The Engineering Implications of
Code Maintenance in Practice

Noah Lee
Meta Platforms, Inc.
Menlo Park, USA
noahlee @fb.com

Rui Abreu
Meta Platforms, Inc.
Menlo Park, USA
rui @computer.org

Abstract—Allowing developers to move fast when evolving
and maintaining low-latency, large-scale distributed systems is a
challenging problem due to i) sheer system complexity and scale,
ii) degrading code quality, and iii) difficulty of performing reliable
rapid change management while the system is in production.
Addressing these problems has many benefits to increase system
developer efficiency, reliability, performance, as well as code
maintenance. In this paper, we present a real-world case study of
an architectural refactoring project within an industrial setting.
The system in scope is our codenamed IfemIndexer delivery
system (I12DS), which is responsible for processing and delivering
a large number of items at rapid speed to billions of users in
real time. I2DS is running in production, refactored live over
a period of 9 months, and assessed through impact validation
studies that show a 42% improvement in developer efficiency,
87% improvement in reliability, 20% increase in item scoring, a
10% increase in item matching, and 14% CPU savings.

Index Terms—Architectural Refactoring, Code Quality, Per-
formance, Reliability, Developer Efficiency.

I. INTRODUCTION

Code is increasingly getting more complex and difficult to
evolve and maintain [1], [4], [9], [11]. As software systems
evolve over time, complexity growth is a major challenge
and, if not proactively managed, can lead to failed projects
[27], low engineer sentiment [10], slow and unreliable systems
[3], reduced engineering efficiency [7], increased maintenance
costs [18], and lost opportunities impacting the company’s
bottom line.

This is especially true for low latency distributed systems
that serve millions of items at a billion user scale due to the
sheer complexity at the data, code, and system level. As more
engineers contribute to the code over time, ensuring high-
quality code is difficult due to the need to balance multiple
objectives when refactoring code, such as developer efficiency,
reliability, and performance.

Code quality refers to the internal and external charac-
teristics of code and the degree of conformance to a given
design from a functional and non-functional perspective. Poor
software quality in the US alone is estimated to be worth 2 tril-
lion dollars'. The ISO/IEC 25010 standard [24] defines code
quality through the following factors: i) functional suitability,

Uhttps://www.it-cisq.org/cost-of - poor-software-quality-in-the-us/index.htm
(accessed July 13, 2022)

Mehmet Yatbaz
Meta Platforms, Inc.
Menlo Park, USA

memo @fb.com

Hang Qu
Meta Platforms, Inc.
Menlo Park, USA

quhang @fb.com

Nachiappan Nagappan
Meta Platforms, Inc.
Seattle, USA
nnachi @fb.com

ii) reliability, iii) performance, iv) operability, v) security, vi)
compatibility, vii) maintainability, and viii) transferability.

Architectural refactoring is the process of restructuring and
optimizing the internal structure of the code without altering
its external behavior [1]. Amongst the benefits of architectural
refactoring are i) clean code, ii) improved performance, iii)
increased developer efficiency, iv) reduced technical debt, v)
fewer bugs, vi) improved readability, and vii) easier maintain-
ability.

The process of refactoring code is often complicated when
dealing with legacy code, such as monolithic data and compute
classes, as well as complex interactions between new and
legacy code. Optimizing multiple aspects of code quality
requires a cautious balancing act to improve one without
regressing the other aspects [13]. As an example implementing
performance optimizations easily can lead to more complex
code, which in turn would adversely affect code quality from a
maintainability or reliability perspective. Embarking on large
scope architectural refactoring for production systems poses
risks and is further made difficult as the code is constantly
changing with 200 change requests/month submitted by thou-
sands of engineers.

Lastly, measuring the multifaceted aspects of code quality
requires investments into proper tooling and metrics to mea-
sure productivity concepts such as developer efficiency, code
quality, and operational system metrics to motivate, justify,
and incentivize the software maintenance work. The existing
ItemIndexer codebase suffered various code quality issues,
such as low cohesion, tight coupling, high code complexity,
lack of testability, and the need to perform repetitive and risky
performance optimizations, to name a few.

In this paper, we share our experience on a real-world
architectural refactoring project at Meta. The system in scope
is our codenamed [temIndexer delivery system (I12DS), which
is responsible for processing and delivering a large number of
items at low latency to a large number of users in real-time. We
pursue a modularization strategy with the goal of simplifying
the codebase to allow our engineers to easily understand,
develop, optimize, test, and maintain code. I2DS is running
in production, refactored live over a period of 9 months, and
assessed through impact validation studies that show a 42%
improvement in developer efficiency, 87% improvement in
reliability, 20% increase in item scoring, a 10% increase in

item matching, and 14% CPU savings.
The contributions of the paper are as follows:

o We share a practical, real-world study of an architectural
refactoring project of a codebase that performs large-scale
item indexing for billions of users.

e We present a multifaceted impact validation study in
terms of three aspects: i) developer efficiency, ii) reli-
ability, and iii) performance gains.

e Our measure of developer efficiency is based on the
notion of a cycle time that measures the end-to-end time
it takes for an engineer to make a code change from
conception to production.

o Within the confines of confidentiality and internal poli-
cies, we share our experience, success cases, challenges,
and lessons learned.

The paper is organized as follows. Section II presents related
work on software refactoring. Section III presents relevant
background for some of the metrics we use and additional
context on our code review system and codebase. Section IV
outlines our platformization strategy, abstraction, and measure-
ment framework. Section V presents impact validation studies
and results, followed by a discussion in Section VI where
we share challenges faced, insights, and best practices. We
conclude the paper with threats to validity in Section VII and
final remarks in Section VIIIL

II. RELATED WORK

Code maintenance through refactoring is gaining more and
more interest from academia and the industry with a growing
portfolio of refactoring use cases such as optimal scheduling
[29], recommendations [16], opportunity detection [12], and
correctness testing [28]. Recent trends point towards refac-
toring at higher levels of abstraction (e.g. at the architectural
level) [20], [21], [25] and to leverage machine learning to
automate and simplify the refactoring life cycle [5].

