
Semantic Hashing using Tags and Topic Modeling

Qifan Wang
Computer Science

Department
Purdue University

West Lafayette, IN 47907, US
wang868@purdue.edu

Dan Zhang
Facebook Incorporation

Menlo Park, CA 94025, US
danzhang@fb.com

Luo Si
Computer Science

Department
Purdue University

West Lafayette, IN 47907, US
lsi@purdue.edu

ABSTRACT
It is an important research problem to design efficient
and effective solutions for large scale similarity search.
One popular strategy is to represent data examples as
compact binary codes through semantic hashing, which has
produced promising results with fast search speed and low
storage cost. Many existing semantic hashing methods
generate binary codes for documents by modeling document
relationships based on similarity in a keyword feature space.
Two major limitations in existing methods are: (1) Tag
information is often associated with documents in many real
world applications, but has not been fully exploited yet; (2)
The similarity in keyword feature space does not fully reflect
semantic relationships that go beyond keyword matching.

This paper proposes a novel hashing approach, Semantic
Hashing using Tags and Topic Modeling (SHTTM), to
incorporate both the tag information and the similarity
information from probabilistic topic modeling. In particular,
a unified framework is designed for ensuring hashing codes
to be consistent with tag information by a formal latent
factor model and preserving the document topic/semantic
similarity that goes beyond keyword matching. An iterative
coordinate descent procedure is proposed for learning the
optimal hashing codes. An extensive set of empirical
studies on four different datasets has been conducted
to demonstrate the advantages of the proposed SHTTM
approach against several other state-of-the-art semantic
hashing techniques. Furthermore, experimental results
indicate that the modeling of tag information and utilizing
topic modeling are beneficial for improving the effectiveness
of hashing separately, while the combination of these two
techniques in the unified framework obtains even better
results.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGIR’13, July 28–August 1, 2013, Dublin, Ireland.
Copyright 2013 ACM 978-1-4503-2034-4/13/07 ...$15.00.

and Retrieval]: Information Search and Retrieval; I.2.6
[Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Hashing, Tags, Topic Modeling

1. INTRODUCTION
Similarity search identifies similar information objects

given a query object, which has many information retrieval
applications such as similar document detection, content-
based image retrieval and collaborative filtering. Due to
the explosive growth of the internet, a huge amount of data
such as texts, images and videos has been generated, which
indicates that nearest neighbor methods for similarity search
are becoming more reliable. Therefore, it is important to
design effective and efficient nearest neighbor methods for
similarity search with large scale data.

Two major challenges have to be addressed for using
similarity search in large scale datasets such as storing the
data efficiently and retrieving the large scale data in an
effective and efficient manner. Traditional text similarity
search methods in the original keyword vector space are
difficult to be used for large datasets, since these methods
utilize the content vectors of the documents in a high-
dimensional space and are associated with high cost of
float/integer computation.

Semantic hashing (e.g., [9, 22, 34]) has been proposed as
a promising technique for addressing these two challenges,
which designs compact binary code in a low-dimensional
space for each document so that similar documents are
mapped to similar binary codes. Query documents can
also be efficiently transformed into hashing codes so that
similarity search can be conducted. The retrieval process of
similarity search can be simply conducted by calculating the
Hamming distances between the hashing codes of available
documents and a query and selecting documents within
small Hamming distance. Therefore, this method addresses
the two major challenges of large scale similarity search
in the following ways: (1) The encoded data is highly
compressed within a low-dimensional binary space, and
thus can often be dealt with in main memory and stored
efficiently; (2) The retrieval process is very efficient, since
the distance between two codes is simply the number of bits
that they differ.

