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Abstract

Popularized as ‘bottom-up’ attention [2], bounding box
(or region) based visual features have recently surpassed
vanilla grid-based convolutional features as the de facto
standard for vision and language tasks like visual question
answering (VQA). However, it is not clear whether the ad-
vantages of regions (e.g. better localization) are the key rea-
sons for the success of bottom-up attention. In this paper,
we revisit grid features for VQA, and find they can work
surprisingly well – running more than an order of magni-
tude faster with the same accuracy (e.g. if pre-trained in a
similar fashion). Through extensive experiments, we verify
that this observation holds true across different VQA mod-
els, datasets, and generalizes well to other tasks like im-
age captioning. As grid features make the model design
and training process much simpler, this enables us to train
them end-to-end and also use a more flexible network de-
sign. We learn VQA models end-to-end, from pixels directly
to answers, and show that strong performance is achievable
without using any region annotations in pre-training. We
hope our findings help further improve the scientific under-
standing and the practical application of VQA. Code and
features will be made available.

1. Introduction
After the introduction of deep learning [9, 41] and at-

tention mechanisms [44, 45] to multi-modal vision and lan-
guage research, perhaps one of the most significant develop-
ments was the discovery of ‘bottom-up’ attention [2]. Un-
like normal attention that uses ‘top-down’ linguistic inputs
to focus on specific parts of the visual input, bottom-up
attention uses pre-trained object detectors [30] to identify
salient regions based solely on the visual input itself. As a
result, images are represented by a collection of bounding
box or region1-based features [2, 36]–in contrast to vanilla
grid convolutional feature maps from ConvNets [32, 15]–
for follow-up tasks. These region features have since then

∗This work was done when Huaizu Jiang was an intern at FAIR.
1We use the terms ‘region’ and ‘bounding box’ interchangeably.
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Figure 1: We revisit grid-based convolutional features for VQA, and find
they can match the accuracy of the dominant region-based features from
bottom-up attention [2], provided that one closely follow the pre-training
process on Visual Genome [20]. As computing grid features skips the ex-
pensive region-related steps (shown in colors), it leads to significant speed-
ups (all modules run on GPU; timed in the same environment).

gained wide popularity and dominated vision and language
leader boards [16, 46] for major tasks like visual question
answering (VQA).

So what makes these region features successful? Natu-
rally, one would assume a major reason is better localization
of individual objects, as the regions are direct bounding box
outputs from detectors. Another plausible answer is that a
number of regions can easily capture both the coarse-level
information and fine-grained details in the image – even if
they overlap. However, do these potential advantages actu-
ally demonstrate that region features are superior to grids?

Surprisingly, we discovered that grid features extracted
from exactly the same layer of the pre-trained detector can
perform competitively against their region-based counter-
parts for VQA. Moreover, with simple modifications dur-
ing training, the same grid features can be made even
more effective and that they consistently achieve compa-
rable and sometimes better VQA accuracy than region fea-
tures. In fact, our ablative analysis suggests that the key
factors which contributed to the high accuracy of existing
bottom-up attention features are: 1) the large-scale object
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and attribute annotations collected in the Visual Genome
(VG) [20] dataset used for pre-training; and 2) the high spa-
tial resolution of the input images used for computing fea-
tures. As for the feature format itself – region or grid – it
only affects accuracy minimally. Through a comprehensive
set of experiments, we verified that our observations gen-
eralize across different network backbones, different VQA
models [16, 46], different VQA benchmarks [3, 12], and
even to other relevant tasks (e.g. image captioning [4]).

Our findings have important consequences for the de-
sign of future multi-modal vision and language models.
The immediate benefit of switching to grids is inference
speed, as we can now skip all of the region-related steps
in the existing VQA pipeline (Fig. 1). For example, us-
ing a ResNet-50 [15] backbone, we find the overall running
time drops from 0.89s to 0.02s per image – 40+ times faster
with slightly better accuracy! In fact, extracting region fea-
tures is so time-consuming that most state-of-the-art mod-
els [19, 46] are directly trained and evaluated on cached
visual features. This practice not only imposes unnecessary
constraints on model designs, but also limits potential ap-
plications of existing vision and language systems.