Abid et al. [1] performed a systematic literature review
covering 30 years of software refactoring research. They
studied 3,183 papers on software refactoring and created a
taxonomy to classify the prior art into structured themes. They
also identified key trends, gaps, and avenues for future work
and distinguished between industrial and open source related
papers. Out of the 3K papers, only ten papers included a
validation study in an industrial setting. The authors empha-
sized the need for refactoring techniques to be validated and
checked for quality and reliability using industrial systems.
They called out the need for industrial collaborations to bridge
the gap between academic research and industry needs to
produce groundbreaking research and innovation that solves
complex real-world problems. In support of this work, our
study reports on a large-scale software system refactoring that
is used by billions of users every day. We also study the
impact of our refactoring on developer productivity, reliability,
and performance improvements. The scope and nature of our
refactoring also differ from the reported industrial validation
studies.

Golubev et al. [9] conducted a survey (n = 1, 183) of Intel-
1iJ users to ask questions about software refactoring behaviors
and preferences. They found that developers spend more than
1 hour in a single session to refactor code and that developers
don’t prefer to use IDE-based refactoring tools. In our case
study we also confirm that engineers prefer to use their domain
expertise and intuition to perform software refactoring rather
than rely on tools. In our case, due to the complexity of our
codebase and system, appropriate refactoring tools were not
readily available. In contrast, whereas their work reports on
incremental small-scale (floss) refactoring our work targets an
architectural refactoring spanning over multiple months.

Ivers et al. [11] reported on a survey (n=107) with de-
velopers to understand large-scale refactoring, its prevalence,
and how tools support it. They found that developers use
several categories of tools to support large-scale refactoring
and rely more heavily on general-purpose tools like IDEs than
on refactoring specific tools. We can confirm the findings as
our engineers also mainly relied on their domain expertise to
perform the refactoring.

Moser et al. [17] reported on a refactoring case study
to assess the impact of refactoring in a close-to industrial
setting. They found that refactoring can improve aspects of
code quality and productivity. The refactoring team consisted
of 4 developers who refactored a Java application as part of the
study. They assessed the quality of the code using complexity,
coupling, and cohesion metrics. Productivity was defined as
lines of code (LOC) divided by effort. In comparison, our
study involves similar code quality metrics but differs in how
we define productivity. Our measure of productivity does not
rely on LOC, but on the notion of a cycle time that measures
how long it takes to bring a change from conception to
production. We believe that cycle time in combination with
quality metrics such as guard rails is a more appropriate metric
than lines of code [22].

Wabhler et al. [26] conducted a case study in which software
engineers consulted researchers to refactor their simulation
software. The Java application had grown to 30K lines of code
and was deemed unmaintainable. They used a combination of
static analysis with software metrics to devise a refactoring
strategy. Our codebase in 5X larger in size and shares a set
of different lessons learned given the scale and nature of our
codebase and system.

Szoeke et al. [23] performed a study in which they collected
a large amount of data during a refactoring phase where
the developers used a (semi)automatic refactoring tool. By
measuring the maintainability of the involved subject systems
before and after the refactorings, they extracted valuable
insights into the effect of these refactorings on large-scale
industrial projects.

While the literature is rich around survey and review papers,
empirical case studies and industrial experiences for large scale
software systems are scarce. Most studies report empirical
investigations in an open-source setting. We argue that our
work brings substantial value to the community by providing
additional insights and lessons learned on refactoring large-

scale software systems and their validation in an industrial
setting.

III. BACKGROUND

In this section, we provide context on our code quality
review process, the various code quality metrics, and our I2DS
codebase.

A. The code quality review process

At Meta, we use Phabricator as the backbone of our Con-
tinuous Integration (CI) system® and code quality assurance
process. Phabricator is a standalone application that sits on
top of our CI infrastructure and is used for modern code
review, through which developers submit pull requests (which
we internally call diffs) and comment on each other’s diffs,
before they ultimately become accepted into the codebase
(or are discarded) to ensure that code changes are of high
quality. More than +100K diffs are committed to the central
repository every week, using Phabricator as a central gate-
keeper, reporting, curating, and testing system. The author
uploads the diff and, after checking it and potentially adding
comments to guide reviewers, “publishes” the diff. The author
can assign individual reviewers and/or groups of reviewers,
both before and after publishing. Phabricator’s Ul contains
specific contents of the diff (see Figure 1). This includes a
title, summary, and the code changes itself.

The benefit of Phabricator is the ability to distinguish
between different events that take place during the code review
process. Each event and action taken during the life cycle of
a code review process and interaction with the Phabricator
Ul is associated with an engineers’s identity and associated
timestamp. Events such as when a code review was accepted,
abandoned, or taken over by someone else, when a reviewer
resigned, and when some attributes of a diff (e.g., title,
summary, and test plan) were updated are available. To the best
of our knowledge, we are not aware of any other code review
system that provides this level of granularity. We leverage the
Phabricator data to measure aspects of developer efficiency. In
2011, Meta released Phabricator as open source as explained
in subsequent sections.

B. Meta’s codebase

Meta stores all of its code in a monorepo® (akin to other
companies [2], [19]). Storing all our code in a single repos-
itory has a number of advantages. First, simplification of
dependency management, such as automatic prevention of the
dreaded diamond dependency problem. Second, easier and
more systematic version management for libraries. Third, the
possibility to perform large-scale software refactorings and
account for all API interfaces and call sites. And lastly, guiding
engineers to make small, incremental changes often and early
in the development cycle. A disadvantage of the monorepo
model is that small changes can have a large impact radius

Zhttp://phabricator.org (accessed July 13, 2022)
3Durham Goode. 2014. Scaling Mercurial at Facebook. https://code.fb.com/
core-data/scaling-mercurial-atfacebook/ (accessed July 13, 2022)

[14] and therefore requires careful understanding by engineers
to prevent regressions.