213

Existing semantic hashing approaches generate promising
results and are successful in addressing the two challenges
of storage and retrieval efficiency. However, two major
issues are not addressed in the existing methods: (1)
Tag information is not fully utilized in previous methods.
Most existing methods only deal with the contents of
documents without utilizing the information contained in
tags. Actually, in many real-world applications, documents
are often associated with multiple tags, which provide
useful knowledge in learning effective hashing codes. For
instance, in some big corporations, their employees often
assign tags to some webpages in the intranet, such that
they can find these webpages again more easily through
these tags. Another example is microblog, usually each
tweet is associated with multiple tags such as ‘stock’,
‘business’, ‘sports’, etc.; (2) Document similarity in the
original keyword feature space is used as guidance for
generating hashing codes in previous methods, which may
not fully reflect the semantic relationship. For example,
two documents in the same topic may have low document
content similarity in keyword space due to the vocabulary
gap, although their semantic similarity can be high.

Based on the above observations, this paper proposes
a novel hashing approach, Semantic Hashing using Tags
and Topic Modeling (SHTTM). The SHTTM approach
integrates available tag information and document similarity
in semantic topics for generating effective hashing codes.
There are three main challenges for designing this method:
(1) How to incorporate the tag information? (2) How
to preserve the similarity between documents based on
semantic topics? (3) How to obtain the hashing code for
a query document as no tag information is available for the
query document?

A unified framework is proposed to address the above
challenges, which ensures the consistency of hashing codes
with tag information by a latent factor model and preserves
document semantic similarity based on topic modeling. An
iterative optimization procedure is proposed for learning the
optimal hashing codes. An extensive set of experiments on
four real world datasets has been conducted to demonstrate
the advantages of the proposed method over several state-
of-the-art methods. More specifically, a set of experiments
clearly demonstrates the benefits of utilizing tag information
and topic modeling separately, while the combination of
these two methods in the unified framework generates the
best results. To our best knowledge, this is the first piece of
research work on semantic hashing that integrates both tag
information and semantic topic modeling, which generates
more effective hashing codes than several other state-of-the-
art methods.

2. RELATED WORK
Efficiency is a crucial issue for large scale information

retrieval applications with a huge amount of text documents.
When there is only a low-dimensional feature space,
similarity search can be carried out by some space
partitioning index structures, such as TF-IDF methods
[23, 24], KD-tree, or data partitioning index structures,
like R-tree [5]. Several types of structures and operations
of inverted indexing are also proposed [6, 26, 40] for
traditional ad-hoc text search with relatively short user
queries. However, traditional similarity search may fail to
work efficiently within a high-dimensional vector space [33],

which is often the case for many real world information
retrieval applications.

Semantic hashing [22] is proposed to address the similarity
search problem within a high-dimensional feature space.
In particular, semantic hashing methods try to represent
each document by using a small fixed number of binary
bits so that the queries can be answered in a short time
[27]. The hashing based fast similarity search can be
viewed as a strategy to transform documents from a high-
dimensional space into a low-dimensional binary space,
and at the same time preserve the semantic similarity
between documents as much as possible. Hashing methods
generate binary codes for efficient search, which is different
from traditional dimensionality reduction methods such as
Principal Component Analysis (PCA) and Latent Semantic
Indexing (LSI) [8, 12].

Locality-Sensitive Hashing (LSH) [2, 7] is one of the
most popularly used hashing methods. It simply utilizes
random linear projections to map documents from a high-
dimensional Euclidean space to a low-dimensional one.
It has already been shown that the Hamming distance
between different documents will asymptotically approach
their Euclidean distance in the original feature space with
the increase of the hashing bits. LSH has been extended
to Kernelized Locality-Sensitive Hashing (KLSH) [16] by
exploiting kernel similarity for better retrieval efficacy.
Recently, the work in [35] further extends the KLSH to the
scheme of Boosting Multi-Kernel Locality-Sensitive Hashing
(BMKLSH) that improves the retrieval performance of
KLSH by making use of multiple kernels.