Empowered by grid features, we therefore take an initial
step to train VQA models end-to-end from pixels directly to
answers. Note that end-to-end training with region features
is challenging, since fine-tuning region locations likely re-
quires additional grounding annotations [13] that are expen-
sive and difficult to acquire. In contrast, grid features can
be readily optimized for the final objective (e.g. to answer
questions correctly) without extra grounding. The grid-
feature pipeline also allows us to explore more effective
designs for VQA (e.g. pyramid pooling module [50]) and
enables networks pre-trained with zero region-level anno-
tations to greatly reduce the gap in accuracy with VG mod-
els (trained on bounding boxes) – indicating strong VQA
models can be achieved without any explicit notion of re-
gions. These results further strengthen our defense of grid
features for VQA. We hope our discovery can open up new
opportunities for vision and language research in general.

2. Related Work
Visual features for vision and language tasks. Features
have played a key role in the advancement of vision and
language tasks. For example, deep learning features led to
remarkable improvements in image captioning [9, 41, 8].
While a complete review of visual features used for vision
and language tasks is beyond the scope of this paper, we
note that the accuracies of modern VQA models are de-
pendent on the underlying visual features used, including
VGG [32] and ResNet [15] grid features, which were later
dominated by bottom-up attention region features [2, 36].
Today, most state-of-the-art VQA models focus on fusing
schemes [47, 19, 46] and are built with region features as-

is; whereas our work revisits grid features, and shows that
they can be equally effective and lead to remarkable speed-
ups – often greater than an order of magnitude!
Pre-training for VQA. Most VQA methods use two sep-
arately pre-trained models: vision models trained on Ima-
geNet [6] and VG [20]; and word embeddings [28] for lin-
guistic features. As these separately trained features may
not be optimal for joint vision and language understand-
ing, a recent hot topic is to develop jointly pre-trained mod-
els [22, 26, 35, 34, 51, 5] for vision and language tasks. A
common scheme for such methods is to view regions and
words as ‘tokens’ for their respective domain, and pre-train
a variant of BERT [7, 39] for ‘masked’ token prediction.
Complementary to that direction, our work delves specifi-
cally into the ‘format’ of visual tokens and can be poten-
tially combined with such methods for mutual benefits (e.g.
trade-off between speed and accuracy).
Regions vs. grids. The debate between region features and
grid features carries some inherent connections to object de-
tection: the dominance of the R-CNN based detection mod-
els [30, 14] demonstrates that a region (the ‘R’ in R-CNN)
based refinement stage is beneficial for object detection.
On the other hand, one-stage detectors [23, 25] approach
the detection task without the need for explicit region-level
computation and show that grid features can be competitive
for object detection. In our work, we also use grid features
– no regions for the VQA task. To minimize changes from
bottom-up attention paper [2], we pre-train the features with
Faster R-CNN [30]. However, during inference, we discard
the region-related steps from the detector and use only the
grid convolutional features. This in fact gives us a stronger
defense for grids, as we show that VQA can operate on a
‘single’ feature map, instead of feature maps of ‘multiple’
scales that one-stage detectors [23, 25] thrive on.

It is also worth noting that while region features are
effective on benchmarks like VQA [3, 11] and COCO
captions [4], for benchmarks that diagnose a model’s
reasoning abilities when answering visual questions (e.g.
CLEVR [17]), simple methods based on grids [29] have
shown strong performance. We hope that our discovery that
grid features also work well for the general VQA task can
bridge the gap between these two lines of work [31].

3. From Regions to Grids

In this section, we explain our approach to obtaining grid
features that are just as effective as region features, with
the constraint that they have been pre-trained with the same
task. In Sec. 7, we show that the ‘same pre-training’ con-
straint can be lifted and grid features can still close the gap
to regions with end-to-end training on down-stream tasks.
We first briefly review the region features from bottom-up
attention [2].
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Figure 2: From regions to grids. Left: We convert the original region feature extractor used by bottom-up attention [2] back to the ResNet [15] grid feature
extractor for the same layer (see Sec. 3.2, weights in blue are transferred), and find it works surprisingly well for VQA [11]. Right: We build a detector
based on 1×1 RoIPool while keeping the output architecture fixed for grid features (see Sec. 3.3), and the resulting grid features consistently perform
at-par with region features.