C. ItemIndexer system and codebase

ItemIndexer is an in-memory indexing sharded system and part
of a broader service delivery ecosystem. It hosts and serves a
universe of distributed eligible items for a given user at low
latency. The system works with ItemFinder, another service,
to find the best eligible items for a user by identifying the
top candidates. The ItemIndexer performs item processing and
delivery. The codebase of ItemIndexer is hot, i.e. if we only
consider the activity on the folder .../itemindexer, there are
about 200 diffs being landed every month and at least 1,500
engineers reading and working with the code every month.
The codebase under has roughly about +173K lines of C/C++
code, +1.5K files and +1.4K functions.

D. Measuring developer efficiency

Developer efficiency refers to the highest level of performance
that uses the least amount of inputs to achieve the highest
amount of output. Efficiency is quantitatively determined by
the ratio of useful output to total input. We map code authoring
activity such as code commits to a particular diff and thereby
can measure and quantify the time it takes from making the
first commit of a code change to the time the associated diff
lands in production. At Meta, we refer to this cycle time as
Code Gestation Time (CGT). A diff corresponds to a code
change in the system and represents a unit of work being
performed by engineers. We use the notion of a cycle time
to quantify and reason about developer efficiency to get an
understanding of how fast developers can land a change in
production. In our case, the output corresponds to a single
diff, and total input the time the engineer spent on producing
that diff.

E. Measuring reliability

To measure code reliability, we leverage an internal incident
management system that allows us to map an incident to a
particular diff in question. Our reliability metric is a simple
count of production incidences over time due to a particular
code, e.g., n incidences per code per time period.

F. Measuring performance

To measure performance, we mine internal performance data
across various stages of the development cycle, as well as
dynamic execution times of the system and the service.

G. Code quality metrics

Rather than using a single metric to quantify code quality,
we prefer to have a portfolio of code quality metrics to get
a multifaceted view of code quality. For our purposes, the
primary metrics of interest relate to the complexity of code,
the coupling, churn, and how many engineers modify the code.
Our internal metric catalog has many more metrics, but for
brevity and exemplary purposes, we only list a subset of the
metrics below.

] Diff summary

The assigned
reviewers

Comments and Activity

n
e . I'd also suggest, limiting to “relevant”

people only (similar to tasks), i.e. only
show reviewers and subscribers.

srday at 5:07 PM

— . e
= Yeah, I'm fine with sorting those folks to
the front, but | definitely want to show
everyone who has looked at it. That's the
funnest part about the new feature. You'd
be quite surprised who looks at your diffs

Fig. 1. A redacted view of a pull request (also called diff) under code quality review in Phabricator. Authors and reviewers can interact via the diff review
page. The diff under review has several sections including the diff summary, the actual changes that happened, the assigned code reviewers, the interactions
between the various reviewers and author, the test case information and status, the results of static analysis, historical information, amongst other info.

Fig. 2. The conceptual view of the code-as-platform platform strategy to refactor our ltemindexer delivery system (I12DS). Producers are engineers who
provide foundational abstractions and building blocks into the ItemlIndexer codebase. Consumers are engineers who leverage and build upon these foundations.
The more engineers consume the framework the more incentives the engineers have who produce, optimize, and maintain the Flow and Stages functionality.
Therefore, we distinguish between framework producers and consumers. The main abstraction principles of the architectural refactoring are the concept of
Flows and Stages. The code quality framework (CQF) provides an interface to Meta’s infrastructure for measurement and monitoring purposes. Flows consists
of stages, where a stage can point to a flow itself. The type of flow determines the type of concurrency such as Batched, Streaming, or Parallel Flow executions.

¢ Cyclomatic Complexity (CCN) — CCN [15] indicates The higher the coupling the more risk is introduced when

the complexity of a software program. It measures the
number of linearly independent paths through the source
code of a program [6]. The more complex the code and
the more branches, the harder it is to test the code,
comprehend, maintain, and innovate on it. We use CCN
at the file level by measuring the number of condition and
exit points 7 — s + 2, where 7 is the number of decision
points in the file, and s is the number of exit points.

Fanout Internal/External (FI/E) — FI/E indicates how
many different modules are used by a certain module to
measure interdependency or coupling between modules.
A high fanout makes code less modifiable. External
imports concern imports from outside the software system
(e.g., standard libraries), while internal imports concern
references within the codebase itself. Fanout gives us a
notion how large the potential impact radius is for a file.

a change to a file is made.

Code Churn (last 28 days) CC (L28) — CC(L28)
measures how often a file has been changed in the last 28
days. We also examine L7, L90, and L180. For the sake
of brevity, we only demonstrate L28 as the time horizon
captures a clean 4 weeks of signal. Code churn gives us a
signal of how often code is changing with the assumption
that the more often code changes, the higher the risk for
bugs and production issues.

Authors Count (last 28 days) AC (L28) — AC(L28)
measures the number of unique authors who changed the
file in the last 28 days. See our remark about Code Churn.
We follow the same principle to compute different time
horizons of the metric. The author count gives us a signal
of how many different engineers touch the code with the
assumption that the more people touch the code, the more

risk is introduced.

For CCN and Fanout (FI/FE) we use the Multimetric* open
source library. CC and AC are computed from internal logging
data. Due to internal security policies leveraging closed-source
commercial code quality frameworks is not an option for this
initiative.

IV. METHODOLOGY

In this section, we describe our code platformization strategy,
the code abstractions that we used to perform architectural
refactoring and our code quality framework.