Several machine learning approaches have been proposed
to solve the hashing problem. For example, the PCA
Hashing [19] method projects each example to the top
principal components of the training set, and then binarizes
the coefficients by setting a bit to 1 when its value
is larger than the median value seen for the training
set, and -1 otherwise. The work in [22] uses stacked
Restricted Boltzman Machine (RBM) [10, 11] to generate
compact binary hashing codes, which can be viewed as
binarized LSI. Recently, Spectral Hashing (SH) [34] is
proposed to learn compact binary codes that preserve the
similarity between documents by forcing the balanced and
uncorrelated constraints into the learned codes, which be
viewed as an extension of spectral clustering [37]. A graph-
based hashing method has been proposed in work [21] to
automatically discover the neighborhood structure inherent
in the data to learn appropriate compact codes. More
recently, the work [38] proposes a Composite Hashing with
Multiple Information Sources (CHMIS) method to integrate
information from different sources. In another recent work
[15], an isotropic hashing (IsoHash) method is proposed to
learn projection functions of individual hashing codes with
equal variances.

In the following two sections, we mainly discuss two state-
of-the-art hashing methods that are most related to the
proposed research as Self-Taught Hashing [39] and Semi-
Supervised Hashing [31].

2.1 Self-Taught Hashing(STH)
Self Taught Hashing (STH) [39] generally provides more

effective hashing solutions than LSH [7] and SH [34]. STH
combines an unsupervised learning step with a supervised
learning step to learn hashing codes.

214

In the unsupervised learning step, STH constructs a
similarity graph using a fix number of nearest neighbors for
the given dataset, and then embeds all the documents into
a k dimensional space through spectral analysis, and finally
uses simple thresholding to obtain the binary hashing code
for each document. This step can be formulated as follows:

min
∑
i,j

SSSij ||yi − yj ||2

s.t. yi ∈ {−1, 1}k,
∑
i

yi = 0,
1

n

∑
i

yiy
T
i = III

(1)

SSSij is the pairwise similarity between document i and
document j, yi is the hashing code for document i, k is
the number of hashing bits. The objective function incurs
a heavy penalty if two similar documents are mapped far
away, which preserves the similarity between documents.
The constraint

∑
i yi = 0 requires each bit to be balanced

and 1
n

∑
i yiy

T
i = III forces the hashing bits to be uncorrelated

with each other.
In the supervised learning step, a set of k SVM classifiers

are trained based on existing documents and their binary
hashing codes learned from the previous step. Then, the
k classifiers can be used to generate the hashing codes for
the query documents as a classification problem. STH does
not assume that data are uniformly distributed in a hyper-
rectangle as requested by SH, which is often too restrictive
for real world applications. STH often generates more
effective hashing codes than SH.

However, there are two main limitations for STH. Firstly,
STH does not utilize tag information, which is often
available with documents in many real world applications.
Secondly, the similarity matrix in STH is calculated in
the original feature (keyword vector) space, which may
not reflect the semantic similarity beyond simple keyword
matching. Topic modeling (e.g., [4]) has been shown as an
effective approach for capturing semantic meanings in text
documents. In the proposed new research, we address both
of the two problems of STH through integrating the tag
information and topic modeling into one unified framework
so that the semantic similarity between documents can be
better preserved in the learned hashing codes.

2.2 Semi-Supervised Hashing(SSH)
The work in [31] proposes a Semi-Supervised Hashing

(SSH) approach for incorporating the pairwise relationships
between documents into the semantic hashing problem.
More precisely, these pairwise similarity constraints are also
called Must-Link and Cannot-Link, which could be partially
generated from tags. For example, a Must-Link is created
when two documents share a common tag and a Cannot-
Link is created when two documents share no tag. Their
basic motivation is that the hashing codes of the document
pairs with Must-Link should be as close as possible, while
the hashing codes of document pairs with Cannot-Link
should be as different as possible. This motivation is then
incorporated into the objective function for learning the
hashing codes. A sequential projection method is utilized
to solve the resulting optimization problem.

The SSH has shown promising results for improving
hashing effectiveness by leveraging the pairwise information,
but there are several limitations for SSH. Firstly, the SSH
method only utilizes the pairwise similarity constraints as

the summary of tag information, which is suboptimal with
respect to the complete information in the tags. Secondly,
the pairwise link information may not be accurately
generated when tags are missing, incomplete or mismatched,
which is often the case for many real world applications.
Furthermore, SSH also directly works in the original
keyword feature space for modeling content similarity of
documents. These problems may potentially limit the
performance of the hashing methods based on pairwise
constraints. Different from SSH, the proposed method
utilizes the complete tag information as well as semantic
information from topic modeling for building more effective
hashing codes.

