding box coordinates. Also, we assume the agent can localize objects in an image precisely.
However, we believe the ideas and components of our work may generalize to more challenging
scenarios in the future.

2 Learning to Ask Questions

As illustrated in Fig. 1(b), there are four major components in our framework:
1) Visual System V that localizes image regions with high ‘objectness’ (i.e. generates object

proposals) and predicts their categories and attributes.
2) Question Generator Q that identifies an object proposal to inquire about and generates a

question based on graph memory to ask the Oracle about its category or attribute;
3) Answer DigesterD that uses the Oracle’s answer to update the graph memory for training visual

system V to recognize the contents for future images;
4) Graph Memory that is a semantic graph representation connecting the other three components.

Graph Representation. In our work, the agent’s graph memory is the underlying data-structure
connecting all other components; thus, we describe it first. It captures information about the image
that the agent has gathered from the Oracle. For an image I , G = (V,E) denotes a directed graph
where the nodes V correspond to the object proposals (with |V | = K), and edges E correspond to
the relationships between proposals. Let A denote a set of visual attributes (e.g., object category,
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Figure 2: We simulate an agent observes a sequence of images, and interacts with the Oracle through dialogs to
update its visual system (left). On each image, the agent asks a number of questions and gets responses from the
Oracle (middle). For each question, the agent takes the history and the current graph memory as inputs and fills
the question templates recurrently to compose a question (right).

object shape) on object proposals. For an attribute concept a ∈ A, na denotes the number of states
for the concept a (e.g. concept color can be ‘red’, ‘blue’, ‘green’, etc). Let ∆n be a n-simplex.
Then, pa ∈ ∆na denotes a probability distribution over attribute states for attribute concept a.
Similarly, nr denotes the number of spatial relationships and pr ∈ ∆nr denotes a probability
distribution over these relationships. Besides these distributions, each object proposal has a spatial
location l. We can then write the nodes of the graph as V = {(lk,pa1k , . . . ,p

a|A|
k )}Kk=1 and the

edges as E = {pri→j |i, j ∈ [K], i 6= j}. In this work, the spatial relationships (left, right, behind,
front) between object proposals are trivially recognizable from bounding box coordinates such that
pri→j are always delta functions. As such, we drop them from the graph notation for simplicity –
writing Gm = {(lk,pa1k , . . . ,p

a|A|
k )}Kk=1. Besides the agent’s graph memory, the agent also predicts

a scene graph from an image using the visual recognition module V . We denote this graph as
Gv = {(lk,va1k , . . . ,v

a|A|
k )}Kk=1 where va ∈ ∆na . Likewise, the oracle O has an oracle graph

Go = {(lk,oa1k , . . . ,o
a|A|
k )}K∗k=1 corresponding to the ground-truth scene graph with K∗ objects. We

use Gmi , Gvi and Goi to denote these graph representations for image Ii.
Environment Setup. To mimic the scenario of an agent traversing a novel environment while being
instructed by a human about the world around it, we formalize our learning setup as a Markov
Decision Process (MDP) over a series of image grounded dialogs. Specifically, an episode consists
of multi-round dialogs about a sequence of n images I1, ...In ∈ I. Our goal is to learn a good
policy to discuss with the Oracle in turn one by one on these n images so as to learn a good visual
system to recognize objects and attributes. If successful, each of these dialogs with the Oracle
produces important annotations on which to train the visual system which in turn produces a stronger
foundation for subsequent dialogs.
Rollout Process. This environmental setup can be represented by a recurrent process as depicted in
Fig. 2 – the agent initializes the graph memory using predictions from its visual system, the agent
holds a dialog with the oracle to update this memory, and then the information gained over the dialog
is used to update the visual system before this process is repeated for the next image. More formally,
assume we have access to a question generation policy πq, and a visual system V . Presented with
the image Ii, the agent first extracts the visual graph Gvi from the image with V . Before beginning
the dialog with the Oracle, the agent updates its initial graph memory Gmi,0 based on Gvi through a
bottom-up update function fv(Gmi,0, G

v
i ). Then, the agent engages in a T round dialog with the oracle

and maintains a sequence of graph memories {Gmi,0, ..., Gmi,T } corresponding to its beliefs about the
image Ii at each round. At round t, the agent proposes a question qti using the policy πq based on
the whole dialog history Hti = {Gmi,0, q1i , a1i , Gmi,1..., q

t−1
i , at−1i , Gmi,t−1}. The Oracle receives the

question qti and generates an answer ati based on oracle graph Goi . Upon receiving the answer, the
agent updates its graph memory using the top-down update function fo(Gmi,t−1, a

t
i).