This initiative is motivated by the following aspirations: 1)
to re-architect the core components of I2DS to be simple to
understand and innovate and ii) to build the core libraries
that enable robust, observable and high-performant execution.
Our approach is guided by Gall’s Law [8], which states that
”a complex system designed from scratch never works and
cannot be made to work.” One has to start over and begin
with a simple working system or a set of subsystems first.
Therefore our aim is to identify and implement strategies that
seek simplicity rather than adding to the complexity of the
current system.

The conceptual view of our architectural refactoring consists
of the ItemIndexer Framework, engineers who produce foun-
dational abstractions (Producers), and engineers who consume
and build upon these (Consumers). The key abstractions con-
sist of Flow and Stages. Each Flow consists of multiple Stages
and a Stage can refer to other Flows recursively (see Figure
2).

A. Code platformization

By code platformization, we refer to the strategy to view
and treat code as a platform. For this project a few senior
engineers embarked on the architectural refactoring to produce
foundational abstractions that other engineers can consume,
built-upon, and leverage to build more complex business
logic. This creates a network effect where senior engineers
are incentivized to produce more abstractions as more and
more engineers consume and benefit from it. So rather than
enforcing hard guardrails and guidance on how code should be
written and designed, we employed a soft guidance approach
by providing and leading with the right code abstractions that
other engineers can use to follow best practices and write
higher quality code.

B. Status quo

The existing ItemIndexer codebase suffered from various code
quality issues, such as low cohesion, tight coupling, high
code complexity, lack of testability, and the need to perform
repetitive and risky performance optimizations, to name a
few. Understanding a unit of code was difficult due to low
cohesion and unrelated code being intermixed with no clear
responsibility boundaries. Changing code was error-prone due
to tight coupling and opaque side effects, making debugging

“https://github.com/priv-kweihmann/multimetric (accessed July 13, 2022)

time-consuming and landing production changes risky. Code
in general had high code complexity with many execution
paths, which further made writing test cases more difficult and
intractable. Compute logic was mixed in monolithic functions.
Data logic were mixed in monolithic classes. Infra logic were
coupled with business logic. The existing code had no general
mechanisms to address performance optimizations for new
changes and required reinventing the wheel for each new
local optimization, which introduced further reliability risks.
Optimization ideas like multi-phase retrieval, interruption-
based timeout, latency hiding, value-based prioritization and
streaming processing have great performance potential. How-
ever, these optimizations would have added complexity to the
system. If not managed correctly, the complexities would have
been difficult to understand, prototype, and maintain. The lack
of clean, simple, and high quality code prevented our engineers
from writing diffs quickly, debugging quickly, and introducing
new technologies quickly. We needed a strategy that trades off
developer efficiency, reliability, and performance.

C. Architectural refactoring

One consideration was to make the codebase more modular
and pursue a thoughtful, staged approach to refactor I2DS
live over a period of many months. We describe a refactor-
ing approach that unifies the before mentioned optimization
ideas. The abstraction encapsulates the concurrency logic,
so the actual business logic is decoupled and remains easy
to understand. At the same time, such unification simplifies
implementing and maintaining aforementioned performance
optimizations.

The proposed abstraction applies the actor model® and the
Pipe and Filter pattern to decouple infra vs. business logic. It
specifies concurrency as actors called “Flows” that exchange
“Messages”. For example, parallel ranking can be a Flow and
sequential truncation of items can be a Flow. By specifying
how Flows exchange Messages, we program performance
optimization ideas in a unified manner. Flows handle the infra
logic, specify execution modes, stopping conditions, enable
configuration driven management, reusability, and allow for
the generation of arbitrary compute pipelines. They provide
a mechanism to unify various optimization paradigms such
as latency hiding, value-based prioritization, and stream pro-
cessing, which enables us to balance developer efficiency,
reliability, and performance by decoupling concurrency logic
from business logic in a reusable way. An example of the Flow
and Stage abstraction is shown in Figure 3.

The conciseness of the code is due to the existing futures
algorithms of our Folly library® (see Figure 4). We can use
< 30 lines to specify batched execution and < 100 lines to
specify streaming execution. Moreover, a Stage can be used to
run either in a batched, streaming, or parallel mode, depending
on what Flows are used.

Programmatically, a request execution is a linear chain
of Flows. Each Flow runs Stages with specific execution

Shttps://en.wikipedia.org/wiki/Actor_model (accessed July 13, 2022)
Shttps://github.com/facebook/folly (accessed July 13, 2022)

Flow Implementation
Flow implementation encapsulate infra logic

class ParallelFlow: public FlowInterf {
public:
ltemHandles exec(ltemHandles itemHandles) override {
... Il Infra logic
}
}

Flow Specification
Gives business logic of execution policies

ParallelFlow indexingFlow(timeout, numThreads);
indexingFlow.add<CollectFeaturesStage>();
indexingFlow.add<ProcessFeatures>();
indexingFlow.add<Evaluate>();

itemHandles = indexingFlow.exec(itemHandles);

Stage
A stage model the business logic of a compute model

struct CollectFeaturesStage {
static ltemHandles proc(ltemHandles itemHandles) {
for (auto itemHandle: itemHandles)
fetch (itemHandle.getRef<Features>());
return sty:filter(itemHandles, isSuccess);

Field
A field models the business logic of a data module

Using ItemHandles = std::vector<DataAPIHandle<Features, Feature, Score>>;

Fig. 3. An example of the high-level design of the Flow and Stage
abstractions. Flows capture infra logic whereas Stages capture business logic
to have a clear separation boundaries. A Flow specification orchestrates the
realization of infra and business logic being executed to perform a task within
12DS with minimal code effort. Fields model the data aspect of implementing
business logic.

options. Here, Stages are modular compute and data units and
purely model business logic: It is a single-threaded function
that inputs and outputs Messages; it is fully decoupled from
concurrency. Each Flow can run multiple Stages with varying
execution options. Flows have different types to specify differ-
ent execution modes such as batched vs. streamed processing
vs. parallel for low-latency parallelization. Stages can run
Flows enabling flexible recursion logic. These are the only
key abstractions to keep the framework simple. Different types
of Flows specify different execution modes, for example, a
BatchedFlow does not process Messages until all Messages
have been received, while a StreamingFlow processes Mes-
sages as they are received. By configuring what Flow to run
what Stages, we specify the execution behavior. And a specific
execution mode is a Flow class that can be reused.