3. ALGORITHM DESCRIPTION

3.1 Problem Setting
We first introduce the problem of SHTTM. Assume there

are total n training documents in the dataset, denoted
as: XXX = {x1, x2, . . . , xn} ∈ RRRm×n, where m is the
dimensionality of the content feature. Denote their tags as:
TTT = {t1, t2, . . . , tn} ∈ {0, 1}l×n, where l is the total number
of possible tags associated with each document. A tag
with label 1 means a document is associated with a certain
tag/category, while a tag with label 0 means a missing tag or
the document is not associated with that tag/category. The
main purpose of SHTTM is to obtain optimal binary hashing
codes YYY = {y1, y2, . . . , yn} ∈ {−1, 1}k×n for the training
documents XXX, and a hashing function f : RRRm → {−1, 1}k,
which maps each document to its hashing code with k bits
(i.e, yj = f(xj)).

3.2 Approach Overview
The proposed SHTTM approach is a general learning

framework that consists of two stages. In the first stage,
the hashing codes are learned in a unified framework by
simultaneously ensuring hashing codes to be consistent
with tag information by a formal latent factor model and
preserving the document topic/semantic similarity. In
particular, the objective function of SHTTM is composed
of two components: (1) Tag consistency component, which
ensures that the hashing codes are consistent with tag
information; (2) Similarity preservation component, which
aims at preserving the topic/semantic similarity in the
learned hashing codes. An iterative algorithm is then
derived based on the objective function using a coordinate
descent optimization procedure. In the second stage, the
hashing function is learned with respect to the hashing codes
for training documents.

The rest of this section first presents the two stages
of the proposed SHTTM approach respectively, and then
addresses the corresponding optimization problem. Finally,
this section discusses connections and distinctions of the
proposed approach with some related research work.

3.3 Tag Consistency
In many real world applications, documents are associated

with tag information, which can provide useful knowledge
in learning effective hashing codes. There are two main
challenges for utilizing tags: (1) We have no knowledge
about how the tags are related to the hashing codes.
Therefore, we need to explore the correlation between them
in order to bridge tags with hashing codes; (2) Tags may

215

be missing, we need to deal with the situation of incomplete
tags.

The first problem of exploring the correlation between tags
and hashing codes can be addressed by matrix factorization
with a latent factor model. A latent variable ui for each tag
ti is first introduced, where ui is a k × 1 vector indicating
the correlation between tags and hashing codes. Then a tag
consistency component can be formulated as follows:

l∑
i=1

n∑
j=1

‖TTT ij − uT
i yj‖2 + α

l∑
i=1

‖ui‖2 (2)

where TTT ij is the binary label of the i-th tag on the j-
th document. uT

i yj can be viewed as a weighted sum
that indicates how the i-th tag is related to the j-th
document, and this weighted sum should be consistent
with the observed label TTT ij as much as possible. The

second regularization component,
∑l

i=1 ‖ui‖2, is introduced
to avoid the overfitting issue (e.g., [28, 29]). α is a
meta parameter that explores the trade-off between the tag
consistence and regularization.

The second problem of dealing with missing tags can be
addressed by introducing a confidence matrix CCC ∈ RRRl×k. If
the value of CCCij is large, we trust the tag information TTT ij

more. As discussed before, TTT ij = 0 can be interpreted in
two ways: tag i on the j-th document is either missing or
not related. We will use a similar strategy as in [14] for a
different application to set CCCij a higher value when TTT ij = 1
than TTT ij = 0 as follows,

CCCij =

{
a, if TTT ij = 1

b, if TTT ij = 0
(3)

where a and b are parameters satisfying a > b > 01. Then
the whole component of tag consistency becomes:

l∑
i=1

n∑
j=1

CCCij‖TTT ij − uT
i yj‖2 + α

l∑
i=1

‖ui‖2 (4)

The above equation can be rewritten in a compact matrix
form as:

‖CCC
1
2 ··· (TTT −UUUTYYY)‖2F + α‖UUU‖2 (5)

where CCC
1
2 is the element-wise square root matrix of CCC,

and ··· is the element-wise matrix multiplication. ‖‖F is the
matrix Frobenius norm. By minimizing this component, the
consistency between tags and the learned hashing codes can
be ensured.