At the end of dialog on Ii, the agent uses the final graph memory Gmi,T along with the accumulated
graph memories {Gm1,T , ..., Gmi−1,T } to update the visual system V before going to the next image
Ii+1. This recurrent procedure on n images is outlined in Alg. 1. At the end of this process, the agent
produces a trained visual system that can recognize the objects and attributes in images. We will
elaborate the detail of each component in following section.
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Algorithm 1 Rollout({I1, ..., In}, T ): MDP rollout process on n images.
Inputs: Image sequence {I1, ..., In}; Dialog budget T ; Question generation policy πq
Outputs: Visual system V; Rewards {r1,T1 , ..., r1,Tn }

1: Initialize Go{1,...,n} with ground truth, Gm{1,...,n} with uniform distribution
2: for i ∈ [1 · · ·n] do
3: Gvi ← V(Ii) . Extract visual graph from Ii
4: Gmi,0 ← fv(G

m
i,0, G

v
i ) . Initialize graph memory with visual graph

5: for t ∈ [1 · · ·T ] do
6: qti ← πq(Hti) . Generate question
7: ati ← O(qti , G

o
i ) . Oracle answers the question

8: Gmi,t ← fo(G
m
i,t−1, a

t
i) . Update graph memory with answers

9: end for
10: Train V with [Gm1,T · · ·Gmi,T ] . Train visual system with graph memories
11: end for

2.1 Model

We elaborate on each of the main components of our model in this section.
Question Generator Q. In order to produce queries to Oracle that are informative, the agent selects
from a set of template questions – filling in information from the graph memory. Inspired by [19],
each template is associated with a functional program that operates on the oracle scene graph to
get the Oracle answer. For example, the question ‘What is the color of the metal object?’ has a
corresponding program: ‘query color(unique(filter material(metal, scene)))’.
Using these templates, the question generation is equivalent to selecting the objects and attributes
about which to inquire. Specifically, the policy needs to determine which object attribute to ask about
(i.e., target attribute), which object to ask about (i.e., target object), and if applicable which object
to refer to (i.e., reference object). For instance, for the image in Fig. 1, the generated question may
be “What is the <white> <object> besides the <red object>”. The target object and attribute is
<object> and <white> respectively. The reference object is <red object>.
We implement the question generation policy πq using a recurrent neural network (RNN). The
memory provided by a recurrent policy is important for the agent to know which questions have
already been asked and whether they were meaningful or not according to the responses from Oracle
(i.e. referring to valid objects). As illustrated on the right side of Fig. 2, at each recurrent time step
through the dialog, this policy takes as input the previous hidden state ht−1i , the previous round
question qt−1i , its corresponding answer at−1i , and the current graph memory Gmi,t. Then, it outputs
actions to select target attribute, target object, and reference objects. The selection of reference
objects is handled by another recurrent process and may specify either none or one reference object.
Oracle O. Given the question from the agent, the Oracle answers the question by executing the
functional program on the oracle graph Goi . However, the execution can fail in some cases. First, the
question might be ambiguous. For example, the agent may ask ‘What is the color of the sphere?’
when there are multiple spheres in the image. Second, the question might be invalid. For example,
it is invalid if the agent asks the same question as above when there are no spheres in the image.
As a result, the Oracle has three types of responses to the agent: 1) the answer to the question, 2)
‘ambiguous question’ and 3) ‘invalid question’. If the Oracle responds with an answer, e.g., ‘red’ to
the agent, the agent’s graph memory will be updated, otherwise it will stay the same.
Updating the Graph Memory. The graph memory is updated from the bottom-up (via visual system
V) and top-down (via answer digester D) with update functions fv and fo, respectively:
– Bottom-Up fv: For object k and attribute a, its probability pak is updated to a one-hot vector by

setting its arg max(vak)-th entry to 1 and others to 0, if max(vak) > τi, where τi is a threshold
that is annealed during the recurrent process, τi = max(0.9, exp(−i/n)).

– Top-Down fo: Suppose the agent asks about attribute a for object k, and the answer is the l-th
category for that attribute concept, then the agent will update its graph memory by setting the
corresponding l-th entry in pak to 1, and others to 0.

Reward. A good question generator is one that asks meaningful questions to acquire knowledge
about images from the Oracle. So we define the reward at each dialog round as:

rti = R(Gmi,t−1, G
m
i,t, G

o
i ) = S(Gmi,t, G

o
i )− S(Gmi,t−1, G

o
i ) (1)

where S(·) measures the similarity between the graph memory and the oracle graph. The reward
is the difference in similarities between the current time step and the previous one. The purpose is

4



Algorithm 2 Learning to Ask Question to Learn Visual Recognition.
Inputs: Image sequence length n; Dialog budget T
1: Initialize parameters θπ and θv for policy and visual system, respectively
2: while True do
3: Initialize parameters θv . Reset visual system at the beginning of episode
4: I ← {I1, ..., In} ∼ E . Sample n images from an environment
5: V, {r1,T1 , ..., r1,Tn } ← Rollout(I, T ) . Rollout on n images with Algorithm 1
6: Update θπ based on {r1,T1 , ..., r1,Tn } using Eq. (3) . Train question generation policy
7: end while

to learn an agent that asks meaningful questions at each time step so that it can recover as much
information as possible within a budget of T questions.