A more detailed implementation of Flowlnterface and
FlowKernel can be seen in Figure 4.

The framework allows for an incremental adoption model so
that architectural refactoring can be accomplished by refactor-
ing code gradually to derisk the effort over time with respect
to performance or reliability regressions. At the beginning,
we started with only a handful of Stages and have grown to

class FlowInterf {
public:
virtual ~FlowInterf() {}
virtual folly::SemiFuture<FeedbackSignal> onRec(
MsgVec msgVector) = 0;
virtual folly::SemiFuture<FeedbackSignal> onNotifyMsgEXx() = 0;

I

class FlowKernel {
public:
FlowKernel(
FlowIntf& nextFlow,
std::function<MsgVec(MsgVec)> flowFunc, int64_t batchSize = 0)
: nextFlow_(nextFlow), batchSize_(std::max(1l, batchSize)) {
procBatchFunc_ = [flowFunc,&nextFlow](MsgVec msgVec) mutable {
return folly::makeSemiFuture(std::move(msgVec))
.deferVal(flowFunc)
.deferVal(std::bind(&FlowInterf::onRec, &nextFlow, std::placeholders::_1));
b
}

folly::SemiFuture<FeedbackSignal> process(
MessageVector msgVec) noexcept {
auto semiFutures = msgVec | ranges::views::chunk(batchSize_) |
ranges::views::transform(ranges::to_vector) |
ranges::views::transform(procBatchFunc_) | ranges::to_vector;
return folly::collectAll(std::move(semiFutures))
.deferVal(internal::mergeSignals);

}

folly::SemiFuture<FeedbackSignal> gen() noexcept {
return folly::mkSemiFuture(MsgVec())
.deferVal(procBatchFunc_);
}

FlowInterf& getNextFlow() { return nextFlow_; }

private:
FlowInterf& nextFlow_;
const int64_t batchSize_;

std::function<folly::SemiFuture<FeedbackSignal>(MsgVec)>
procBatchFunc_;

J7

Fig. 4. An example of the FlowInterface and FlowKernel implementation. The
FlowInterface specifies the execution interface of a flow and the FlowKernel
the common facilities of a Flow. We use our internal library Folly® to
implement SemiFutures, which simplifies the Flow logic into a handful of
lines. Folly is a library of C++14 components designed with practicality and
efficiency in mind. Folly contains a variety of core library components used
extensively at Meta.

currently 80+ Stages in total. The various colors of the area
chart refer to different phases of the I2DS system (see Fig. 5).

We did not employ specific external refactoring tools, but
rather relied on the domain expertise of our engineers to
analyze the code and design the proper abstractions.

D. The code quality framework (CQF)

The Code Quality Framework (CQF) is an internal effort
to build up the logging and measurement infrastructure to
compute various metrics and insights to gain an understand-
ing of code quality and its impact on developer efficiency,
reliability, and performance. The framework uses various
internal infrastructure systems, platforms, and tools to provide
a simplified and consolidated interface to data, code, and
execution related metrics. The phabricator, for example, is one
sub-component of that framework. Where possible we also
leverage open source packages for some of the metrics as

Jul'20 Aug'20 Sep'20 Oct'20 Nov'20 Dec'20 Jan'2l Feb'21 Mar'2l Apr'21 May'2l Jun'21 Jul'2l Aug2l Sep'2l Oct'21 Nov'21

Fig. 5. An area chart of the different phases of the ItemIndexer framework
and gradual introduction of associated Stages. We currently have more than 80
Stages for various business logic use cases. From top to bottom, the phases
correspond to item-ranker, post-ranker, post-return, pre-ranking, stage-one-
ranking, and item-retriever phases, which are internal labels for the different
phases of the ItemIndexer process and system. The chart shows a high level
break down of how the 80 Stages are attributed to the different phases of
ItemIndexer.

described in the prior section. Through a Code Commit Cache
(CCC) mechanism we are able to rapidly obtain arbitrary
source code snapshots allowing us to calculate various code
metrics at fine grained time resolutions for arbitrary histories.
For our purposes, we obtained daily snapshots (see Figure 6).
The Metric Generator is a distributed process that shards
the codebase into chunks to compute the metrics in parallel
across a cluster of machines. Due to internal policies, security
concerns, and the scale of our infrastructure, the standard
commercial frameworks do not work for us due to the scale we
operate and the need to synergize alignment with our internal
infrastructure.

V. OUTCOME ASSESSMENTS AND RESULTS

In this section, we report our data collection process, how we
analyzed the impact on developer efficiency, reliability, code
quality metrics, and performance, as well as the actual results.

A. Data collection

We obtained data from various internal sources such as our
internal Version Control and CI systems to get access to the
I2DS codebase. We use CCC to obtain the latest commit of the
day to get the latest status of the codebase for that day. Due to
our monorepo design the latest commit of the master branch
represents all code changes that have been made by engineers.
We needed to build CCC due to the scale of our codebase and
the volume of commits being performed to retrieve commits
quickly for arbitrary time periods. Once we had access to the
codebase, the CQF Metric Generator computed a portfolio of
daily code quality metrics (see Figure 6).

