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Abstract
Off-policy learning is key to scaling up reinforce-
ment learning as it allows to learn about a target
policy from the experience generated by a differ-
ent behavior policy. Unfortunately, it has been
challenging to combine off-policy learning with
function approximation and multi-step bootstrap-
ping in a way that leads to both stable and efficient
algorithms. In this work, we show that the TREE
BACKUP and RETRACE algorithms are unstable
with linear function approximation, both in the-
ory and in practice with specific examples. Based
on our analysis, we then derive stable and effi-
cient gradient-based algorithms using a quadratic
convex-concave saddle-point formulation. By ex-
ploiting the problem structure proper to these algo-
rithms, we are able to provide convergence guar-
antees and finite-sample bounds. The applicabil-
ity of our new analysis also goes beyond TREE
BACKUP and RETRACE and allows us to provide
new convergence rates for the GTD and GTD2
algorithms without having recourse to projections
or Polyak averaging.

1. Introduction
Rather than being confined to their own stream of experi-
ence, off-policy learning algorithms are capable of lever-
aging data from a different behavior than the one being
followed, which can provide many benefits: efficient par-
allel exploration as in Mnih et al. (2016) and Wang et al.
(2016), reuse of past experience with experience replay (Lin,
1992) and, in many practical contexts, learning form data
produced by policies that are currently deployed, but which
we want to improve (as in many scenarios of working with
an industrial or health care partner). Moreover, a single
stream of experience can be used to learn about a variety of
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different targets which may take the form of value functions
corresponding to different policies and time scales (Sutton
et al., 1999) or to predicting different reward functions as
in Sutton & Tanner (2004) and Sutton et al. (2011). There-
fore, the design and analysis of off-policy algorithms using
all the features of reinforcement learning, e.g. bootstrap-
ping, multi-step updates (eligibility traces), and function
approximation has been explored extensively over three
decades. While off-policy learning and function approxima-
tion have been understood in isolation, their combination
with multi-steps bootstrapping produces a so-called deadly
triad (Sutton, 2015; Sutton & Barto, 2018), i.e., many algo-
rithms in this category are unstable.

A convergent approach to this triad is provided by impor-
tance sampling, which bends the behavior policy distribu-
tion onto the target one (Precup, 2000; Precup et al., 2001).
However, as the length of the trajectories increases, the vari-
ance of importance sampling corrections tends to become
very large. The TREE BACKUP algorithm (Precup, 2000) is
an alternative approach which remarkably does not rely on
importance sampling ratios directly. More recently, Munos
et al. (2016) introduced the RETRACE algorithm which also
builds on TREE BACKUP to perform off-policy learning
without importance sampling.

Until now, TREE BACKUP and RETRACE(λ) had only been
shown to converge in the tabular case, and their behavior
with linear function approximation was not known. In this
paper, we show that this combination with linear function ap-
proximation is in fact divergent. We obtain this result by an-
alyzing the mean behavior of TREE BACKUP and RETRACE
using the ordinary differential equation (ODE) (Borkar &
Meyn, 2000) associated with them. We also demonstrate
this instability with a concrete counterexample.

Insights gained from this analysis allow us to derive a new
gradient-based algorithm with provable convergence guaran-
tees. Instead of adapting the derivation of Gradient Tempo-
ral Difference (GTD) learning from (Sutton et al., 2009c),
we use a primal-dual saddle point formulation (Liu et al.,
2015; Macua et al., 2015) which facilitates the derivation
of sample complexity bounds. The underlying saddle-point
problem combines the primal variables, function approx-
imation parameters, and dual variables through a bilinear
term.
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In general, stochastic primal-dual gradient algorithms like
the ones derived in this paper can be shown to achieve
O(1/k) convergence rate (where k is the number of itera-
tions). For example, this has been established for the class
of forward-backward algorithms with added noise (Rosasco
et al., 2016). Furthermore, this work assumes that the ob-
jective function is composed of a convex-concave term and
a strongly convex-concave regularization term that admits
a tractable proximal mapping. In this paper, we are able
to achieve the same O(1/k) convergence rate without hav-
ing to assume strong convexity with respect to the primal
variables and in the absence of proximal mappings. As corol-
lary, our convergence rate result extends to the well-known
gradient-based temporal difference algorithms GTD (Sutton
et al., 2009c) and GTD2 (Sutton et al., 2009b) and hence
improves the previously published results.

The algorithms resulting from our analysis are simple to
implement, and perform well in practice compared to other
existing multi-steps off-policy learning algorithms such as
GQ(λ) (Maei & Sutton, 2010) and AB-TRACE(λ) (Mah-
mood et al., 2017).

2. Background and notation
In reinforcement learning, an agent interacts with its en-
vironment which we model as discounted Markov De-
cision Process (S,A, γ, P, r) with state space S, action
space A, discount factor γ ∈ [0, 1), transition probabil-
ities P : S × A → (S → [0, 1]) mapping state-action
pairs to distributions over next states, and reward func-
tion r : (S × A) → R. For simplicity, we assume the
state and action space are finite, but our analysis can be
extended to the countable or continuous case. We denote
by π(a | s) the probability of choosing action a in state s
under the policy π : S → (A → [0, 1]). The action-value
function for policy π, denoted Qπ : S × A → R, repre-
sents the expected sum of discounted rewards along the
trajectories induced by the policy in the MDP: Qπ(s, a) =
E [
∑∞
t=0 γ

trt | (s0, a0) = (s, a), π]. Qπ can be obtained as
the fixed point of the Bellman operator over the action-value
function T πQ = r + γPπQ where r is the expected imme-
diate reward and Pπ is defined as:

(PπQ)(s, a) ,
∑
s′∈S

∑
a′∈A

P (s′ | s, a)π(a′ | s′)Q(s′, a′) .

In this paper, we are concerned with the policy evaluation
problem (Sutton & Barto, 1998) under model-free off-policy
learning. That is, we will evaluate a target policy π using
trajectories (i.e. sequences of states, actions and rewards)
obtained from a different behavior policy µ. In order to
obtain generalization between different state-action pairs,
Qπ should be represented in a functional form. In this paper,

we focus on linear function approximation of the form:

Q(s, a) , θ>φ(s, a) ,

where θ ∈ Θ ⊂ Rd is a weight vector and φ : S × A →
Rd is a feature map from a state-action pairs to a given
d-dimensional feature space.