2.2 Learning

The overall learning algorithm for the agent is summarized in Alg. 2. The policy πq is updated at
the end of each episode while the visual system is updated multiple times during the inner Rollout.
Recall that our goal is to learn a strong question generation policy that can ask useful questions across
varied environments and differently skilled visual systems. To achieve this, we decouple the question
policy from the visual system during training through two strategies: first, we introduce the semantic
graph representation as an intermediate between perception and question generation; secondly, we
reset the visual system to a random initialization at the beginning of each episode.
The visual system is trained inside the rollout process. At the end of dialogs on each image Ii, we
append the graph memory to the history and use both for training the visual system. This training is a
supervised learning task and the objective is:

θ∗v = arg min
θv

∑
Ii∈I

Ki∑
k=1

∑
a∈A
−pak · log(vak) (2)

where Ki is the number of object proposals in Ii; [·] denotes the inner product operator between two
vectors. The above objective is targeted to minimize the cross entropy between the prediction of
visual system vak and the graph memory pak, which is a one-hot vector as mentioned before. We use
standard gradient descent methods to optimize this objective.
We train the question generation policy πq to recover as much information as possible from the
Oracle in a limited budget, say T dialog rounds. To succeed, the agent must ask valid, unambiguous
questions about uncertain object attributes. To train the policy πq parametrized by θπ, we consider
maximizing the expected reward gained by the policy over episodes under environment E ,

θ∗π = arg max
θπ

J(θπ) = arg max
θπ

EI∼EEπq

[
n∑
i=1

T∑
t=1

rti(q
t
i ∼ πq(Hti))

]
. (3)

In practice, we take a Monte Carlo estimate of this expected reward – sampling a sequence of images
and questions throughout our dialogs – and use advantage actor-critic [20] (A2C) to train our agent.
Details of the visual system, question templates, question generator can be found in Appendix.

3 Related Work
Active Learning addresses the problem of selecting samples from an unlabeled set to be labeled by
some oracle [12, 13, 14, 15]. Common selection criteria rely on heuristics, including entropy [21],
expected model change [22], and boosting classifier margin [23]. Unlike traditional active learning,
querying the oracle in our setting is not guaranteed to succeed; to gain a new label, agents must
correctly refer to target objects when issuing queries to the Oracle. Further, our approach learns to
collect labels efficeintly from end-to-end training rather than with predefined measures.
Meta Active Learning. Other recent work has also followed this learning-to-active-learn strategy
[16, 17, 18], training meta-learning models to select sets of instances to be labeled in order to
maximize performance of some target model trained on the selected set. As before, these models
have direct access to the oracle labels. Further, these meta-learners are tightly coupled with their
corresponding target model; being trained based on target model performance. In contrast, our
approach is agnostic to the specific perception model.
Learning by Asking Questions. Mirsa et al. [24] present a learning-by-asking (LBA) framework for
visual question answering (VQA). The main differences between our setting and LBA are two-fold:
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Figure 3: We use two types of datasets in our experiments. One is synthesized (left three columns) and one is a
realistic dataset (right most). The synthesized one is further split to three sets, standard, novel and mixed.

1) We focus on learning a better visual system, not a better VQA model. Essentially, LBA is active
learning (via language) for VQA, while our work is active learning (via language) to learn to see. 2)
Our model decouples the visual system and question generation, which makes the learned question
generator agnostic to different environments.
Teaching Robots via Language Interactions. Previous work in human-robot interaction focus on
agents learning new concepts from speaking with human operators [25, 26, 27, 28, 29, 30]. Tellex
et al. [30] present a generalized grounding graph framework based on the linguistic coreference.
However, there question generation policy and vision system are not designed to learn. Lütkebohle et
al. [28] propose use language-interaction to solve ambiguity in the object references and for grasping
commands. Thomason et al. [25] learn an active learning dialog policy for natural language grounding.
Both [26] and [27] generate questions to continuous learn objects and visual properties. However,
our goal is to learn a question generation policy that is distangled from the visual recognition system
and specifics of the scenes, which enables both active learning and meta learning.

4 Experiments
Recall that our goal is to learn visual curiosity, i.e., a question generation policy that can intelli-
gently ask questions to an Oracle and in doing so acquire meaningful information to train a visual
recognition system. A successful agent should work well not only in the setting it was trained, but
also in new environments that contain partially or entirely novel attributes and with different visual
systems ranging in levels of competency. Moreover, as the visual system is decoupled from question
generation, the agent should generalize well to new visual domains, e.g. from synthetic environments
to realistic images. We evaluate our method for these qualities in the following experiments.

4.1 Dataset
We evaluate our question generation policy in both synthesized and realistic environments. Exemplar
images are shown in Fig. 3. We generate the synthetic datasets using the same API as [19]. Each
image contains 5 to 10 objects each with four different attribute types (shape, color, material, and
size). We construct three different datasets to test generalization; specifically, we generate:

– Standard composed of objects from 3 shapes (cube, sphere, cylinder), 6 colors (gray, red, blue,
green, yellow, purple), 2 materials (rubber, metal), and 2 sizes (large, small).