For developer efficiency metrics we leveraged the internal
logging data of Phabricator, which provides start and end times
for the different phases of the life cycle of a diff (e.g. creation,
reviewing, publishing, production). All diffs were taken into
account, which includes new feature work as well as bug fixes.
I2DS is a constantly evolving system and actively developed
to improve efficiency, performance, reliability, and evolves
based on internal requirements. In addition, we combined
logging data on commits that engineers perform prior to
creating a diff and used the time of the first commit that
can be traced back to a particular diff. Each diff has a list

of the files that changed, which we used to map a diff back
to the 12DS codebase. For reliability metrics, we leveraged
the internal incident management logging data, which tracks
for each incidence the relevant root cause diffs. Performance
metrics are readily available due to our continuous system and
infrastructure monitoring tools. For the code quality metrics
our analysis period matched the time period of when the
refactoring started and ended, namely from 2020-05-11 till
2021-02-26. For the developer efficiency metrics, we had to
choose a longer time period to understand the status quo prior
to the refactoring and leave room for a sufficiently long time
period after the refactoring. We chose 2021-01-01 to 2021-
04-11 as our time period for analysis. For reliability metrics,
our time period ranged from 4 months before and after the
refactoring period.

B. Impact on developer efficiency

To compare CGT before and after the finalization of the
architectural refactoring, we chose two time periods of a week
in length, but 4 months apart. The first time period (in red,
left box) captured CGT at the beginning of January 2021,
and the second time period (in green, right box) captured
CGT after the refactoring had been completed for at least a
month. This is to measure the impact for the current half of
the year. Note that we did not directly use the first week of
January due to holidays. Rather than picking a point estimate
we computed the trend and averaged the trend values (orange
smooth curve) for the two mentioned comparison periods to
account for noise in the metric (blue noisy curve). So, let
cgty = 1/nY . x; be the mean of the CGT trend before
refactoring and cgt, = 1/n).; x; the mean of the CGT
trend after refactoring. We quantify the improvement in CGT
as (cgt, — cgtp)/cgty. We found that the refactoring effort
led to a 42% improvement in developer efficiency (i.e., CGT
decreased by 42%). The red vertical line indicates the end of
ItemIndexer framework refactoring (2021-02-26) (see Figure 7
and Table I).

TABLE I
IMPACT OF REFACTORING ON DEVELOPER EFFICIENCY MEASURED BY
CGT (IN HOURS).

After
172.9

Delta
-125.5

Before
298.4

% change
-42.1

C. Impact on reliability

For reliability, we compared two 4-month periods before
and after the refactoring period (2020-05-11 to 2021-02-26)
and measured the number of ItemIndexer-specific production
issues. So let issue, = Z? x; be the sum of the issue
counts before the refactoring and issue, = Zf x; the sum
of the issue counts after the refactoring. We quantify the
improvement in reliability as (issue, — issuep)/issue,. We
found a 87% improvement in the reduction of reliability issue
events (see Table II).

Code quality metrics

700

loc

400

Jan 2020 Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021

Date

Code quality metrics

fanout_internal
8

Jan 2020 Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021

Date

Code quality metrics

40

cyclomatic_complexity

Jan 2020 Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021

Date

Code quality metrics

fanout_external

IS

Jan 2020 Mar 2020 May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021

Date

Fig. 6. A subset of internal code metrics computed in the ItemIndexer codebase over a period from 2020-01-01 till 2021-04-11. Red vertical lines indicate
the date when architectural refactoring diffs were landed in production. The first refactoring diff was landed on 2020-05-11 and the last on 2021-02-26. The
top-left graph shows the daily trend of the average number of lines of code (LOC) per file in the codebase. The top-right graph shows the daily trend of the
average cyclomatic complexity of a file in the codebase. The bottom-left graph shows the average daily trend of fanout_internal and the bottom-right graph
shows the average fanout_external of a file in the codebase. For all examples a lower average is preferred, i.e. the goal of the refactoring is to reduce the
complexity (size, branching structure, and coupling) an engineer has to deal with. Header files have been excluded. One can also observe that prior to the

refactoring period, the loc, cyclomatic complexity and fanout_internal metrics have been trending upward.

TABLE I
IMPACT OF REFACTORING ON RELIABILITY (ISSUE COUNTS).

Before After Delta
49 6 -43

% change
-87.7

D. Change in code quality metrics

We have also computed a set of code quality metrics to provide
a multifaceted view on how the refactoring effort has impacted
code quality. We have chosen to highlight Cyclomatic Com-
plexity (CCN), Fanout Internal (FI), Fanout External (FE),
Code Churn (CC(L28)), and Author Count (AC(L28)). We
found that the refactoring led to the following improvements.
A 60% reduction in Cyclomatic Complexity, a 55% reduction
in Fanout Internal, a 64% reduction in Fanout External, a
70.7% reduction in Code Churn (CC(L28)), and 69% reduction
in author count (AC(L28)) (see Table III).

E. Impact on system performance

Lastly, we report on various performance wins as part of the
refactoring project. We found a +20% increase in item scoring
and a +10% increase in item matching through C++ pointer

TABLE III
IMPACT OF REFACTORING ON MULTIFACETED CODE QUALITY METRICS
(2020-05-11 -2021-02-26). LOC=LINES OF CODE, CCN=CYCLOMATIC
COMPLEXITY, FI=FANOUT INTERNAL, FE=FANOUT EXTERNAL,
CC(L28)=CODE CHURN (LAST 28 DAYS), AC(L28)=AUTHOR COUNT
(LAST 28 DAYS). NEGATIVE PERCENTAGES DENOTE A DECREASE IN THE
METRIC, E.G. CCN DECREASED BY 59.2%.

LOC CCN FI FE CC(L28) AC(L28)
change -60.9% -592% -55.1% -63.8% -70.7% -69.0%
delta -398.4 -21.2 -22.4 -4.2 -2.5 -1.6
before ~ 653.64 35.88 40.7 6.58 3.66 2.41
after 255.2 14.64 18.29 2.38 1.07 0.74

optimizations that allowed, e.g., the use of std::move instead
of copy. This further allowed a 91% reduction in time spent
for certain Heap and Iterator operations such as pop and next.
Through optimized timing of object destruction calls, reusable
optimization mechanisms, and automatic asynchronous de-
struction we found a +14% improvement in runtime reduction.