3.4 Topic Modeling and Similarity Preserva-
tion

One of the key problems in semantic hashing methods
is similarity preserving, which indicates that semantically
similar documents should be mapped to similar hashing
codes within a short Hamming distance. A popular criterion
of similarity preservation is to minimize the objective value
in Eqn.1, where SSS is the document similarity matrix. This
criterion incurs a heavy penalty if two similar documents are
mapped far away in the dataset.

There are many different ways of defining the similarity
matrix. In SH [34], the authors used the global similarity

1In our experiments, we set the confidence parameters a=1
and b=0.01 consistently throughout all experiments.

structure of all document pairs, while in STH [39] and
CHMIS [38], the local similarity structure,i.e., k nearest
neighborhood, is used. However, all these methods compute
the similarity matrix SSS within the original keyword feature
space and thus may not reflect the document semantic
similarity that goes beyond simple keyword matching.

To address the limitation of calculating semantic similar-
ity in existing approaches, features from topic modeling are
used to measure the semantic similarity between documents
instead of features from the original keyword space. Topic
modeling algorithms (e.g., [3, 36]) are used to discover
a set of “topics” from a large collection of documents
and provide an interpretable low-dimensional representation
of the documents associated with the topics. Topic
modeling has been widely used in many information retrieval
applications such as document clustering and classification.
Here we exploit the Latent Dirichlet Allocation (LDA) [4]
approach of topic modeling to extract k latent topics from
the document corpus. Each document xj corresponds to
a distribution θj over the topics where two semantically
similar documents have similar topic distributions. In
this way, document semantic similarity is preserved in the
extracted topic distributions θθθ. Since we require the hashing
codes to reflect the topic distributions, a document similarity
preservation component can be naturally defined as follows:

n∑
j=1

||yj − θj ||2 = ||YYY − θθθ||2 (6)

By minimizing this component, the similarity between
different documents is preserved in the learned hashing
codes.

3.5 Overall Objective and Optimization Algo-
rithm

The entire objective function of the proposed SHTTM
approach integrates two components such as the tag
consistency component in Eqn.5 and the semantic similarity
preservation component given in Eqn.6 as follows:

min
Y,UY,UY,U
‖CCC

1
2 ··· (TTT −UUUTYYY)‖2F + α‖UUU‖2 + γ‖YYY − θθθ‖2

s.t. YYY ∈ {−1, 1}k×n, Y 1Y 1Y 1 = 0

(7)

where α and γ are trade-off meta parameters to balance the
weight between the components. The constraint Y 1Y 1Y 1 = 0
requires each bit to appear 50% of the time (with equal
probability as positive or negative). Note that one advantage
of our method is that we do not need the bits-uncorrelated
constraint Y YY YY Y T = III while many previous methods do. This
is because we assign each hashing bit a semantic meaning
(a latent topic), which is learned from topic modeling and
latent topics can be assumed to be highly uncorrelated.
Therefore, by imposing the semantic similarity term between
YYY and θθθ, the uncorrelated property among YYY is preserved.