– Novel consisting of objects from 3 novel shapes (cuboid, bowl, cone) and 4 new colors (pink,
brown, cyan, orange) not present in Standard; however, materials and sizes are the same. The
goal is to check generalization to novel attribute values.

– Mixed which contains objects from all 6 shapes, 10 colors, 2 materials and 2 sizes from both
standard and novel splits. This is used to test the generalization ability on complex scenes where
some attributes are known and others are not.

We synthesize 1800 images which we split 900/300/600 for train, val, and test respectively. The
standard train and val sets are used to train the agent policy, and the standard, novel, and mixed test
sets are used for evaluation. For the realistic dataset, we use the images and bounding boxes from
the Autonomous Robot Indoor Dataset (ARID) [31]. It contains 153 objects from 51 categories. We
further annotated each object with one of 6 different materials and one of 11 colors. The agent trained
on the synthetic standard split is also evaluated on this dataset.

4.2 Metrics and Baselines
For evaluation, we split each test set into 12 folds, each containing 50 images (i.e. a single episode
sequence). We run the learned agent on each fold and evaluate two metrics:
– Graph Recovery. We measure the correctness of the agent’s graph memory. This measures how

informative the agent’s questions were. We compute the graph memory’s recall with respect to the
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Table 1: Graph recovery performance (i.e., quality of questions asked) on the Standard, Novel, and Mixed test
sets for agents trained on Standard.

Standard Novel Mixed

Model R@10 R@20 R@50 AUC R@10 R@20 R@50 AUC R@10 R@20 R@50 AUC

Random 28.3 36.5 59.4 0.41 23.4 31.2 54.0 0.36 27.0 37.3 63.2 0.43
Entropy 29.5 39.1 65.5 0.44 28.3 36.3 61.9 0.42 29.9 40.7 70.7 0.47
Entropy+Context 38.0 52.5 67.1 0.52 35.2 46.5 59.5 0.46 38.5 49.9 66.4 0.52

Our model 42.1 59.1 89.3 0.63 43.3 58.4 88.9 0.64 42.9 60.1 90.3 0.64
Our model w/o V 25.8 50.6 84.1 0.55 25.5 50.0 85.2 0.55 26.8 51.7 87.2 0.57

ground truth as the percentage of correctly predicted attributes. We report the average graph recall
across testing folds at dialog round K as R@K. We also report the area under this curve as AUC.

– Visual Recognition. To evaluate if a better question generator leads to a better visual system, we
measure how well a visual system performs after being trained through the agent’s interactions
with the Oracle on the test fold. To do so, we report the average graph recall of the visual system
predictions on the remaining folds.

We compare our proposed approach with three baselines:
– Random. This agent randomly samples question to ask i.e it selects the target attribute, target

object, and reference objects uniformly at random.
– Entropy. An object/attribute with higher entropy (in the graph memory) is more likely to be

chosen as the target. Likewise, objects with lower entropy are more likely to be references.
– Entropy+Context. The agent prefers to select uncertain (high entropy) object/attribute with

reliable (low entropy) neighbors as reference objects. This way, the model prefers to ground
questions on objects with low ambiguity.

For comparisons, we make no changes other than replacing our approach with the above baselines.

5 Results
Recall that we train on the standard train set and evaluate on the standard, novel and mixed test sets.
Questioner Graph Memory. We first compare graph memory recovery for different models. As
seen in Table. 1, our approach consistently outperforms the baseline models by a significant margin
across all three test settings. Further, the performance between standard and novel/mixed is sim-
ilar, suggesting that our approach generalizes well to novel settings. The Random and Entropy
baselines both struggle to propose unambiguous questions without the use of spatial context. The
Entropy+Context model fairs better, but falls off later when the hand-crafted strategy fails to find un-
ambiguous reference objects. Our model steadily improves over the entire dialog and has apparently
found a much better question asking strategy that generalizes well across different environments.
Static Vision Ablation. We also evaluate an ablated version of our model (Ours w/o V) which never
updates its visual system V . This model must ask questions essentially from ‘scratch’ without any
bottom-up visual information. As shown in Table 1, the agent starts dialogs with significantly lower
graph similarity scores than our full model; however, as the dialog proceeds, this agent performs
similarly. This highlights that the agent has learned to ask informative questions and not to simply
rely on steadily improving the visual system.
Visual System Performance. We report the visual recognition accuracies in Fig. 4(a-c). We take
visual system checkpoints throughout the agent dialogs and evaluate them on the held out folds –
tracking the evolution of the visual system through the agent’s interactions with the Oracle. We find
our approach outperforms the baselines significantly in all settings. This is somewhat unsurprising as
question generation and visual system learning are naturally synergistic – with improvement of either
leading to easier improvement in the other.