Off-policy learning (Munos et al., 2016) provided a uni-
fied perspective on several off-policy learning algorithms,
namely: those using explicit importance sampling correc-
tions (Precup, 2000) as well as TREE BACKUP (TB(λ)) (Pre-
cup, 2000) and Q(λ)π (Harutyunyan et al., 2016) which do
not involve importance ratios. As a matter of fact, all these
methods share a general form based on the λ-return (Sutton
& Barto, 2018) but involve different coefficients κi in :

Gλk , Q(sk, ak) +

∞∑
t=k

(λγ)t−k

(
t∏

i=k+1

κi

)
× (rt + γEπQ(st+1, ·)−Q(st, at))

= Q(sk, ak) +

∞∑
t=k

(λγ)t−k

(
t∏

i=k+1

κi

)
δt ,

where EπQ(st+1, .) ,
∑
a∈A π(a | st+1)Q(st+1, a) and

δt , rt + γEπQ(st+1, .) − Q(st, at) is the temporal-
difference (TD) error. The coefficients κi determine how the
TD errors would be scaled in order to correct for the discrep-
ancy between target and behavior policies. From this unified
representation, Munos et al. (2016) derived the RETRACE(λ)
algorithm. Both TB(λ) and RETRACE(λ) consider this form
of return, but set κi differently. The TB(λ) updates corre-
spond to the choice κi = π(ai | si) while RETRACE(λ) sets
κi = min

(
1, π(ai | si)

µ(ai | si)

)
, which is intended to allow learn-

ing from full returns when the target and behavior policies
are very close. The importance sampling approach (Pre-
cup, 2000) converges in the tabular case by correcting the
behavior data distribution to the distribution that would be
induced by the target policy π. However, these correction
terms lead to high variance in practice. Since Q(λ) does not
involve importance ratios, this variance problem is avoided
but at the cost of restricted convergence guarantees satisfied
only when the behavior and target policies are sufficiently
close.

The analysis provided in this paper concerns TB(λ) and
RETRACE(λ), which are convergent in the tabular case, but
have not been analyzed in the function approximation case.
We start by noting that the Bellman operator 1 R underlying

1We overload our notation over linear operators and their cor-
responding matrix representation.
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these these algorithms can be written in the following form:

(RQ)(s, a) , Q(s, a) + Eµ
[ ∞∑
t=0

(λγ)t

(
t∏
i=1

κi

)
× (rt + γEπQ(st+1, ·)−Q(st, at))

]
= Q(s, a) + (I − λγPκµ)−1(T πQ−Q)(s, a) ,

where Eµ is the expectation over the behavior policy and
MDP transition probabilities and Pκµ is the operator defined
by:

(PκµQ)(s, a) ,
∑
s′∈S
a′∈A

P (s′ | s, a)µ(a′ | s′)κ(s′, a′)Q(s′, a′) .

In the tabular case, these operators were shown to be contrac-
tion mappings with respect to the max norm (Precup, 2000;
Munos et al., 2016). In this paper, we focus on what hap-
pens to these operators when combined with linear function
approximation.

3. Off-policy instability with function
approximation

When combined with function approximation, the temporal
difference updates corresponding to the λ-return Gλk are
given by

θk+1 = θk + αk
(
Gλk −Q(sk, ak)

)
∇θQ(sk, ak)

= θk + αk

( ∞∑
t=k

(λγ)t−k

(
t∏

i=k+1

κi

)
δkt

)
φ(sk, ak)

(1)

where δkt = rt+γθ
>
k Eπφ(st+1, ·)−θ>k φ(st, at) and αk are

positive non-increasing step sizes. The updates (1) implies
off-line updating as Gλk is a quantity which depends on
future rewards. This will be addressed later using eligibility
traces: a mechanism to transform the off-line updates into
efficient on-line ones. Since (1) describes stochastic updates,
the following standard assumption is necessary:

Assumption 1. The Markov chain induced by the behav-
ior policy µ is ergodic and admits a unique stationary
distribution, denoted by ξ, over state-action pairs. We
write Ξ for the diagonal matrix whose diagonal entries
are (ξ(s, a))s∈S,a∈A.

Our first proposition establishes the expected behavior of
the parameters in the limit.

Proposition 1. If the behavior policy satisfies Assumption 1
and (θk)k≤0 is the Markov process defined by (1) then:

E[θk+1 | θ0] = (I + αkA)E[θk | θ0] + αkb ,

where matrix A and vector b are defined as follows:

A , Φ>Ξ(I − λγPκµ)−1(γPπ − I)Φ ,

b , Φ>Ξ(I − λγPκµ)−1r .

Sketch of Proof (The full proof is in the appendix).

θk+1 = θk + αk

( ∞∑
t=k

(λγ)t−k

(
t∏

i=k+1

κi

)
φ(sk, ak)

×
(
[γEπφ(xt+1, ·)− φ(xt, at)]

>θk + rt
) )

= θk + αk (Akθk + bk) .

So, E[θk+1 | θk] = (I + αkA)θk + αkb where A = E[Ak]
and b = E[bk]

The ODE (Ordinary Differential Equations) ap-
proach (Borkar & Meyn, 2000) is the main tool to
establish convergence in the function approximation
case (Bertsekas & Tsitsiklis, 1995; Tsitsiklis et al., 1997).
In particular, we use Proposition 4.8 in Bertsekas &
Tsitsiklis (1995), which states that under some conditions,
θk converges to the unique solution θ∗ of the system
Aθ∗ + b = 0. This crucially relies on the matrix A being
negative definite i.e y>Ay < 0,∀y 6= 0. In the on-policy
case, when µ = π, we rely on the fact that the stationary
distribution is invariant under the transition matrix Pπ i.e
d>Pπ = d> (Tsitsiklis et al., 1997; Sutton et al., 2015).
However, this is no longer true for off-policy learning with
arbitrary target/behavior policies and the matrix A may not
be negative definite: the series θk may then diverge. We
will now see that the same phenomenon may occur with
TB(λ) and RETRACE(λ).

Counterexample: We extend the two-states MDP of Tsit-
siklis et al. (1997), originally proposed to show the diver-
gence of off-policy TD(0), to the case of function approxi-
mation over state-action pairs. This environment has only
two states, as shown in Figure 1, and two actions: left or
right.

1 2

Figure 1. Two-state counterexample. We assign the fea-
tures {(1, 0)>, (2, 0)>, (0, 1)>, (0, 2)>} to the state-action pairs
{(1, right), (2, right), (1, left), (2, left)}. The target policy is
given by π(right | ·) = 1 and the behavior policy is µ(right | ·) =
0.5
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In this particular case, both TB(λ) and RETRACE(λ) share
the same matrix Pκµ and Pκµ = 0.5Pπ:

Pπ =


0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0

 , (Pπ)n =


0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

∀n ≥ 2

If we set β := 0.5γλ, we then have:

(I − λγPκµ)−1 =


1 β

1−β 0 0

0 1
1−β 0 0

β β2

1−β 1 0

β β2

1−β 0 1

 ,

A =

(
6γ−β−5

1−β 0
3(γβ−β2−β−γ)

1−β −5

)
.

Therefore, ∀ γ ∈ ( 5
6 , 1) and ∀λ ∈ [0,min(1, 12γ−10

γ )), the

first eigenvalue e1 = 6γ−β−5
1−β of A is positive. The basis

vectors (1, 0)> and (0, 1)> are eigenvectors of A associ-
ated with e1 and -5, then if θ0 = (η1, η2)>, we obtain
E[θk | θ0] = (η1

∏k−1
i=0 (1+αie1), η2

∏k−1
i=0 (1−5αi))

> im-
plying that ||E[θk | θ0]|| ≥ |η1|

∏k−1
i=0 (1 + αie1). Hence, as∑

k αk →∞, ||E[θk | θ0]|| → ∞ if η1 6= 0.