3.1. Bottom-Up Attention with Regions

The bottom-up attention method [2] uses a Faster R-
CNN [30] detection model. The detector is trained on a
cleaned version of Visual Genome [20], with thousands of
object categories and hundreds of attributes with bounding
box (region) annotations.

In order to obtain bottom-up attention features for tasks
like VQA, two region-related steps are needed:
Region selection. As Faster R-CNN is a two-stage detector,
region selection happens twice in the pipeline. The first is
through a region proposal network [30], which deforms and
selects prominent candidate ‘anchors’ as Regions of Inter-
est (RoIs). Another selection is done as post-processing to
aggregate top N boxes in a per-class manner. In both steps,
non-maximal suppression (NMS) is used, which keeps the
region with the highest classification score and removes
other near-duplicates in a local neighborhood.
Region feature computation. Given regions from the first
stage (up to thousands), RoIPool operations [30] are used
to extract the initial region-level features. Additional net-
work layers then compute the output representation of re-
gions separately. Finally, region features that survive both
rounds of selection are stacked together as the bottom-up
features to represent an image.

It is important to note that due to the complexity of
the VG dataset (e.g. thousands of classes) and the specific
Faster R-CNN detector used [2] (described next), both steps
are computationally intensive. In contrast, directly using
grid features can skip or accelerate these steps and offer po-
tentially significant speed-ups.

3.2. Grid Features from the Same Layer

The simplest way to convert region features to grids is
to see if one can directly compute outputs of the same net-
work layer, but in a shared, fully convolutional manner. To
this end, we take a closer look at the specific Faster R-CNN
architecture used by the original bottom-up attention [2].

The Faster R-CNN is a variant of the c4 model [15] with
an extra branch for attribute classification. It divides the
weights from a ResNet [15] into two separate sets: given
an input image, it first computes feature maps using the
lower blocks of ResNet up to C4. This feature map is
shared among all regions. Then, separately, per-region fea-
ture computations are performed by applying the C5 block
on the 14×14 RoIPool-ed features. The output of C5

is then AvgPool-ed to a final vector for each region as the
bottom-up features [2]. Since all the final region features
are from C5, it is easy to convert the detector back to the
ResNet classifier and take the same C5 layer as our output
grid features. Fig. 2 (left) illustrates our conversion process.

As our experiments will show, directly using the con-
verted C5 output already works surprisingly well. Any per-
formance drop from doing so may be because Faster R-
CNN is highly optimized for region-based object detection,
and likely not so much for grids. Therefore, we next see
if some minimal adjustments to the model can be made to
improve grid features.

3.3. 1×1 RoIPool for Improved Grid Features

Our idea is to simply use 1×1 RoIPool. This means
representing each region with a single vector, rather than a



VG detection pre-train VQA
# feature RoIPool region layers AP accuracy ∆

1
R [2]

14×14 C5 [15] 4.07 64.29 -
2 1×1 2-FC 2.90 63.94 -0.35
3

G
14×14 C5 4.07 63.64 -0.65

4 1×1 2-FC 2.90 64.37 0.08
5 ImageNet pre-train 60.76 -3.53

Table 1: Main comparison. ‘R’ stands for region features as in bottom-
up attention [2]. ‘G’ stands for grid features. All results reported on VQA
2.0 vqa-eval. We show that: 1) by simply extracting grid features from
the same layer C5 of the same model, the VQA accuracy is already much
closer to bottom-up attention than ImageNet pre-trained ones (row 1,3 &
5); 2) 1×1 RoIPool based detector pre-training improves the grid fea-
tures accuracy while the region features get worse (row 1,2 & 4). Last col-
umn is the gap compared to the original bottom-up features (underlined).

three-dimensional tensor in Faster R-CNN. At first glance,
it may seem counter-intuitive, as the two additional spatial
dimensions (height and width) are useful to characterize dif-
ferent parts of objects in 2D – indeed, we find this modifica-
tion negatively affects object detection performance on VG.
But importantly, using 1×1 RoIPool regions also means
each vector on the grid feature map is forced to cover all the
information for a spatial region alone, which can potentially
result in stronger grid features.