5.1 Transferring to Realistic Environment

Here, we apply the policy learned on the synthesized standard dataset to the realistic dataset. The
episode length is also set to 50. In both situations, we observe significantly higher graph recalls for
our model (86.2 R@50) than the baselines (56.7, 66.1, 55.5, for random, entropy, and entropy+context
respectively). More details are in Appendix. We also show the visual recognition curves in Fig. 4(d).
As we can see, the learned question generator can flexibly adapt to the realistic dataset and the learned
visual system outperforms other baselines by a large margin. These results imply that our model
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Figure 4: Top Row: visual recognition accuracy curves against dialog round on different test sets. Bottom Row:
Inspecting different aspects of question generation.

could perhaps be deployed on a real embodied agent and learn a visual system from traversing in an
environment with a guide.

5.2 Inspecting the Question Generator

Questioner starting with partially learned visual system. We investigate how the question gener-
ator behaves on the Mixture set if its initial visual system can already recognize some of the attributes,
i.e., those in the standard set. In this case, the agent needs to ask about the remaining unknown
attributes. In Fig. 4e, we show average graph recalls on the Mixture test set. We find the average
graph recall for this ablation (Ours-Partial) starts from a much higher graph recall, and continues to
increase to almost 1 – indicating that the learned policy can also generalize well to partially trained
visual systems. This is a promising result showing that the agent can leverage known visual concepts
when learning about new ones and integrate additional visual systems seamlessly.
Question type against dialog round. We run our question generator on all Standard test images
individually without updating the visual system. As shown in Fig. 4f, it proposes more zero-hop
questions at the beginning and then transitions to one-hop questions. This demonstrates that our model
has learned an efficient strategy that asks questions about directly referable objects (e.g. leftmost)
first and then objects that require referring to other (known) objects.
Questioner behavior with varying number of objects. We explore how the number of objects in
images affect the question generation behavior. We separately evaluate the learned policy on images
with varying number of objects. As shown in Fig. 4g, the average graph recall on images decreases
and the relative dialog length (divided by maximal length 50, so can be plotted from 0 to 1) increases
when there are more objects in the images. In Fig. 4h, we can see there are fewer unambiguous/valid
questions when the number of objects increases – implying that greater numbers of objects increases
the difficulty for the questioner. However, our model can still perform well. As shown in Fig. 4(g),
our approach still achieves an average graph recall of 89.75 with 8 objects present.

6 Conclusion
In this paper, we introduce a new setting learning visual curiosity, where an agent learns to ask
questions to learn visual recognition. This is a challenging task where the agent needs to understand
what it recognizes in an image and formulate language queries to the Oracle that are both unambiguous
and informative. We use a graph memory to decouple the visual system and question generator. As a
result, we demonstrate “double” generalization – we show that the learnt policy to ask informative
questions generalizes to new environments as well as to a new visual system. We experimentally
demonstrate that a policy learnt on a synthetic set of objects generalizes to novel objects, to mixture of
novel objects and attributes, as well as to a realistic dataset – significantly better than strong baselines.
This ability to learn about new objects and attributes by interacting with an Oracle is key to agents
that operate in realistic open world settings.
Acknowledgements This work was supported in part by NSF, AFRL, DARPA, Siemens, Google, Amazon,
ONR YIPs and ONR Grants N00014-16-1-{2713,2793}. The views and conclusions contained herein are those
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either expressed or implied, of the U.S. Government, or any sponsor.
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7 Appendix

7.1 Question Generator
As mentioned in Sec. 2, our question generation policy πq is implemented using a recurrent neural network
(RNN). The memory provided by a recurrent policy is important for the agent to know which questions have
already been asked and whether they were meaningful or not according to the responses from Oracle. As
illustrated in Fig. 2 right side, it consists of two components, target selection policy and reference selection
policy. The first one determines which object and attribute to ask about. The second one determines whether to
use a reference and which one to use if needed. These two policies share the low-level representations. Hence,
we first elaborate the representation we use.
Representation. At the t-th dialog round on Ii, the question generator takes the question qt−1

i and answer at−1
i

from last round, and graph memory Gm = {(lk,pa1k , . . . ,p
a|A|
k )}Kk=1 as the input. Based on these three inputs,

we compute:

• Entropy of Graph Memory: For object k and its attribute a, we compute eak = Entropy(pak). For the
whole scene graph memory, we obtain the entropy tensor K × |A| × 1;

• Location Embedding. For each object, we normalize its bounding box location lk with image size and
then use a two-layer MLP (4− 4− 2) to embed it to two dimensions. For all K objects, the dimension is
K × 2. Afterward, we duplicate it for all attribute concepts, and thus obtain a tensor K × |A| × 2;

• Target at last round: For each of K objects, we use one-hot tensor to encode which target object and
which attribute the agent pointed to at last dialog round. Hence, the dimension is K × |A| × 1.

• Reference at last round: We use another one-hot vector to encode which reference object the agent
pointed, and the dimension is K × 1. We use another one-hot vector K × 1 to record whether the agent
use a reference object or not. If the agent does not use reference object, then the vector becomes zero
vector. Similarly, We combine them and duplicate it for all attribute concepts to K × |A| × 2;

• Answer at last round: We use one-hot vector to encode the answer from Oracle at last round. If the
answer is valid, then we assign 1 to the target and reference object slots; otherwise 0. As a result, we obtain
K × |A| × 1 and K × 1 for target and reference, respectively. Afterward, we duplicate K × 1 reference
vector to K × |A| × 1 and concatenate it with target tensor to obtain K × |A| × 2.