4. Convergent gradient off-policy algorithms
If A were to be negative definite, RETRACE(λ) or TB(λ)
with function approximation would converge to θ∗ =
−A−1b. It is known (Bertsekas, 2011) that Φθ∗ is the fixed
point of the projected Bellman operator :

Φθ∗ = ΠµR(Φθ∗) ,

where Πµ = Φ(Φ>ΞΦ)−1Φ>Ξ is the orthogonal projec-
tion onto the space S = {Φθ|θ ∈ Rd} with respect to the
weighted Euclidean norm ||.||Ξ. Rather than computing the
sequence of iterates given by the projected Bellman operator,
another approach for finding θ∗ is to directly minimize (Sut-
ton et al., 2009a; Liu et al., 2015) the Mean Squared Pro-
jected Bellman Error (MSPBE):

MSPBE(θ) =
1

2
||ΠµR(Φθ)− Φθ||2Ξ .

This is the route that we take in this paper to derive conver-
gent forms of TB(λ) and RETRACE(λ). To do so, we first
define our objective function in terms of A and b which we
introduced in Proposition 1.
Proposition 2. Let M , Φ>ΞΦ = E[ΦΦ>] be the covari-
ance matrix of features. We have:

MSPBE(θ) =
1

2
||Aθ + b||2M−1

(The proof is provided in the appendix.)

In order to derive parameter updates, we could compute
gradients of the above expression explicitly as in Sutton
et al. (2009c), but we would then obtain a gradient that is
a product of expectations. The implied double sampling
makes it difficult to obtain an unbiased estimator of the
gradient. Sutton et al. (2009c) addressed this problem with
a two-timescale stochastic approximations. However, the
algorithm obtained in this way is no longer a true stochastic
gradient method with respect to the original objective. Liu
et al. (2015) suggested an alternative which converts the
original minimization problem into a primal-dual saddle-
point problem. This is the approach that we chose in this
paper.

The convex conjugate of a real-valued function f is defined
as:

f∗(y) = sup
x∈X

(〈y, x〉 − f(x)) , (2)

and f is convex, we have f∗∗ = f . Also, if f(x) =
1
2 ||x||M−1 , then f∗(x) = 1

2 ||x||M . Note that by going
to the convex conjugate, we do not need to invert matrix M .
We now go back to the original minimization problem:

min
θ

MSPBE(θ)⇔ min
θ

1

2
||Aθ + b||2M−1

⇔ min
θ

max
ω

(
〈Aθ + b, ω〉 − 1

2
||ω||2M

)
The gradient updates resulting from the saddle-point prob-
lem (ascent in ω and descent in θ) are then:

ωk+1 = ωk + ηk(Aθk + b−Mωk) ,

θk+1 = θk − αkA>ωk .
(3)

where {ηk} and {αk} are non-negative step-size sequences.
As the A, b and M are all expectations, we can derive
stochastic updates by drawing samples, which would yield
unbiased estimates of the gradient.

On-line updates: We now derive on-line updates by ex-
ploiting equivalences in expectation between forward views
and backward views outlined in Maei (2011).

Proposition 3. Let ek be the eligibility traces vector, de-
fined as e−1 = 0 and :

ek = λγκ(sk, ak)ek−1 + φ(sk, ak) ∀k ≥ 0 .

Furthermore, let Âk = ek(γEπ[φ(sk+1, .)] −
φ(sk, ak)])>, b̂k = r(sk, ak)ek, M̂k =
φ(sk, ak)φ(sk, ak)>. Then, we have E[Âk] = A,
E[b̂k] = b and E[M̂k] = M .

(The proof is provided in the appendix.)

This proposition allows us to replace the expectations in
Eq. (3) by corresponding unbiased estimates. The resulting
detailed procedure is provided in Algorithm 1.
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Algorithm 1 Gradient Off-policy with eligibility traces

Given: target policy π, behavior policy µ
Initialize θ0 and ω0

for n = 0 . . . do
set e0 = 0
for k = 0 . . . end of episode do

Observe sk, ak, rk, sk+1 according to µ
Update traces
ek = λγκ(sk, ak)ek−1 + φ(sk, ak)
Update parameters
δk = rk + γθ>k Eπφ(sk+1, .)− θ>k φ(sk, ak)
ωk+1 = ωk + ηk

(
δkek − ω>k φ(sk, ak)φ(sk, ak)

)
θk+1 = θk−αkω>k ek (γEπφ(sk+1, .)− φ(sk, ak))

end for
end for

5. Convergence Rate Analysis
In order to characterize the convergence rate of the algorithm
1, we need to introduce some new notations and state new
assumptions.

We denote by ‖A‖ , sup‖x‖=1 ‖Ax‖ the spectral norm
of the matrix A and by c(A) = ‖A‖‖A−1‖ its condition
number. If the eigenvalues of a matrix A are real, we use
λmax(A) and λmin(A) to denote respectively the largest and
the smallest eigenvalue.

If we set ηk = βαk for a positive constant β, it is possible
to combine the two iterations present in our algorithm as

a single iteration using a parameter vector zk ,

(
θk

1√
β
ωk

)
where :

zk+1 = zk − αk(Ĝkzk − ĝk)

where:

Ĝk ,

(
0

√
βÂ>k

−
√
βÂk βM̂k

)
ĝk ,

(
0√
βb̂k

)
Let G , E

[
Ĝk

]
and g = E [ĝk]. It follows from the propo-

sition 3 that G and g are well defined and more specifically:

G =

(
0

√
βA>

−
√
βA βM

)
g =

(
0√
βb

)
Furthermore, let Fk = σ(z0, Ĝ0, ĝ0 . . . , zk, Ĝk, ĝk, zk+1)
be the sigma-algebra generated by the variables up to time k.
With these definitions, we can now state our assumptions.

Assumption 2. The matrices A and M are nonsingu-
lar. This implies that the saddle-point problem admits
a unique solution (θ?, ω?) = (−A−1b, 0) and we define
z? , (θ?, 1√

β
ω?).