However, directly applying 1×1 RoIPool on the orig-
inal model is problematic, likely because C5 consists of
several ImageNet pre-trained convolutional layers that work
best with inputs of particular spatial dimensions. To resolve
this, we follow recent developments in object detection and
use the entire ResNet up to C5 as the backbone for shared
feature computation [52]; and for region-level computation
place two 1024D fully-connected (FC) layers on the top,
which by default accept vectors as inputs.

To reduce the effect of low resolutions when training the
detector with features pooled from C5 (C5 has stride 32,
whereas C4 has 16), the stride-2 layers are replaced with
stride-1 layers, and the remaining layers are dilated with a
factor of 2 [52]. For grid feature extraction, we remove this
dilation and convert it back to the normal ResNet.

Fig. 2 (right) summarizes the changes we made to im-
proved grids. Note that compared to the original model
(left), we only made necessary modifications to the region
related components during training. Since all such compu-
tations are removed during feature extraction, our grid fea-
ture extractor is kept untouched during inference.

4. Main Comparison: Regions vs. Grids

From this section on, we report our experimental results
comparing regions with grids. We choose VQA (2.0) [11]
as our main task of interest, since it is currently a major
benchmark for evaluating joint vision and language under-
standing and has clear metrics for evaluation. For all our

comparisons, we denote methods using region features with
the tag ‘R’, and methods using grid features with ‘G’. In this
section, we focus on reporting our main findings from con-
verting regions to grids as described in Sec. 3. We begin by
briefly describing our experimental setups (more details in
the supplementary material). Note that our goal here is to
make the conclusion meaningful by controlled comparisons,
and not necessarily to optimize for absolute performance.

4.1. Experimental Setup

Faster R-CNN. We use Faster R-CNN with a ResNet-
50 backbone pre-trained on ImageNet. Closely following
bottom-up attention [2], the detector is then trained on the
VG dataset [20] with region-level annotations for 1600 ob-
ject categories and 400 attribute classes. For attributes, an
additional branch is added with loss weight 0.5. The model
is trained with ‘1x’ schedule [14]. Notably, input images
are resized to have a maximum shorter side of 600 pixels
(longest 1000) when keeping aspect ratio fixed. For region
features, we set N=100.
VQA split. Unless otherwise specified, we use the default
train set for training. To assist our analysis, we create
a local validation set, vqa-dev, out of the standard val
set to select the best model during training for evaluation.
It contains randomly sampled 8.4K images and their corre-
sponding questions, with 66K pairs in total. The rest of the
original val set (named vqa-eval) is reserved for test-
ing, on which we report results.
VQA model. We use the co-attention model [48] imple-
mented in Pythia [16, 33]. This model fuses visual features
(either region or grid) with textual representations of ques-
tions, and outputs the final answer.

4.2. Main Results

Our main results are summarized in Table 1. We make
two observations: First, compared with the widely used
bottom-up region features (row 1), directly extracting out-
puts from C5 with the same model (row 3) works surpris-
ingly well (64.29 vs. 63.64 accuracy). In contrast, the stan-
dard ResNet-50 model pre-trained on ImageNet [6] shows
much worse performance – 60.76 accuracy, a gap of more
than 3% with the bottom-up features.

Second, while our 1×1 RoIPool-based variant hurts
the object detection performance (average precision [24] on
VG drops from 4.07 to 2.90), it helps VQA – boosting the
accuracy by 0.73% (row 3 & 4) and as a result slightly out-
performs the original region-based features. On the other
hand, our RoI-based variant does not help the region fea-
tures method and drops the accuracy of region features to
63.94. This indicates the original model used by bottom-
up attention favors regions; while our design works better
for grids. Thus, we use the setting of the 1st row (best for
regions) to represent ‘R’, and the 4th row (best for grids)
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Figure 3: VQA accuracy vs. number of features N as input to the VQA
model. We report the average accuracy and standard deviation across 5
independent runs on the VQA 2.0 vqa-eval set. We observe that the
VQA accuracy of region features saturates around 200 regions. In contrast,
the grid features benefit from a larger N (translates from a larger input size)
and in this case stays better than regions even when N is the same (608).

to represent ‘G’, to perform a more in-depth study and fair
comparison between the two through the rest of the paper.