Combining all the above signals, the final input to our question generator policy network at t-th dialog round is
xt ∈ RK×|A|×8. In our dataset, the number of attribute concept is 4. We replace |A| with 4 in the following for
clarity. Given xt ∈ RK×4×8, we first reshaped it to K × 32, where each row encode the graph memory and
history for one object. Then we vectorize xt to K vectors and feed them as a batch to a LSTM, obtaining new
features xpt ∈ RK×64 by

ht, ct = lstm(ht−1, ct−1, xt); x
p
t = ht (4)

where ht−1 and ct−1 are the hidden state and cell memory from the lstm network at dialog round (t− 1). This
xpt from the hidden state in lstm will be used in both target and reference policy.
Target policy. It is aimed at pointing the right target object and attribute concept to ask about. This can be
completed by directly pointing one of K × 4 slots. To propose meaningful target and reference objects, the
context is important. In our work, we exploit graph convolutional layers [32] to pass the context information
across different objects. Specifically, the GCN layer has the following typical formulation:

z
(l+1)
i = σ

 ∑
j∈N (i)

αijWz
(l)
j

 (5)

where N (i) is the neighbors of node i; W is a learnable projection matrix; αij is the affinity between node i
and j. In our model, we compute the affinity between two object nodes based on the spatial distance:

αij = αji = exp

(
−d(i, j)
dmax

)
(6)

where dmax is the maximal distance in all object pairs. Given this affinity matrix, we first reshape xpt to
(K × 4)× 16 and pass the above tensor through two graph convolutional layers to obtain xtart ∈ R(K×4)×16.
Then we pass xtart through two-layer MLP (16-16-1) to obtain (K × 4) scores, and further a softmax layer to
obtain a probability distribution ptart = Softmax(mlp(xtart )). Besides the head for action, we have another
head to compute the value. We simply perform average pooling for xtart ) and also pass it to two-layer MLP to
obtain the value for each of the object nodes. At end, to select the target object and attribute, we use an epsilon
greedy sampling (ε = 0.1) strategy to choose one entry during training and choose the maximal one during
testing.
Reference policy. It is aimed at determining whether to use reference object and which one if needed. It also
takes xpt as input. To select the right reference, this policy needs to know which target object is selected. Suspect
the k-th object is selected as the target, we take the corresponding k-th 1× 64 vector, and replicate it, which is
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then concatenated with the remaining to obtain xreft ∈ R(K−1)×128. To determine which object to select as the
reference, we also use two graph convolutional layers to update xreft to 64 dimension. Then, output is sent to a
two-layer MLP (64-32-1) to obtain the K − 1 dimensional scores over all candidate reference objects. Similar
to the way used in target policy, the reference object is selected based epsilon greedy during training and the
entry with maximal score during testing. Meanwhile, xreft is fed into another two graph convolutional layers
to 64-d, which are then average pooled to obtain a single 64-d vector. This vector is then sent to a two-layer
MLP (64-32-1) to predict whether or not to use reference object. For both selecting reference and determining
whether to use reference, we compute the value using xreft as input.
Based on the above policies, we can deterministically compose a question with the corresponding template and
ask it to the Oracle. We will introduce the details on the question template we used in our experiments below.

7.2 Question Templates
In our question templates, we introduce four attribute concepts size (<Z>), color (<C>, material (<M>),
shape (<S>). We use <R> to depict the relation between two objects, which could be ‘left’, ‘right’, ‘front’ and
‘behind’. Besides, we introduce the absolute spatial relationship <P> to depict the spatial location of one object
proposal to the whole image. According to its location, it can be ‘left-most’, ‘right-most’, ‘closest’ ‘farthest’ or
‘None’ otherwise. Further, we use <L> to indicate whether the target object proposal is at the extreme location
among all proposals that have the relationship <R> to its reference. It can be ‘closest’ if it is extreme, and
‘None’ otherwise. For clarification, we show two exemplar question templates below:

• “What shape is the <P> <Z> <C> <M> <S>?”
• “What size is <L> <Z> <C> <M> <S> that is <R> <Z> <C> <M> <S>?”

Q first points to the target object and reference object (if needed) and fill them into the above templates
correspondingly. Based on the locations of target and reference objects, the relationship <R>, absolute location
<P> and relative location <L> are manually inferred. Thus far, we can compose a unique questions which is
then forward to Oracle side. Fig. 7 and Fig. 8 show the zero-hop and one-hop text and program templates on 4
attributes respectively.