Directly minimizing the objective function in Eqn.7 is
intractable because of the discrete constraints. Therefore,
we propose to relax this constraint and drop the constraint
Y 1Y 1Y 1 = 0 first (we will discuss this constraint later). However,
even after the relaxation, the objective function is still non-
convex with respect to YYY and UUU jointly, which makes it
difficult to optimize. Fortunately, this relaxed problem
is convex with respect to either one of the two sets of
parameters when the other one is fixed, and therefore can be

216

Training procedureTraining procedureTraining procedure:
Input:Input:Input:
1. A set of n training documents, XXX = {x1, x2, . . . , xn} associated with tags TTT = {t1, t2, . . . , tn}.
2. Meta parameters: Tag consistency parameter α, Similarity preservation parameter γ
and Hashing function parameter λ.
Output:Output:Output:
Hashing codes YYY for the training documents, Hashing function matrix WWW , Tag-Hashing code correlation
matrix UUU and Median vector mmm.
Initialization:Initialization:Initialization:
1. Topic modeling: learning topic distribution of training documents θθθ = LDA(XXX).
2. Construct confidence matrix CCC by Eqn.3.
3. Initialize YYY = θθθ.
4. Coordinate Descent Optimization: obtain the optimal YYY and UUU by iteratively solving
Eqn.9 and Eqn.11 and updating UUU and YYY respectively.
5. Optimizing Eqn.13 to obtain the hashing function matrix WWW .
6. Get the median vector by mmm = median(YYY).
7. Generating the hashing codes by thresholding YYY to the median vector mmm.

Predicting procedurePredicting procedurePredicting procedure:
Input:Input:Input:
A query document q, Hashing function matrix WWW and Median vector mmm.
Output:Output:Output:
The binary hashing code yq for q.
1. Calculate the regression output by hashing function f(q) = WWWq.
2. Obtain the hashing code yq by thresholding f(q) to the median vector mmm.

Table 1: The algorithm description of the complete SHTTM approach.

solved by coordinate descent optimization with guaranteed
convergence similar to [32]. In particular, after initializing
YYY , the optimization problem can be solved by doing the
following two steps iteratively, until convergence.

Step 1: Fix YYY , optimize:

min
UUU
‖CCC

1
2 ··· (TTT −UUUTYYY)‖2F + α‖UUU‖2 (8)

By taking the derivative of Eqn.8 with respect to ui and
setting it to 0, we can obtain the close form solution of this
optimization below:

ui = (Y CY CY CiYYY
T + αIII)−1Y CY CY CiTTT i (9)

where CCCi is a n×n diagonal matrix with CCCij , j = 1, 2, . . . , n
as its diagonal elements and TTT i = (TTT ij), j = 1, 2, . . . , n is a
n× 1 label vector of i-th tag.

Step 2: Fix UUU , optimize:

min
YYY
‖CCC

1
2 ··· (TTT −UUUTYYY)‖2F + γ‖YYY − θθθ‖2 (10)

By taking the derivative of Eqn.10 with respect to yj and
setting it to 0, we can obtain the optimal yj :

yj = (UCUCUCjUUU
T + γIII)−1(UCUCUCjTTT j + γθθθj) (11)

where CCCj is a l × l diagonal matrix with CCCij , i = 1, 2, . . . , l
as its diagonal elements and TTT j = (TTT ij), i = 1, 2, . . . , l is a
l × 1 label vector of the j-th document. By solving Eqns.8
and 10 iteratively, optimal YYY and UUU can be obtained.

3.6 Hashing Function
In the previous section, the optimal hashing codes YYY are

obtained after relaxing the binary constraint and the bit

balance constraint Y 1Y 1Y 1 = 0. In this section, we will discuss
how to obtain the hashing function that maps the data into
binary hashing codes and how to binarize the optimal YYY in
order to satisfy the constraints.

In this paper, we utilize a linear hashing function to
generate binary hashing code, which is consistent with
previous hashing methods (e.g., [30, 31, 38]) as:

yj = f(xj) = WWWxj (12)

where WWW is a k × m parameter matrix representing the
hashing function. Then the optimal hashing function can
be obtained by minimizing the following objective:

W ∗W ∗
W ∗ = arg min

WWW

n∑
j=1

‖yj −WWWxj‖2 + λ‖WWW‖2F

⇒W ∗W ∗
W ∗ = YYY TXXX(XXXTXXX + λIII)−1

(13)

Here λ is a weight parameter for the regularization term to
avoid overfitting.