4.3. Number of Regions

Apart from architectural differences in training, another
factor that can affect VQA accuracy is the number of fea-
ture vectors N used for representing images. Our region
model from Pythia [16] has a default setting that uses the top
100 boxes to represent region features, increasing it from
the original 36 boxes in [2] to improve the accuracy. On
the other hand, since grid features are convolutional feature
maps for a pre-set layer, the number of features is deter-
mined by the input size to the network. As our largest input
size is 600×1000, a 32-stride feature map (C5) results in
608 grid features – much larger than the number of region
features. To understand how these different numbers of re-
gion features affect the accuracy, we ran experiments with
varying number of features N and show the results in Fig-
ure 3.

As for the region features, we observe an improvement in
accuracy as the number of regions increases from 30 to 200,
beyond which the accuracy saturates. Interestingly, our grid
features are better even when compared to the highest num-
ber of regions2. Thus, the higher number of feature vectors
used in our grid method compared to the baseline region
method, is not the reason for its improved VQA accuracy.

4.4. Test Accuracy and Inference Time

We now report results on the VQA 2.0 test-dev set
to quantify the difference in performance between region

2Since NMS is used in selecting regions, the maximum number N
varies across images. Therefore we 1) cannot directly set it to the same
number as grids and 2) report maximum N instead (zero paddings are
used for images with fewer regions).

# features
(N )

test-dev
accuracy

inference time breakdown (ms)
shared
conv.

region
feat. comp.

region
selection VQA total

R
100 66.13 9 326 548 6 889
608 66.22 9 322 544 7 882

G 608 66.27 11 - - 7 18

Table 2: Region vs. grid features on the VQA 2.0 test-dev with ac-
curacy and inference time breakdown measured in milliseconds per image.
Our grid features achieve comparable VQA accuracy to region features
while being much faster without region feature computation and region
selection.

and grid features. Note that different from previous se-
tups, we use trainval+vqa-eval for training. We re-
port the VQA accuracy and the inference time breakdown
in Table 2. Unlike our grid features which directly use the
convolutional feature maps, the region features involve the
additional operations of region selection and region feature
computation. These additional operations take 98.3% of the
total inference time for a region-based model. As a result,
the VQA model that takes our grid features as input runs
48× faster than its counterpart using bottom-up region fea-
tures.

4.5. Qualitative Comparison

We visualize attention maps over input images from the
top-down attention module [2], together with answers from
both regions and grids in Fig. 4. Source images are taken
from COCO [24] on which VQA 2.0 [11] benchmark is
built. To obtain the attention map, we propagate the at-
tention value of each region or grid to its corresponding
pixels, and then average the attention value for each pixel
(normalizing them individually to [0, 1]). As can be seen,
both types of features are able to capture relevant concepts
in input images (e.g., snowfield in the top left). Naturally,
attention maps of region features tend to cover object-like
regions, while for grid features the attention does not nec-
essarily cover the full area the supporting concept (e.g., the
snowfield), which can be used to answer the question. How-
ever, both features are able to answer visual questions well,
suggesting that localization is important, but accurate object
detection of individual objects is not crucial for VQA [11].

We show failure cases of region and grid features in
Fig. 4 (b)(c)(d). In most examples, the models attend to
the supporting concepts but still give wrong answers. In
the cases where both region and grid features fail, specifi-
cally designed modules may be needed (e.g., counting mod-
ule [49, 38] in the bottom right example) to answer the ques-
tion correctly.

5. Why do Our Grid Features Work?
As we mentioned in Sec. 2, grid features are not new – in

fact, they were widely used in vision and language tasks be-



Q: Is this a summer scene? Q: Has the pizza been eaten? Q: What color are the curtains? Q: What is the bus number?
GT-A: no GT-A: no GT-A: red and white GT-A: 29

A(R): no 3 A(G): no 3 A(R): no 3 A(G): yes 7 A(R): red 7 A(G): red and white 3 A(R): 106 7 A(G): 193 7

Q: What is the player doing? Q: What breed of dog is this? Q: What is the person doing? Q: How many boats do you see?
GT-A: throwing frisbee GT-A: pug GT-A: cutting GT-A: 7
A(R): A(G):