7.3 Implementation Details
We elaborate on the implementation details below:
Visual system. We use Faster-RCNN [33] in conjunction with a pre-trained VGG16 [34] as the backbone of
the visual system. We use the implemetnation open sourced in [35]. During training, the backbone is fixed,
and we only learn the parameters for the four attribute classifiers (shape, color, size, material), which are two
layer MLPs. We use the ground-truth bounding boxes on the agent side, since proposing object regions from
the images is not our focus. In the future, we will try to use a region proposal network (RPN) to get the object
proposals on the agent side. We are effectively assuming the the agent understands what constitutes an object,
just not their names or attributes.
Question templates. We use zero-hop and one-hop question templates in our model. This is for two reasons: 1)
they are enough to compose informative questions; 2) lower hop questions are more plausible to humans. Two
simplified exemplar templates are: 1) Zero-hop: “What shape is the <Some Object>?”; 2) “What size is <One
Object> that is <Spatial Relation> <Another Object>?”
During training, the length of the sampled image sequences in an episode is set to 100 and we train the question
generator over 200 episodes. The visual system is updated with 50 gradient descent steps during each update.
We start the visual system update once it accumulates 5× na annotations for attribute concept a. We use the
Adam optimizer [36] for the whole model. The learning rate starts from 1e-4 and decreases by a factor 0.99 after
each image.

7.4 Attribute Annotations for ARID
The attributes annotations for ARID [31] is shown in table 2. We annotate three attribute concepts: object, color
and material. Though the huge number of object categories than our synthetic dataset, our model trained on
synthetic dataset generalizes very well to this new environment. Fig. 9 and Fig. 10 show the example of an
image and the associated scene graph on mixture synthesized dataset and ARID dataset.

7.5 Graph recall from Bottom-up and Top-down
Recall that the graph memory is updated both by the visual system as well as information from the oracle. We
investigate the contributions of these two factors to the graph recovery over the dialogs. As shown in Fig. 5(a),
as the dialog proceeds, the agent relies more on its visual system and less on interactions with Oracle. Since the
graph memory is either updated bottom-up or top-down, we can easily measure their contributions by counting
the number of entries updated by visual system and oracle in the graph memory. Also, as shown in Fig. 5(b), the
number of dialog rounds drops. This is a plausible behavior since we would not expect an intelligent agent to
keep asking questions repeatedly after multiple interactions with Oracle.
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Table 2: Attributes annotations for ARID dataset, contains object, color and material.

Object lightbulb, apple, bell, calculator, sponge, keyboard, marker, scissors, glue, lime,
flashlight, cell, lemon, instant, peach, toothpaste, bowl, rubber, camera, orange,
banana, plate, coffee, ball, mushroom, food, pear, pitcher, dry, kleenex, toothbrush
binder, notebook, garlic, cereal, pliers, comb, tomato, water, stapler, onion, greens,
potato, cap, shampoo, hand, soda

Color blue, brown, purple, grey, yellow, mixed, pink, green, orange, black, white, silver, red

Materials cloth, food, metal, plastic, glass, paper

(a) (b)

Figure 5: Left: graph recall contributed bottom-up and top-down; Right: relative dialog length over time.

Table 3: Graph recall on realistic test set for policy trained on synthetic Standard train set.

Realistic

Model R@10 R@20 R@50 AUC

Random 20.1 27.5 56.7 0.33
Entropy 20.3 32.0 66.1 0.39
Entropy+Context 30.2 39.9 55.5 0.41

Ours model 35.6 53.4 86.2 0.59

7.6 Graph Recall on Realistic Environment

As a supplement to the Section 5.1 in our main paper, in Table 3, we present the graph recalls for different
methods on our collected realistic dataset. Clearly, our model outperforms all three baselines significantly.
Though not being trained on the realistic environment, our questioner successfully propose meaningful questions
to ask and get much higher graph recalls. Moreover, the numbers are comparable to those reported on synthetic
test sets. These numbers indicate that our model have a strong generalization ability across different
environments.

7.7 Qualitative Results

In Fig. 6, we show some qualitative results on both synthetic dataset and realistic dataset. Specifically, the
questioner generation policy is trained on Standard train set, and then applied to test sets. Here, we display the
first 16 rounds of dialog with oracle on three images, which are from Mixed, and ARID dataset. Our model
learns to begin with zero-hop questions (blue), and followed with one-hop questions (green). Moreover, the
learned question generation policy tends to repeatedly query one object until all the attributes are observed.
When transferring to realistic environment, our method can successfully generalize to new objects and attributes,
and ask meaningful questions. This verifies the effectiveness of our framework on disentangling the question
generation policy and visual recognition system. We also find our model sometimes asks the ambiguous questions
(red) which can not be answered by Oracle. The ambiguous questions can be either zero-hop question or one-hop
question. When looking more closely, we find the ambiguous question is mainly caused by the unspecified target
object, e.g., “What size is the thing left of the small cyan shiny cylinder?”, “There is a thing that ...”. However,
by taking the current graph memory and histories, the agent can successfully get rid of this soon after a few
dialog rounds with the Oracle.
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7.8 Limitations and Future Directions
As we mentioned early, our work is an initial step towards learning visual curiosity. To start on this challenging
task, we’ve made a number of simplifying assumptions that future work could soften. For instance, extending
the model to more complicated visual scenarios where object proposal systems might be error-prone. In this
case, the visual contents from the perspective of agent and Oracle are different from each other, which make the
questions more ambiguous or confusing to the Oracle. One way to address this is empower the Oracle the visual
curiosity ability as well, including answering clarifying questions to the agent. Another extension is considering
richer sets of relationships between objects, and enable the agent to learn about relationships as well during the
interaction with Oracle. Further, models could be extended to operate on non-templated dialog exchange, i.e.,
natural questions from agent and natural answers from Oracle. At last, in the current setting, we assume the
number of the attribute concepts is given. However, incorporating with incremental learning to grow the attribute
space over time would also be an interesting future direction to explore.