VI. DISCUSSION

This investigation demonstrates the benefits of addressing
complexity growth by prioritizing code quality improvements
through refactoring. Pursuing a code platformization strategy

Developer efficiency (CGT)

600

100

Jan 3
2021

Jan 17 Jan 31 Feb 14 Feb 28 Mar 14 Mar 28 Apr 11

Date

Fig. 7. Improvement in CGT for H1 2021. Red line (vertical line) indicates
the end of the refactoring project (2021-02-26). The red area (left rectangle)
indicates the start window to measure CGT at the beginning of 2021. The
green area (right rectangle) indicates the end window to measure the CGT
as of 2021-04-18 leaving enough room for the metric to evolve after the
refactoring had concluded. The blue line (noisy curve) represents the raw
daily CGT trends and the orange line (smoothed curve) is the extract time
series trend to smooth out daily fluctuations and noise. Note that the trend is
decreasing, since CGT is a measure of the cycle time for a diff. The smaller
the CGT, the faster engineers can bring a change to production.

and designing and implementing the right abstractions help to
make the code simpler to work with, which in turn unlocks
improvements in developer efficiency, reliability, and system
performance. We demonstrate that architectural refactoring of
a codebase can be achieved via modular code structure, proper
abstractions, and measurement frameworks.

We take a multifaceted view towards the impact of refac-
toring considering developer efficiency, reliability, and perfor-
mance. Improvements in code quality to changes in devel-
oper efficiency have not received much attention as part of
refactoring research for large-scale distributed systems. The
measurement framework allows us to efficiently compute arbi-
trary code metrics from arbitrary time periods and resolutions
obtained through a parallelized commit cache.

A systemic challenge that we would like to propound to
academic research community is that many of the refactoring
solutions came from seasoned experts and manual analysis
of the codebase. Having semi- or automatic ways to assist
this process would be of high interest, yet usable solutions or
methods to easily apply in an industry setting are scarce.

A. Lessons learned

The refactoring of our ID2D codebase was a challenging and
risky undertaking. Many months of preparation, design, and
alignment discussions were performed to develop our strategy
and approach. In this section, we would like to share some of
the lessons learned.

L1: Large-scale distributed system — Embarking on an
architectural refactoring of a large-scale distributed system that
is live 24/7 is a big undertaking with many risks involved.
Especially for complex parallel code constructs, changing is

risky. Not to mention that refactoring had to be performed
gradually where engineers needed to cope with an intermediate
mixed-state of legacy and new refactoring code. Careful,
parallel test paradigms and supporting the notion of a partial
API to gradually role out the refactoring helped in managing
this risk.

L2: View code as a platform — The notion of code
platformization helps to identify and incentivize the right
abstractions, which enabled us to create modular simplified
building blocks, clear separation of concern, better ownership
attribution, and to transform repetitive and risky performance
optimization into reusable generic optimization principles that
consumers can easily leverage and build upon.

L3: Core abstractions — Focus on the engineering quality
of the core abstractions, making it minimal and simple to use
and adopt.

L4: Performance regression — Minimization of perfor-
mance regressions was on the one hand important and, on
the other hand, rather challenging due to the user-facing
nature of the system, which required careful implementation
of abstractions through template meta-programming and close
monitoring of performance with constant performance mining
and tuning.

LS: Early feedback — Early involvement of the frame-
work’s consumers and iteration of their feedback was essential
to fail fast, choose the right trade-offs, and optimize design and
architecture. Learning from our users what worked and what
did not helped us further prioritize to align immediate needs
with longer-term refactoring milestones.

L6: Tooling and measurement — The complexity of
the initiative and time horizon required for every phase the
availability of multifaceted measurement signals to guide the
effort, validate changes, measure effectiveness, and ultimately
the outcomes, which did not exists. A lot of the tooling and
measurement had to be build in parallel and was instrumental
to guide, inform, and justify the effort. Define metrics to
track the abstraction onboarding progress and quality, and
at the same time, keep retrospecting its impact on developer
efficiency.

L7: Incentives — Architectural refactoring alone is only
half the story, and investing, motivating, incentivizing code
quality improvement initiatives requires a tightly coupled
multifaceted measurement framework to validate, proactively
identify and quantitatively measure the impact of refactoring
opportunities. As has been reported in prior literature motivat-
ing engineers to embark on refactoring projects is a challenge,
which requires additional investments to build out the code
quality framework to make impact identification, prioritization,
and measurement easier for engineers.

VII. THREATS TO VALIDITY

Internal validity — The metric measurements are derived
from our internal tools, which are used daily by thousands
of engineers. No sampling was applied. To get representative
data we utilized various time periods to perform before and
after comparisons. The before and after periods contained diffs

that represented the typical engineering workload to evolve
I2DS. A slight difference is that the improvement in reliability
reduced the number of bug fix work. The developer efficiency
measures were computed on the whole engineering population
that consumed the [temindexer framework. For more robust
estimates, we compared trends for two point estimates based
on a 7 week average to account for noise. Running an A/B
test was neither feasible nor practical due to cost and business
constraints.

External validity — /2DS is an internal system with a
unique architecture and scale. The results are only valid for the
investigated system and may not be valid for other systems, yet
we hope that the challenges and lessons learned can provide
value to other practitioners and researchers.

VIII. CONCLUSION

In this paper we shared our experience on a code maintenance
project that involved one of our ItemIndexer delivery systems
(I12DS), a service that delivers millions of items to billions of
users at low latency. We found that investing in code main-
tenance can have a positive impact on developer efficiency,
reliability, and system performance, as well as improvements
for various code quality metrics.