A(R): pug 3 A(G): bulldog 7 A(R): texting 7 A(G): cutting 3 A(R): 5 7 A(G): 4 7
catching frisbee 3 playing frisbee 3

(a) (b) (c) (d)

Figure 4: Visualizations of attention maps overlaid on images produced by VQA models [16]. Source images taken from COCO [24] to compare against
bottom-up attention [2] on VQA 2.0 [11]. We show questions (Q), ground-truth answers (GT-A), and side-by-side predictions (attention maps, answers) of
region (R) and grid (G) features. From left to right: (a) both region and grid features give correct answers, (b) region features give correct answers but grid
features fail, (c) region features fail but grid features give correct answers, and (d) both region and grid features fail. Best viewed in color.

accuracy pre-training task input size

G
prev. 60.76 ImageNet [6] classification 448×448
ours 64.37 VG [20] object+attribute detection 600×1000

Table 3: Comparison between the conventional ImageNet pre-trained
and our proposed grid features on the VQA 2.0 vqa-eval set. Besides
VQA accuracy, we list two major differences between the two: 1) pre-
training task and 2) input image size.

fore the introduction of bottom-up attention features. Com-
pared to the previous attempts at grid features, why do our
grid features work well? In Table 3 we show the perfor-
mance of grid-based methods (ResNet-50 C5 features) for
different settings and find that there are two major factors:
1) input image size; 2) pre-training task. We study both
these factors next and report results on the vqa-eval set.

5.1. Factor 1: Input Image Size

The standard image size used during feature extraction
for ImageNet pre-trained models is 448×448 [10] discard-
ing the aspect ratio; whereas for VG detection in bottom-up
attention [2], the default size is 600×1000 while keeping
the aspect ratio intact. Therefore, we experimented with
different combinations and reported results for all of them
in Table 4. We note that for grid features, a larger input size
means more features for the VQA model.

From the table, we find that grid features benefit from
larger images as input, indicating this factor is indeed im-
portant. However, input size has a different effect for mod-
els pre-trained on ImageNet vs. VG. For ImageNet mod-
els which are pre-trained on smaller images [15], the per-
formance saturates around 600×1000. Interestingly, the
performance of VG models improves with the input size

dataset
input size # features

N
accuracy

shorter side longer side

G

Im
ag

eN
et

448 448 196 60.76
448 746 336 61.21
600 1000 608 61.52
800 1333 1050 61.52

V
G

448 448 196 63.24
448 746 336 63.81
600 1000 608 64.37
800 1333 1050 64.61

Table 4: Impact of input image size on the VQA 2.0 vqa-eval set.
Grid features benefit from larger input image sizes. For an ImageNet pre-
trained model, the accuracy saturates around 600×1000 but the VG model
makes a better use of larger input image sizes.

and continues to increase even at 800×1333. We still use
600×1000 for the rest of the paper.

5.2. Factor 2: Pre-Training Task

We now study the difference in VQA accuracy due to the
pre-training task in the ImageNet (classification) and VG
(detection)3. To understand these differences better, we in-
troduce an additional pre-trained model in each setting. For
classification, we include a model trained on YFCC [37],
which has 92M images with image tags. For detection, we
include a standard model from COCO [24] which only has
object annotations (no attributes). All models use a ResNet-
50 backbone for fair comparison.

The results are shown in Table 5. In the image classifica-
tion pre-trained setting, the YFCC model (trained on weak

3Strictly speaking, VG also uses ImageNet classification for pre-
training, because the detector is fine-tuned from a standard ImageNet pre-
trained model.



pre-train task
accuracy

setup dataset annotation #images

G

cls ImageNet [6] image label 1.3M 61.52

cls YFCC [37] image tag 92M 62.72

det COCO [24] object box 118K 62.46

det VG [20] object+attribute 103K 64.37

Table 5: Choice of pre-training task. We explore the impact of the type
of pre-training task on the final performance while keeping the input size
fixed at 600×1000. Results reported on vqa-eval. We broadly char-
acterize the pre-training tasks into two types - object detection (‘det’) and
image classification (‘cls’).
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Figure 5: Analysis on attribute loss weights when pre-training grid fea-
tures on Visual Genome (VG). All results on VQA 2.0 vqa-eval set.

image level tags), performs better than the ImageNet model,
possibly because it is trained on two orders of magnitude
more data. For detection based pre-training, the VG model
(trained with objects and attributes) gives better results than
the COCO model. The larger number of categories in VG
compared to COCO (1600 vs. 80) or the additional attribute
annotations it has are two possible reasons for the improved
performance. We study the impact of attributes next.