Assumption 3. The features and reward functions are uni-
formly bounded. This implies that the features and rewards

have uniformly bounded second moments. It follows that
there exists a constant σ such that:

E[‖Ĝkzk − ĝk‖2|Fk−1] ≤ σ2(1 + ‖zk‖2)

Before stating our main result, the following key quantities
needs to be defined:

ρ , λmax(A>M−1A), δ , λmin(A>M−1A),

LG ,
∥∥∥E [Ĝ>k Ĝk | Fk−1

] ∥∥∥
The following proposition characterize the convergence in
expectation of ‖zk − z?‖2 = ‖θk − θ?‖2 + 1

β ‖wk‖
2

Proposition 4. Suppose assumptions 2 and 3 holds and if
we choose β = 8ρ

λmin(M) and αk = 92×2δ
8δ2(k+2)+92ζ where

ζ = 2× 92c(M)2ρ2 + 32c(M)LG. Then the mean square
error E

[
‖zk − z?‖2

]
is upper bounded by:

92×8c(M)
{ (8δ + 9ζ)2E

[
‖z0 − z?‖2

]
(82δ2k + 92ζ)2

+
8σ2(1 + ‖z?‖2)

(82δ2k + 92ζ)

}
Sketch of Proof (The full proof is in the appendix). The be-
ginning of our proof relies on Du et al. (2017) which shows
the linear convergence rate of deterministic primal-dual gra-
dient method for policy evaluation. More precisely, we
make use of the spectral properties of matrix G shown in
the appendix of this paper. The rest of the proof follows a
different route exploiting the structure of our problem.

The above proposition 4 shows that the mean square error
E
[
‖zk − z?‖2

]
at iteration k is upper bounded by tow terms.

The first bias term tells that the initial error E
[
‖z0 − z?‖2

]
is forgotten at a rate O(1/k2) and the constant depends
on the condition number of the covariance matrix c(M).
The second variance term shows that noise is rejected at a
rate O(1/k) and the constant depends on the variance of
estimates σ2 and c(M). The overall convergence rate is
O(1/k).

Existing stochastic saddle-point problem results:
Chen et al. (2014) provides a comprehensive review of
stochastic saddle-point problem. When the objective
function is convex-concave, the overall convergence rate is
O(1/

√
k). Although several accelerated techniques could

improve the dependencies on the smoothness constants of
the problem in their convergence rate, the dominant term
that depends on the gradient variance still decays only as
O(1/

√
k).

When the objective function is strongly convex-concave,
Rosasco et al. (2016) and Palaniappan & Bach (2016)
showed that stochastic forward-backward algorithms can
achieve O(1/k) convergence rate. Algorithms in this class
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are feasible in practice only if their proximal mappings can
be computed efficiently. In our case, our objective function
is strongly concave because of the positive-definiteness of
M but is otherwise not strongly convex. Because our algo-
rithms are vanilla stochastic gradient methods, they do not
rely on proximal mappings.

Singularity: If assumption 2 does not hold, the matrix
G is singular and either Gz + g = 0 has infinitely many
solutions or it has no solution. In the case of many solutions,
we could still get asymptotic convergence. In Wang & Bert-
sekas (2013), it was shown that under some assumptions on
the null space of matrix G and using a simple stabilization
scheme, the iterates converge to the Drazin (Drazin, 1958)
inverse solution of Gz + g = 0. However, it is not clear
how extend our finite-sample analysis because the spectral
analysis of the matrix G (Benzi & Simoncini, 2006) in our
proof assumes that the matrices A and M are nonsingular.

6. Related Work and Discussion
Convergent RETRACE: Mahmood et al. (2017) have
recently introduced the ABQ(ζ) algorithm which uses an
action-dependent bootstrapping parameter that leads to off-
policy multi-step learning without importance sampling ra-
tios. They also derived a gradient-based algorithm called
AB-TRACE(λ) which is related to RETRACE(λ). However,
the resulting updates are different from ours, as they use
the two-timescale approach of Sutton et al. (2009a) as ba-
sis for their derivation. In contrast, our approach uses the
saddle-point formulation, avoiding the need for double sam-
pling. Another benefit of this formulation is that it allows us
to provide a bound of the convergence rate (proposition 4)
whereas Mahmood et al. (2017) is restricted to a more gen-
eral two-timescale asymptotic result from Borkar & Meyn
(2000). The saddle-point formulation also provides a rich
literature on acceleration methods which could be incorpo-
rated in our algorithms. Particularly in the batch setting,
Du et al. (2017) recently introduced Stochastic Variance Re-
duction methods for state-value estimation combining GTD
with SVRG Johnson & Zhang (2013) or SAGA Defazio
et al. (2014). This work could be extended easily to ours
algorithms in the batch setting.

Existing Convergence Rates: Our convergence rate re-
sult 4 can apply to GTD/GTD2 algorithms. Recall that
GTD/GTD2 are off-policy algorithms designed to esti-
mate the state-value function using temporal difference
TD(0) return while our algorithms compute the action-
value function using RETRACE and TREE BACKUP re-
turns. In both GTD and GTD2, the quantities Âk and
b̂k involved in their updates are the same and equal to
Âk = φ(sk)(γφ(sk+1) − φ(sk))>, b̂k = r(sk, ak)φ(sk)
while the matrix M̂k is equal to φ(sk)φ(sk)> for GTD2

and to identity matrix for GTD.
The table 1 show in chronological order the convergence
rates established in the literature of Reinforcement learn-
ing. GTD was first introduced in Sutton et al. (2009c)
and its variant GTD2 was introduced later in Sutton et al.
(2009b). Both papers established the asymptotic conver-
gence with Robbins-Monro step-sizes. Later, Liu et al.
(2015) provided the first sample complexity by reformu-
lating GTD/GTD2 as an instance of mirror stochastic ap-
proximation (Nemirovski et al., 2009). Liu et al. (2015)
showed that in expectation, E[MSPBE(θ̄k)] ∈ O(1/

√
k)

where θ̄k ,
∑

k αkθk∑
k αk

. However, they studied an alter-
nated version of GTD/GTD2 as they added a projection
step into bounded convex set and Polyak-averaging of it-
erates. Wang et al. (2017) studied also the same version
as Liu et al. (2015) but for the case of Markov noise case
instead of the i.i.d assumptions. They prove that with high
probability MSPBE(θ̄k) ∈ O(

∑
k α

2
k∑

k αk
) when the step-size

sequence satisfies
∑
k αk = ∞,

∑
k α

2
k∑

k αk
< ∞. The op-

timal rate achieved in this setup is then O(1/
√
k). Re-

cently, Lakshminarayanan & Szepesvári (2017) improved
on the existing results by showing for the first time that
E[‖θ̄k − θ?‖2] ∈ O(1/k) without projection step. How-
ever, the result still consider the Polyak-average of iterates.
Moreover, the constants in their bound depend on the data
distribution that are difficult to relate to the problem-specific
constants, such as those present in our bound 4.
Our work is the first to provide a finite-sample complexity
analysis of GTD/GTD2 in its original setting, i.e without as-
sumption a projection step, Polyak-averaging or diminishing
step-sizes.

7. Experimental Results
Evidence of instability in practice: To validate our the-
oretical results about instability, we implemented TB(λ),
RETRACE(λ) and compared them against their gradient-
based counterparts GTB(λ) and GRETRACE(λ) derived in
this paper. The first one is the 2-states counterexample that
we detailed in the third section and the second is the 7-states
versions of Baird’s counterexample (Baird et al., 1995). Fig-
ures 2 and 3 show the MSBPE (averaged over 20 runs) as
a function of the number of iterations. We can see that our
gradient algorithms converge in these two counterexamples
whereas TB(λ) and RETRACE(λ) diverge.