Q1: What is the rightmost thing made of?

Q2: There is a rightmost object; what 
shape is it?
Q3: The rightmost object is what color?

Q4: There is a thing that is left of the blue 
plastic stapler; what size is it?

Q5: What is the object made of?

Q6: What material is the thing?

Q7: What material is the leftmost thing?

Q8: The leftmost thing is what shape?

Q9: The leftmost thing is what color?

Q10: What material is the closest object 
right of the yellow food orange?

Q11: There is a closest plastic thing that is 
on the right side of the yellow food orange; 
what shape is it?
Q12: There is a closest plastic cell right of 
the yellow food orange; what color is it?

Q13: There is a thing on the right side of 
the yellow food orange; what is it made of?

Q14: What is the material of the closest 
thing right of the black plastic cell?

Q15: The closest plastic thing that is right 
of the black plastic cell has what shape?

Q16: The closest plastic rubber that is right 
of the black plastic cell is what color?

A1: plastic

A2: stapler

A3: blue

A4: __AMBIGUOUS__

A5: __AMBIGUOUS__

A6: __AMBIGUOUS__

A7: food

A8: orange

A9: yellow

A10: plastic

A11: cell

A12: black

A13: __AMBIGUOUS__

A14: plastic

A15: rubber

A16: blue

Q1: What is the shape of the farthest thing?

Q2: What material is the farthest object?

Q3: What is the color of the farthest 
object?
Q4: How big is the closest thing behind the 
thing?
Q5: What material is the leftmost thing?

Q6: There is a leftmost object; what shape 
is it?
Q7: The leftmost object is what color?

Q8:  What is the closest thing that is in 
front of the yellow plastic ball made of?

Q9: What shape is the closest thing that is 
in front of the yellow plastic ball?

Q10: The closest paper cereal in front of 
the yellow plastic ball is what color?

Q11: There is a object that is in front of the 
yellow plastic ball; what is its material?

Q12: What material is the closest object in 
front of the brown food potato?

Q13: The closest food thing that is in front 
of the food brown food potato has what 
shape?
Q14: What color is the closest food onion 
that is in front of the brown food potato?

Q15: What is the object to the right of the 
food brown food potato made of?

Q16: There is a object that is behind the 
food white food onion; what is its material?

A1: ball

A2: plastic

A3: yellow

A4: __AMBIGUOUS__

A5: food

A6: potato

A7: brown

A8: paper

A9: cereal

A10: red

A11: paper

A12: food

A13: onion

A14: white

A15: __AMBIGUOUS__

A16 __AMBIGUOUS__

Q1: What is the closest thing made of?

Q2: What shape is the closest object?

Q3: What is the color of the closest object?

Q4: What size is the closest object?

Q5: What size is the thing left of the small 
cyan shiny cylinder?
Q6: What is the material of the rightmost 
thing?
Q7: What shape is the rightmost thing?

Q8: The rightmost thing has what color?

Q9: What is the size of the rightmost thing?

Q10� There is a closest object to the left 
of the tiny green matte bowl; what is its 
material?
Q11: What shape is the closest matte 
object to the left of the tiny green matte 
bowl?
Q12: There is a closest matte cone that is 
left of the tiny green matte bowl; what is 
its color?
Q13: There is a closest blue rubber cone 
that is to the left of the small green rubber 
bowl; what is its size?
Q14: There is a thing that is on the left side 
of the small green rubber bowl; what is its 
material?
Q15: There is a closest object that is 
behind the large blue rubber cone; what is 
its material?

Q16: There is a closest metal object that is 
behind the large blue matte cone; what is 
its shape?

A1: metal

A2: cylinder

A3: cyan

A4: small

A5: __AMBIGUOUS__

A6: rubber

A7: bowl

A8: green

A9: small

A10: rubber

A11: cone

A12: blue

A13: large

A14: __AMBIGUOUS__

A15: metal

A16: cube

Figure 6: Dialogs with Oracle on Mixed synthesized dataset (left) and ARID dataset (middle and right) based
on the policy learned on normal synthesized dataset. Questions in blue, green and red background corresponds
to one-hop, two-hop and ambiguous questions respectively.
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Figure 7: Zero-hop text and program templates on 4 attributes concepts (size, color, material, shape)
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Figure 8: One-hop text and program templates on 4 attributes concepts (size, color, material, shape)
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Figure 9: Example of an image and the associated scene graph on mixture synthesized dataset.
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Figure 10: Example of an image and the associated scene graph on ARID dataset.
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