Attributes. Fig. 5 shows the impact of the attribute loss
weight on VQA accuracy. Setting the attribute loss weight
to zero during pre-training on VG, results in a drop in
VQA performance. In fact, the VQA accuracy in this case
matches the accuracy from a pre-trained COCO model sug-
gesting that attributes in the pre-training task are a major
reason for the better performance of VG models. We also
note that the grid features consistently outperform the re-
gion features for all values of the attribute loss weight.

6. Generalization of Grid Features
We now study whether our findings about grid features

are more broadly applicable to other tasks and models. In
this section, we study generalization across: 1) different
backbones; 2) different VQA models; 3) different VQA
tasks; 4) other tasks. For all the studies, we set the attribute
loss weight to 0.2, and compare both the accuracy and speed

for regions vs. grids. For regions we use top N=100 ones.
Details of the hyper-parameters are in the supplementary
material.

Different backbone. We train Faster R-CNN models with
ResNeXt-101-32x8d [43] backbone on VG and use the
same setting for Pythia used in Section 4.5. Results on
VQA 2.0 test-dev split are reported in Table 6a. We find
that our grid features are competitive to the region features
even on this more powerful backbone model. Speed-wise,
grid features still run substantially faster (23.8×) than re-
gion ones.

Different VQA model. We further test our features ob-
tained from the previous ResNeXt-101 backbone with the
state-of-the-art VQA model, MCAN [46] (2019 VQA Chal-
lenge winner). We use the authors’ implementation4 to train
the large version of the model. The results on VQA 2.0
test-dev set are in Table 6b, where our own region fea-
tures perform better than the results reported in [46] due to
stronger backbone. On top of that, our grid features work
even better than regions, leading to significant improvement
over results reported in MCAN [46] (+1.66).

Different VQA task. We use the VizWiz VQA
dataset [12], which is a real world dataset of pictures taken
with cellphones by visually-impaired users. It is more
challenging due to poor image quality, conversation-style
questions, and unanswerable questions, etc. Pythia [16]
model is used (2018 challenge winner). Results on the
test-dev set of VizWiz are reported in Table 6c,
where our grid features achieve comparable results to the
regions. It is worth pointing out that our grid features run
much faster (23×), which provides great potential to be
deployed in practice, e.g., on cell phones, to better assist
the visually-impaired.

Image captioning. We train the bottom-up attention
model [2] implemented in Pythia [16] taking our features as
input for image captioning on COCO [4]. No CIDEr [40]
optimization [2] is used for fair comparison. Quantitative
results on the test set of Karpathy split [18] are reported
in Table 6d. We use standard evaluation metrics including
BLEU4 [27], METEOR [21], CIDEr, and SPICE [1]. Sim-
ilar to the VQA task, our grid features achieve comparable
results to bottom-up region ones for image captioning while
being significantly faster.

7. Towards End-to-end VQA
Although pre-training on VG, ImageNet, or YFCC pro-

vides useful feature representations for VQA, there are still
potential domain shifts between the pre-training tasks and
the downstream tasks. For example, YFCC contains a lot
of outdoor images [37], which are not present in the VQA

4https://github.com/MILVLG/mcan-vqa

https://github.com/MILVLG/mcan-vqa


accuracy
time
(ms)

Pythia [16] 68.31 -
R 68.21 929
G 67.76 39

(a)

accuracy
time
(ms)

MCAN [46] 70.93 -
R 72.01 963
G 72.59 72

(b)

accuracy
time
(ms)

Pythia [16] 54.22 -
R 54.28 874
G 54.17 38

(c)

B4 M C S
time
(ms)

BUTD [2] 36.2 27.0 113.5 20.3 -
R 36.2 27.7 113.9 20.8 1101
G 36.4 27.4 113.8 20.7 240

(d)