Comparison with existing methods: We also compared
GTB(λ) and GRETRACE(λ) with two recent state-of-the-art
convergent off-policy algorithms for action-value estimation
and function approximation: GQ(λ) (Maei, 2011) and AB-
TRACE(λ) (Mahmood et al., 2017). As in Mahmood et al.
(2017), we also consider a policy evaluation task in the
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Paper step-sizes Projection Polyak averaging Convergence rate
Sutton et al. (2009c), Sutton
et al. (2009b)

ηk = βαk, β > 0,∑
k αk =∞,

∑
k α

2
k <∞

No No θk → θ? with probability one

Liu et al. (2015) constant step-size, αk = ηk Yes Yes E[MSPBE(θ̄k)] ∈ O(1/
√
k)

Wang et al. (2017) αk = ηk,
∑
k αk =∞,∑

k α
2
k∑

k αk
<∞

Yes Yes MSPBE(θ̄k) ∈ O(
∑

k α
2
k∑

k αk
) with

high probability

Lakshminarayanan &
Szepesvári (2017)

constant step-size, αk = ηk No Yes E[‖θ̄k − θ?‖2] ∈ O(1/k)

Our work ηk = βαk, β > 0, αk ∈ O(1/k) No No E[‖θk − θ?‖2] ∈ O(1/k)

Table 1. Convergence results for gradient-based TD algorithms shown in previous work (Sutton et al., 2009b;c; Liu et al., 2015; Wang
et al., 2017; Lakshminarayanan & Szepesvári, 2017). θ̄k stand for the Polyak-average of iterates: θ̄k ,

∑
k αkθk∑
k αk

. Our algorithms achieve
O(1/k) without the need for projections or Polyak averaging.
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Figure 2. Baird’s counterexample. The combination of linear func-
tion approximation with TB and RETRACE leads to divergence
(left panel) while the proposed gradient extensions GTB and
GRETRACE converge (right panel).
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Figure 3. In the 2-states counterexample of section 3 showing that
the gradient-based TB and RETRACE converge while TB and
RETRACE diverge.

Mountain Car domain. In order to better understand the
variance inherent to each method, we designed the target
policy and behavior policy in such a way that the importance
sampling ratios can be as large as 30. We chose to describe
state-action pairs by a 96-dimensional vector of features
derived by tile coding (Sutton & Barto, 1998). We ran
each algorithm over all possible combinations of step-size
values (αk, ηk) ∈ [0.001, 0.005, 0.01, 0.05, 0.1]2 for 2000
episodes and reported their normalized mean squared errors
(NMSE):

NMSE(θ) =
‖Φθ −Qπ‖2Ξ
‖Qπ‖2Ξ

where Qπ is estimated by simulating the target policy and
averaging the discounted cumulative rewards overs trajec-

tories. As AB-TRACE(λ) and GRETRACE(λ) share both
the same operator, we can evaluate them using the empir-
ical MSPBE = 1

2 ||Âθ + b̂||2
M̂−1

where Â, b̂ and M̂ are

Monte-Carlo estimates obtained by averaging Âk, b̂k and
M̂k defined in proposition 3 over 10000 episodes.
Figure 6 shows that the best empirical MSPBE achieved
by AB-TRACE(λ) and GRETRACE(λ) are almost identi-
cal across value of λ. This result is consistent with the
fact that they both minimize the MSPBE objective func-
tion. However, significant differences can be observed when
computing the 5th percentiles of NMSE (over all possible
combination of step-size values) for different values of λ
in Figure 5. When λ increases, the NMSE of GQ(λ) in-
creases sharply due to increased influence of importance
sampling ratios. This clearly demonstrate the variance is-
sues of GQ(λ) in contrast with the other methods based
on the TREE BACKUP and RETRACE returns (that are not
using importance ratios). For intermediate values of λ, AB-
TRACE(λ) performs better but its performance is matched by
GRETRACE(λ) and TB(λ) for small and very large values of
λ. In fact, AB-TRACE(λ) updates the function parameters
θ as follows:

θk+1 = θk − αk (δkek −∆k)

where ∆k , γw>k ek(Eπφ(sk+1, .) −
λ
∑
a κ(sk, a)µ(a | sk)φ(sk, a)) is a gradient correc-

tion term. When the instability is not an issue, the
correction term could be very small and the update of θ
would be essentially θk+1 ∼ θk − αkδkek so that θk+1

follows the semi-gradient of the mean squared error
‖Φθ −Gλk‖2Ξ.
To better understand the errors of each algorithm and their
robustness to step-size values, we propose the box plots
shown in Figure 4. Each box plot shows the distribution
of NMSE obtained by each algorithm for different values
of λ. NMSE distributions are computed over all possible
combinations of step-size values. GTB(λ) has the smallest
variance as it scaled its return by the target probabilities
which makes it conservative in its update even with large
step-size values. GRETRACE(λ) tends to more more
efficient than GTB(λ) since it could benefit from full
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Figure 4. Comparison of empirical performance of GQ(λ), AB-
TRACE(λ), GRETRACE(λ) and GTB(λ) on an off-policy eval-
uation task in Mountain Car domain. Each box plot shows
the distribution of the NMSE achieved by each algorithm after
2000 episodes for different values of λ. NMSE distributions are
computed over all the possible combinations of step-size values
(αk, ηk) ∈ [0.001, 0.005, 0.01, 0.05, 0.1]2.

returns. The latter observation agrees with the tabular case
of TREE BACKUP and RETRACE (Munos et al., 2016).
Finally, we observe that AB-TRACE(λ) has lower error, but
at the cost of increased variance with respect to step-size
values.
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Figure 5. Each curves shows the 5th percentile of NMSE (over
all possible combination of step-size values) achieved by each
algorithm for different values of λ.

8. Conclusion
Our analysis highlighted for the first time the difficulties of
combining the TREE BACKUP and RETRACE algorithms

0.0 0.2 0.4 0.6 0.8 1.0
λ
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M
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BE

GRetrace(λ)
AB-Trace(λ)

Figure 6. Comparison between the best empirical MSPBE ob-
tained by each algorithm for different values of λ. Only
GRETRACE(λ) and AB-TRACE(λ) are showed here because the
other algorithms do not have the same operators and hence not
the same MSPBE. Note that MSPBEs depend on λ. Thus,
MSPBEs are not directly comparable across different values
of λ. Both GRETRACE(λ) and AB-TRACE(λ) have very similar
performances. AB-TRACE(λ) performs slightly better.

with function approximation. We addressed these issues
by formulating gradient-based algorithm versions of these
algorithms which minimize the mean-square projected Bell-
man error. Using a saddle-point formulation, we were also
able to provide convergence guarantees and characterize the
convergence rate of our algorithms GTB and GRETRACE.
We also developed a novel analysis method which allowed
us to establish a O(1/k) convergence rate without having to
use projections or Polyak averaging (which might also make
implementation more difficult). Furthermore, our proof tech-
nique is general enough that we were able to apply it to the
existing GTD and GTD2 algorithms. Our experiments fi-
nally suggest that the proposed GTB(λ) and GRETRACE (λ)
are robust to step-size selection and have less variance than
both GQ(λ) (Maei, 2011) and AB-TRACE(λ) (Mahmood
et al., 2017).
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A. Proof of Proposition 1
We compute E[Ak] and E[bk] where expectation are over trajectories drawn by executing the behavior policy:
sk, ak, rk, ak+1, . . . st, at, rt, st+1 . . . where sk, ak ∼ d, rt = r(st, at), st+1 ∼ p(· | st, at). We note that under
stationarity of d, E[Ak] = E[A0] and E[bk] = E[b0]. Let θ, θ′ ∈ Rd and let Q = Φθ and Q′ = Φθ′ their respective
Q-functions.