Future work is focused on scaling out the code quality
framework to other areas of Meta’s codebase. This will involve
building out multi-language support for our code quality met-
rics, enriching our metric portfolio, creating features and code
quality specific labels to drive code maintenance automation
initiatives and tooling development.

REFERENCES

[1] Chaima Abid, Vahid Alizadeh, Marouane Kessentini, Thiago do Nasci-
mento Ferreira, and Danny Dig. 30 years of software refactoring
research: A systematic literature review. ArXiv, abs/2007.02194, 2020.

[2] Nicolas Brousse. The issue of monorepo and polyrepo in large
enterprises. In Proceedings of the Conference Companion of the 3rd
International Conference on Art, Science, and Engineering of Program-
ming, pages 1-4, 2019.

[3] Aloisio Cairo, Glauco Carneiro, and Miguel Monteiro. The impact of
code smells on software bugs: A systematic literature review. Informa-
tion, 9:273, 11 2018.

[4] L. Cruz and Rui Abreu. Using automatic refactoring to improve energy
efficiency of Android apps. ArXiv, abs/1803.05889, 2018.

[5] Dario Di Nucci, Fabio Palomba, Damian A. Tamburri, Alexander
Serebrenik, and Andrea De Lucia. Detecting code smells using machine
learning techniques: Are we there yet? In 2018 IEEE 25th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 612-621, 2018.

[6] Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and
Phillip Laplante. Cyclomatic complexity. IEEE software, 33(6):27-29,
2016.

[7]1 Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas
Zimmermann, Brian Houck, and Jenna Butler. The space of developer
productivity: There’s more to it than you think. Queue, 19:20-48, 02
2021.

[8] John Gall. General Systemantics: An Essay on how Systems Work.
General Systemantics Press, 1975.

[9] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey
Bryksin, and Mohamed Wiem Mkaouer. One thousand and one stories:
A large-scale survey of software refactoring. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2021, page 1303-1313, New York, NY, USA, 2021. Association for
Computing Machinery.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abra-
hamsson. What happens when software developers are (un)happy.
Journal of Systems and Software, 140:32-47, 2018.

James Ivers, Robert L. Nord, Ipek Ozkaya, Chris Seifried, Christo-
pher Steven Timperley, and Marouane Kessentini. Industry experiences
with large-scale refactoring. CoRR, abs/2202.00173, 2022.

Satnam Kaur, Lalit Awasthi, and Amrit Sangal. A review on software
refactoring opportunity identification and sequencing in object-oriented
software. Recent Advances in Electrical Electronic Engineering
(Formerly Recent Patents on Electrical Electronic Engineering), 13,
07 2020.

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. An
empirical study of refactoring challenges and benefits at Microsoft. [EEE
Transactions on Software Engineering, 40(7), July 2014.

Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chan-
dra. Predictive test selection. In 2019 IEEE/ACM 4lst International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 91-100, 2019.

Thomas J. McCabe. A complexity measure.
Software Engineering, SE-2(4):308-320, 1976.
Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel O Cinnéide. Recommendation system for software
refactoring using innovization and interactive dynamic optimization.
In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, page 331-336, New York,
NY, USA, 2014. Association for Computing Machinery.

Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti,
and Giancarlo Succi. A case study on the impact of refactoring on
quality and productivity in an agile team. In Bertrand Meyer, Jerzy R.
Nawrocki, and Bartosz Walter, editors, Balancing Agility and Formalism
in Software Engineering, pages 252-266, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

Edward Ogheneovo. On the relationship between software complexity
and maintenance costs. Journal of Computer and Communications,
02:1-16, 01 2014.

Rachel Potvin and Josh Levenberg. Why Google stores billions of lines
of code in a single repository. Communications of the ACM, 59(7):78—
87, 2016.

Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. Refac-
toring for software architecture smells. In Proceedings of the Ist
International Workshop on Software Refactoring, INoR 2016, page 1-4,
New York, NY, USA, 2016. Association for Computing Machinery.
Darius Sas, Paris Avgeriou, and Umut Uyumaz. On the evolution and
impact of architectural smells — an industrial case study. Empirical
Software Engineering, 27(86), 2022.

Syed Muhammad Ali Shah, Efi Papatheocharous, and Jaana Nyfjord.
Measuring productivity in agile software development process: A scop-
ing study. In Proceedings of the 2015 International Conference on
Software and System Process, ICSSP 2015, page 102-106, New York,
NY, USA, 2015. Association for Computing Machinery.

Gabor Szbke, Csaba Nagy, Péter Hegediis, Rudolf Ferenc, and Tibor
Gyimé6thy. Do automatic refactorings improve maintainability? an
industrial case study. In 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 429-438, 2015.
Unknown. ISO/IEC 25010:2011. https://www.iso.org/standard/35733.
html, 2011. [Online; accessed 11-Nov-2021].

Roberto Verdecchia, Philippe Kruchten, Patricia Lago, and Ivano Mala-
volta. Building and evaluating a theory of architectural technical
debt in software-intensive systems. Journal of Systems and Software,
176:110925, 2021.

Michael Wahler, Uwe Drofenik, and Will Snipes. Improving code
maintainability: A case study on the impact of refactoring. In 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 493-501, 2016.

Kaitlynn M. Whitney and Charles B. Daniels. The root cause of failure
in complex IT projects: Complexity itself. Procedia Computer Science,
20:325-330, 2013. Complex Adaptive Systems.

Jifeng Xuan, Benoit Cornu, Matias Martinez, Benoit Baudry, Lionel
Seinturier, and Martin Monperrus. B-Refactoring: Automatic Test Code
Refactoring to Improve Dynamic Analysis. Information and Software
Technology, 76:65-80, 2016.

Minhaz F. Zibran and Chanchal K. Roy. Conflict-aware optimal schedul-
ing of code clone refactoring: A constraint programming approach. In
2011 IEEE 19th International Conference on Program Comprehension,
pages 266-269, 2011.

IEEE Transactions on