Table 6: Generalizations of grid features. From left to right: (a) Different backbone. We use a ResNeXt-101-32x8d instead of a ResNet-50 as the
backbone. (b) Different VQA model. We use MCAN [46] implementation which is the state-of-the-art VQA model. (c) Accuracy on VizWiz using the
same VQA models [16]. (d) Image captioning on COCO Karpathy test split. Abbreviations: BLEU4 (B4), METEOR (M), CIDEr (C), and SPICE (S). Our
grid features generalize well by achieving results at-par with bottom-up region features while being significantly faster.

pre-train task
e2e PPM

[50] accuracy ∆
dataset

region
annotations?

VG [20] 3
66.27 -

3 66.47 0.20
3 3 66.74 0.47

ImageNet [6] 7
63.21 -

3 64.98 1.77
3 3 65.97 2.76

YFCC [37] 7
65.04 -

3 65.35 0.31
3 3 66.61 1.57

Table 7: Results of end-to-end trained VQA models with grid features
on the VQA 2.0 test-dev set. End-to-end learning boosts accuracy for
all models and more for ones trained on ImageNet and YFCC. Adding
PPM [50] further improves accuracy.

dataset. Instead of using pre-computed fixed feature rep-
resentations, end-to-end training, where the initial feature
representations will be fine-tuned, provides a natural solu-
tion to reducing such domain gaps. Empowered by the dra-
matic simplification of grid features for the VQA pipeline,
we take an initial step towards this goal.

Training details. We adopt the 22K learning rate sched-
ule [16] to train both the ResNet-50 model and the Pythia
VQA model jointly, with errors from the answering accu-
racy directly back-propagated to the grid convolutional fea-
ture maps. We fix the first two residual blocks and fine-
tune the rest of the model. Since the visual representations
are computed online (not stored on disk), it allows us to
perform data augmentation including color jitter and affine
transformation over the input images to reduce chance of
over-fitting. For more details see supplementary material.

Results. We experiment with three models pre-trained on
VG, ImageNet, and YFCC. Note that while VG uses re-
gion-level annotations, both ImageNet and YFCC only use
image-level ones (human labels or noisy image tags). As
can be seen from Table 7, end-to-end training (denoted as
‘e2e’) can boost accuracy for all three pre-trained models,
with the biggest improvements for ImageNet models.

Flexible network design. As we now have the ability to
train our models end-to-end in a simple manner, it allows
us to introduce more flexible architectural designs for vi-
sion and language tasks [26]. Specifically, on top of the grid
features from the ResNet-50 model, we add a Pyramid Pool-
ing Module (PPM, a component widely used for semantic
segmentation; details in supplementary material) [50, 42]
to aggregate visual information from grid features of differ-
ent spatial resolutions. After adding this module to different
pre-trained models (Table 7, ‘PPM’), the VQA accuracy can
be further improved. Remarkably, for ImageNet and YFCC
pre-trained models, a combination of end-to-end training
and PPM results in close or even better performance than a
VG pre-trained model using pre-computed region features.
This result is particularly valuable as it indicates good VQA
accuracy can be achieved even with zero use of explicit re-
gion (bounding box) annotations.

8. Conclusion
In this paper, we revisit grid features as an alternative to

the widely used bottom-up region features [2] for vision and
language tasks, where we show they can in fact achieve on-
par results in terms of accuracy over different VQA tasks
and models and even on image captioning. As a result
of skipping the expensive region-related bottlenecks in the
pipeline, we see remarkable speed-ups – often more than an
order of magnitude – to the existing systems that rely on re-
gions. Our experiments show that rather than the ‘format’ of
features (region vs. grids), the semantic content that features
represent is more critical for their effectiveness. Such ef-
fective representation, per our experiment, can be achieved
either by pre-training on object and attribute datasets such
as VG, or more importantly, by end-to-end training of grid
features directly for the end-task. Note that while easy with
grid-features, end-to-end training is not trivial with regions.
Even with limited exploration in this direction, we already
find grid features pre-trained without any region-level an-
notations can in fact achieve strong performance on VQA
given a more flexible design space. We hope our grid fea-
tures can potentially offer new perspectives for vision and
language research in general.
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