θ′>E[Ak]θ = E

[ ∞∑
t=0

(λγ)t

(
t∏
i=1

κi

)
Q′(s0, a0)[γEπQ(st+1, .)−Q(st, at)]

>

]

=

∞∑
t=0

(λγ)tEs0:t+1
a0:t

[
Q′(s0, a0)

(
t∏
i=1

κi

)
[γEπQ(st+1, .)−Q(st, at)]

>

]

=

∞∑
t=0

(λγ)tEs0:t
a0:t

[
Q′(s0, a0)

(
t∏
i=1

κi

)
(γEst+1 [EπQ(st+1, .)|st, at]−Q(st, at))

]

=

∞∑
t=0

(λγ)tEs0:t
a0:t

[
Q′(s0, a0)

(
t∏
i=1

κi

)
(γ
∑
s′∈S

∑
a′∈A

p(s′|st, at)π(a′|s′)Q(s′, a′)−Q(st, at))

]

=

∞∑
t=0

(λγ)tEs0:t
a0:t

[
Q′(s0, a0)

(
t∏
i=1

κi

)
(γPπQ(st, at)−Q(st, at))

]

=

∞∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q′(s0, a0)

(
t−1∏
i=1

κi

)∑
s′∈S

∑
a′∈A

p(s′|st−1, at−1)κ(a′, s′)µ(a′|s′)(γPπQ(s′, a′)−Q(s′, a′))

]

=

∞∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q′(s0, a0)

(
t−1∏
i=1

κi

)
Pκµ(γPπ − I)Q(st−1, at−1)

]

= Es0,a0

[
Q′(s0, a0)

∞∑
t=0

(λγ)t(Pκµ)t(γPπ − I)Q(x0, a0)

]
= Es0,a0

[
Q′(s0, a0)(I − λγPκµ)−1(γPπ − I)Q(s0, a0)

]
=
∑
s∈S

∑
a∈A

ξ(s, a)Q′(s, a)(I − λγPκµ)−1(γPπ − I)Q(s, a)

= Q′>Ξ(I − λγPκµ)−1(γPπ − I)Q

So, θ′>E[Ak]θ = θ′>Φ>Ξ(I − λγPκµ)−1(γPπ − I)Φθ ∀θ, θ′ ∈ Rd, which implies that:

E[Ak] = Φ>Ξ(I − λγPκµ)−1(Pπ − I)Φ

θ>E[bk] = E[

∞∑
t=0

(λγ)t

(
t∏
i=1

κi

)
rtQ(s0, a0)] =

∞∑
t=0

(λγ)tEs0:t
a0:t

[
Q(s0, a0)

(
t∏
i=1

κi

)
r(st, at)

]

=

∞∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q(s0, a0)

(
t−1∏
i=1

κi

)∑
s′∈S

∑
a′∈A

p(s′|st−1, at−1)κ(a′, s′)µ(a′|s′)r(s′, a′)

]

=

∞∑
t=0

(λγ)tEs0:t−1
a0:t−1

[
Q(s0, a0)

(
t−1∏
i=1

κi

)
Pκµr(s′, a′)

]
= Es0,a0

[
Q(s0, a0)(I − λγPκµ)−1r(s0, s0)

]
=
∑
s∈S

∑
a∈A

ξ(s, a)Q(s, a)(I − λγPκµ)−1r(s, a) = Q>Ξ(I − λγPκµ)−1r

So, θ>E[bk] = θ>Φ>Ξ(I − λγPκµ)−1r ∀θ ∈ Rd, which implies that:

E[bk] = Φ>Ξ(I − λγPκµ)−1r
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B. Proof of Proposition 2

MSPBE(θ) =
1

2
||ΠµR(Φθ)− Φθ||2Ξ =

1

2
||Πµ (R(Φθ)− Φθ) ||2Ξ

=
1

2
(Πµ (R(Φθ)− Φθ))

>
Ξ (Πµ (R(Φθ)− Φθ))

=
1

2

(
Φ>Ξ (R(Φθ)− Φθ)

)>
(Φ>ΞΦ)−1Φ>Ξ

(
Φ(Φ>ΞΦ)−1Φ>Ξ(R(Φθ)− Φθ)

)
=

1

2
||Φ>Ξ (R(Φθ)− Φθ) ||2M−1

=
1

2
||Φ>Ξ

(
(I − λγPµπ)−1(T π − λγPµπ)Φθ − Φθ

)
||2M−1

=
1

2
||Φ>Ξ(I − λγPµπ)−1(γPπ − I)Φθ + Φ>Ξ(I − λγPµπ)−1r||2M−1

=
1

2
||Aθ + b||2M−1

C. Proof of Proposition 3
Let’s show that E[Âk] = A. Let’s ∆t denotes [γEπφ(st+1, .)

> − φ(st, at)
>]

A = E

[ ∞∑
t=k

(λγ)t−k

(
t∏

i=k+1

κi

)
φ(sk, ak)∆t

]

= E

[
φ(sk, ak)∆k +

∞∑
t=k+1

(λγ)t−k

(
t∏

i=k+1

κi

)
φ(sk, ak)∆t

]

= E

[
φ(sk, ak)∆k +

∞∑
t=k

(λγ)t−k+1

(
t+1∏
i=k+1

κi

)
φ(sk, ak)∆t+1

]

= E

[
φ(sk, ak)∆k + λγκ(sk+1, ak+1)φ(sk, ak)∆k+1 +

∞∑
t=k+1

(λγ)t−k+1

(
t+1∏
i=k+1

κi

)
φ(sk, ak)∆t+1

]

(?)
= E

[
φ(sk, ak)∆k + λγκ(sk, ak)φ(sk−1, ak−1)∆k +

∞∑
t=k+1

(λγ)t−k+1

(
t+1∏
i=k+1

κi

)
φ(sk, ak)∆t+1

]
= E

[
∆k(φ(sk, ak) + λγκ(sk, ak)φ(sk−1, ak−1) + (λγ)2κ(sk, ak)κ(sk−1, ak−1)φ(sk−2, ak−2) + ...)

]
= E

∆k

 k∑
i=0

(λγ)k−i

 k∏
j=i+1

κj

φ(xi, ai)


= E[∆kek] = E[Âk]

we have used in the line (?) the fact that E[κ(sk+1, ak+1)φ(skak)∆k+1] = E[κ(sk, ak)φ(sk−1ak−1)∆k] thanks to the
stationarity of the distribution d.
we have also denote by ek the following vector:

ek =

k∑
i=0

(λγ)k−i

 k∏
j=i+1

κj

φ(si, ai)

= λγκk

k−1∑
i=0

(λγ)k−1−i

 k−1∏
j=i+1

κj

φ(si, ai)

+ φ(sk, ak)

= λγκkek−1 + φ(sk, ak)
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Vector ek corresponds to the eligibility traces defined in the proposition. Similarly, we could show that Eµ[b̂k] = b.

D. True on-line equivalence
In (van Hasselt et al., 2014), the authors derived a true on-line update for GTD(λ) that empirically performed better than
GTD(λ) with eligibility traces. Based on this work, we derive true on-line updates for our algorithm. The gradient off-policy
algorithm was derived by turning the expected forward view into an expected backward view which can be sampled. In
order to derive a true on-line update, we sample instead the forward view and then we turn the sampled forward view to an
exact backward view using Theorem 1 in (van Hasselt et al., 2014). If k denotes the time horizon, we consider the sampled
truncated interim forward return:

∀t < k, Y kt =

k−1∑
i=t

(λγ)i−t

 i∏
j=t+1

κj

 δi

where δi = ri + θ>t Eπφ(st+1, ·)− θ>t φ(st, at), which gives us the sampled forward update of ω:

∀k < t, ωkt+1 = ωkt + αt(Y
k
t − φ(xt, at)

>ωkt )φ(xt, at) (4)

Proposition 5. For any k, the parameter ωkk defined by the forward view (4) is equal to ωk defined by the following backward
view:

eω−1 = 0, ∀k ≥ 0

eωk = λγκke
ω
k−1 + αk(1− λγκkφ(sk, ak)>eωk−1)φ(sk, ak)

ωk+1 = ωk + δke
ω
k − αtφ(sk, ak)>ωkφ(sk, ak)

Proof. The return’s temporal difference Y k+1
t − Y kt are related through:

∀t < k, Y k+1
t − Y kt =

k∑
i=t

(λγ)i−t(

i∏
j=t+1

κj)δi −
k−1∑
i=t

(λγ)i−t(

i∏
j=t+1

κj)δi

= (λγ)k−t

 k∏
j=t+1

κj

 δk

= λγκk+1

(λγ)k−(t+1)

 k∏
j=t+2

κj

 δk


= λγκk+1

(
Y k+1
t+1 − Y kt+1

)
We could then apply Theorem 1 of (van Hasselt et al., 2014) that give us the following backward view:

e0 = α0φ(x0, a0)

et = λγκtet−1 + αt(1− λγκkφ(st, at)
>et−1)φ(st, at) ∀t > 0

ωt+1 = ωt + (Y t+1
t − Y tt )et + αt(Y

t
t − φ(st, at)

>ωt)φ(st, at)

(?)
= ωt + δtet − αtφ(st, at)

>ωtφ(st, at)

We used in the line (?) that Y t+1
t = δt and Y tt = 0

The resulting detailed procedure is provided in Algorithm 2.

Note that when λ is equal to zero, the Algorithm 1 and 2 both reduce to the same update:

ωk+1 = ΠΩ

(
ωk + αk(δk − φ(sk, ak)>ωk)φ(sk, ak)

)
θk+1 = ΠΘ

(
θk − αkφ(sk, ak)>wk(γEπ[φ(sk+1, .)]− φ(sk, ak)])

)
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Algorithm 2 Gradient Off-policy with eligibility/Dutch traces

Given: target policy π, behavior policy µ
Initialize θ0 and ω0

for n = 0 . . . do
set eθ−1 = eω−1 = 0
for k = 0 . . . end of episode do

Observe sk, ak, rk, sk+1 according to µ
Update traces
ek = λγκ(sk, ak)ek−1 + φ(sk, ak)
Update Dutch traces
eωk = λγκke

ω
k−1 + αk

(
1− λγκkφ(sk, ak)>eωk−1

)
φ(sk, ak)

Update parameters
δk = rk + γθ>k Eπφ(sk+1, .)− θ>k φ(sk, ak)
ωk+1 = ωk + δke

ω
k − αkφ(sk, ak)>ωkφ(sk, ak)

θk+1 = θk − αkω>k ek (γEπ[φ(sk+1, .)]− φ(sk, ak))
end for

end for

E. Convergence Rate Analysis
Let’s recall the key quantities defined in the main article:

ρ , λmax(A>M−1A), δ , λmin(A>M−1A), LG , ‖E
[
Ĝ>k Ĝk | Fk

]
‖

We will make use of spectral properties of the matrix G provided in the appendix A of (Du et al., 2017). it was shown
that if we set β = 8ρ

λmin(M) , the matrix G is diagonalizable with all its eigenvalues real and positive. It is a straightforward
application of result from (Benzi & Simoncini, 2006)
Moreover, it was proved that G can be written as: G = QΛQ−1 where Λ is a diagonal matrix whose diagonal entries are the
eigenvalues of G and Q consists of it eigenvectors as columns such that the condition number of Q is upper bounded by the
one of M as follows:

c(Q)2 ≤ 8c(M)

Finally, the paper showed upper and lower bounds for the eigenvalues of G:

λmax(G) ≤ 9c(M)ρ

λmin(G) ≥ 8

9
δ

Let’s recall our updates:

zk+1 = zk − αk(Ĝkzk − ĝk)

By subtracting z? from both sides on the later equation and using the optimality condition Gz? + g = 0:

∆k+1 = ∆k − αkG∆k + αk

[
Gzk − g − (Ĝkzk − ĝk)

]
where ∆k , zk − z? (5)

By multiplying both sides by Q−1 and using the fact that Q−1G = ΛQ−1:

Q−1∆k+1 = Q−1∆k − αkQ−1G∆k + αkQ
−1
[
Gzk − g − (Ĝkzk − ĝk)

]
= (I − αkΛ)Q−1∆k + αkQ

−1
[
Gzk − g − (Ĝkzk − ĝk)

]
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E
[∥∥∥Q−1∆k+1

∥∥∥2

| Fk−1

]
= E

[∥∥∥(I − αk)Q−1∆k + αkQ
−1
[
Gzk − g − (Ĝkzk − ĝk)

] ∥∥∥2

| Fk
]

= E
[∥∥∥(I − αkΛ)Q−1∆k

∥∥∥2

| Fk−1

]
+ 2E

[〈
(I − αk)Q−1∆k, αkQ

−1
[
Gzk − g − (Ĝkzk − ĝk)

] 〉
| Fk−1

]
+ α2

kE
[∥∥∥Q−1

[
Gzk − g − (Ĝkzk − ĝk)

] ∥∥∥2

| Fk−1

]
=
∥∥∥(I − αkΛ)Q−1∆k

∥∥∥2

+ α2
kE
[∥∥∥Q−1

[
Gzk − g − (Ĝkzk − ĝk)

] ∥∥∥2

| Fk−1

]
≤
∥∥∥I − αkΛ

∥∥∥2∥∥∥Q−1∆k

∥∥∥2

+ α2
kE
[
‖Q−1(Ĝkzk − ĝk)‖2 | Fk−1

]
=
∥∥∥I − αkΛ

∥∥∥2∥∥∥Q−1∆k

∥∥∥2

+ α2
kE
[∥∥∥Q−1(Ĝk∆k + Ĝkz

? − ĝk)‖2 | Fk−1

]
≤
∥∥∥I − αkΛ

∥∥∥2∥∥∥Q−1∆k

∥∥∥2

+ 2α2
kE
[∥∥∥Q−1Ĝk∆k

∥∥∥2

| Fk−1

]
+ 2α2

kE
[∥∥∥Q−1(Ĝkz

? + ĝk)
∥∥∥2

| Fk−1

]

we use in the third line the fact that E
[
Ĝk | Fk−1

]
= G and E [ĝk−1 | Fk−1] = g.

‖I − αkΛ‖2 = max{|1− αkλmin(G)|2, |1− αkλmax(G)|2}
≤ 1− 2αkλmin + α2

kλ
2
max

≤ 1− 2αk
8

9
δ + α2

k92c(M)2ρ2

≤ 1− 2αkδ
′ + α2

k92c(M)2ρ2 where δ′ ,
8

9
δ

E
[∥∥∥Q−1Ĝk∆k

∥∥∥2

| Fk−1

]
≤ ‖Q−1‖2E

[∥∥∥Ĝk∆k

∥∥∥2

| Fk−1

]
= ‖Q−1‖2E

[
∆>k Ĝ

>
k Ĝk∆k | Fk−1

]
= ‖Q−1‖2∆>k E

[
Ĝ>k Ĝk | Fk−1

]
∆k

≤ ‖Q−1‖2
∥∥∥E [Ĝ>k Ĝk | Fk] ∥∥∥2

∆>k ∆k

≤ ‖Q−1‖2LG‖∆k‖2

= ‖Q−1‖2LG‖QQ−1∆k‖2

≤ ‖Q−1‖2‖Q‖2LG‖Q−1∆k‖2

≤ c(Q)2LG‖Q−1∆k‖2

So, we have:

E
[
‖Q−1∆k+1‖2

]
≤ (1− 2αkδ

′ + α2
k92c(M)2ρ2 + 16α2

kc(M)LG)E
[
‖Q−1∆k‖2

]
+ 2α2

k‖Q−1‖2E
[
‖Ĝkz? − ĝk)‖2

]
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By selecting αk = 2δ′

δ′2(k+2)+2×92c(M)2ρ2+32c(M)LG
= 2δ′

δ′2(k+2)+ζ with ζ = 2× 92c(M)2ρ2 + 32c(M)LG, we get:

E
[
‖Q−1∆k+1‖2

]
≤ (1− δ′αk)E

[
‖Q−1∆k‖2

]
+ 2α2

k‖Q−1‖2E
[
‖Ĝkz? − ĝk‖2

]
=

δ′2k + ζ

δ′2(k + 2) + ζ
E
[
‖Q−1∆k‖2

]
+

8δ′2

(δ′2(k + 2) + ζ)2
‖Q−1‖2E

[
‖Ĝkz? + ĝk)‖2

]
≤

(
k∏
i=0

δ′2i+ ζ

δ′2(i+ 2) + ζ

)
E
[
‖Q−1∆0‖2

]
+ 8δ′2

k∑
i=0

 k∏
j=i

δ′2j + ζ

δ′2(j + 2) + ζ

 1

(δ′2(i+ 2) + ζ)2
‖Q−1‖2E

[
‖Ĝiz? + ĝi)‖2

]
=

ζ(δ′2 + ζ)

(δ′2(k + 1) + ζ)((δ′2(k + 2) + ζ)
E
[
‖Q−1∆0‖2

]
+ 8δ′2

k∑
i=0

(δ′2(i+ 1) + ζ)(δ′2i+ ζ)

(δ′2(k + 1) + ζ)((δ′2(k + 2) + ζ)

1

(δ′2(i+ 2) + ζ)2
‖Q−1‖2E

[
‖Ĝiz? − ĝi‖2

]
≤ ζ(δ′2 + ζ)

(δ′2(k + 1) + ζ)(δ′2(k + 2) + ζ)
E
[
‖Q−1∆0‖2

]
+ 8δ′2

k∑
i=0

1

(δ′2(k + 1) + ζ)(δ′2(k + 2) + ζ)
‖Q−1‖2E

[
‖Ĝiz? − ĝi‖2

]
≤ (δ′ + ζ)2

(δ′2(k + 1) + ζ)2
E
[
‖Q−1∆0‖2

]
+ 8

δ′2(k + 1)

(δ′2(k + 1) + ζ)(δ′2(k + 2) + ζ)
‖Q−1‖2 sup

i=0...k
E
[
‖Ĝiz? + ĝi)‖2

]
≤ (δ′ + ζ)2

(δ′2(k + 1) + ζ)2
E
[
‖Q−1∆0‖2

]
+

8

(δ′2(k + 1) + ζ)
‖Q−1‖2 sup

i=0...k
E
[
‖Ĝiz? − ĝi‖2

]
≤ (δ′ + ζ)2‖Q−1‖2

(δ′2(k + 1) + ζ)2
E
[
‖∆0‖2

]
+

8σ2‖Q−1‖2

(δ′2(k + 1) + ζ)
(1 + ‖z?‖2)

Moreover, we have E
[
‖∆k+1‖2

]
= E

[
‖QQ−1∆k+1‖2

]
≤ ‖Q‖2E

[
‖Q−1∆k+1‖2

]
. Then, we get:

E
[
‖∆k+1‖2

]
≤ (δ′ + ζ)2c(Q)2

(δ′2(k + 1) + ζ)2
E
[
‖∆0‖2

]
+

8σ2c(Q)2

(δ′2(k + 1) + ζ)
(1 + ‖z?‖2)

≤ 8(δ′ + ζ)2c(M)

(δ′2(k + 1) + ζ)2
E
[
‖∆0‖2

]
+

82σ2c(M)

(δ′2(k + 1) + ζ)
(1 + ‖z?‖2)

=
892(8δ + 9ζ)2c(M)

(82δ2(k + 1) + 92ζ)2
E
[
‖∆0‖2

]
+

92 × 82σ2c(M)

(82δ2(k + 1) + 92ζ)
(1 + ‖z?‖2)

= 92 × 8c(M)
{ (8δ + 9ζ)2E

[
‖∆0‖2

]
(82δ2(k + 1) + 92ζ)2

+
8σ2(1 + ‖z?‖2)

(82δ2(k + 1) + 92ζ)

}
The overall convergence rate is then equal to O(1/k).