The binary hashing codes for the training set can be
obtained by thresholding YYY . Then, a natural question
is how to pick these thresholds? In [19] and [37], the
authors pointed out that a good semantic hashing should
also maximize the entropy to ensure efficiency. Following the
maximum entropy principle, a binary bit that gives balanced
partitioning of the whole dataset always provides maximum
information. Therefore, we set the threshold for binarizing
the p-th bit to be the median of yp. We denote the median
of all bits by vector mmm. Thus, if the p-th bit of document yj
is larger than mmmp, then ypj is set to +1, otherwise ypj is set
to -1. In this way, the binary code achieves the best balance
and the constraint Y 1Y 1Y 1 = 0 in Eqn.7 can also be satisfied.
The hashing code of a query document q can be obtained by
first computing the hashing function f(q) = WWWq. Then, the

217

ReutersV 1 Reuters
Methods 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits
SHTTM 0.5590.5590.559 0.636 0.7120.7120.712 0.7810.7810.781 0.8150.8150.815 0.716 0.7410.7410.741 0.7550.7550.755 0.7580.7580.758 0.7530.7530.753
SSH [31] 0.531 0.6410.6410.641 0.664 0.722 0.727 0.7180.7180.718 0.722 0.724 0.731 0.739
STH [39] 0.507 0.568 0.643 0.646 0.694 0.703 0.715 0.731 0.740 0.734
SH [34] 0.514 0.556 0.617 0.631 0.658 0.641 0.694 0.711 0.703 0.716

PCAH [19] 0.431 0.557 0.601 0.638 0.641 0.652 0.687 0.693 0.646 0.631
LSH [7] 0.289 0.382 0.444 0.557 0.652 0.569 0.592 0.624 0.653 0.678

20Newsgroups WebKB
Methods 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits
SHTTM 0.5760.5760.576 0.6440.6440.644 0.6480.6480.648 0.6840.6840.684 0.6970.6970.697 0.5460.5460.546 0.5580.5580.558 0.5810.5810.581 0.6110.6110.611 0.6250.6250.625
SSH [31] 0.557 0.576 0.624 0.649 0.665 0.514 0.536 0.543 0.562 0.583
STH [39] 0.526 0.585 0.615 0.623 0.651 0.421 0.449 0.495 0.532 0.538
SH [34] 0.510 0.579 0.574 0.607 0.622 0.504 0.513 0.536 0.541 0.547

PCAH [19] 0.471 0.513 0.541 0.568 0.616 0.471 0.524 0.531 0.568 0.570
LSH [7] 0.389 0.431 0.474 0.557 0.646 0.339 0.377 0.389 0.387 0.401

Table 2: Precision of the top 100 retrieved documents on four datasets with different hashing bits.

corresponding binary hashing code can be obtained through
thresholding the hashing function output, i.e., set the j-th
code for q to be +1, if f(q)j >mmmj , and -1 otherwise.

The whole training procedure and predicting procedure
of the proposed method is described in Table 1. For
hashing methods, the training process is always conducted
off-line. Therefore, our focus of efficiency is on the predicting
process. This process of generating hashing code for a
query for prediction only involves some dot products and
comparisons between two binary vectors, which can be done
in O(m ∗ k + k) time.

3.7 Discussion
The formulation of the proposed SHTTM approach is

related to the traditional collaborative filtering methods
(e.g., [14, 25, 13]) by treating each document as an item
and the label of each tag as a rating from a user (i.e.,
tag) on this item (i.e., document). From this perspective,
the proposed method is related to Collaborative Topic
Modeling (CTM) [29], in which both the rating scores
and the content of items are incorporated into one topic
modeling framework. However, several major differences
exist between the proposed work and CTM: (1). CTM
is designed for collaborative filtering, while the proposed
method investigates how tags and topic modeling can be
integrated to improve the performance of hashing; (2).
in the proposed research, one focus is on out-of-sample
query examples, which do not exist in the training dataset.
Therefore, the proposed research designs hashing function
to convert query examples to their corresponding hashing
codes, while this is not considered in CTM.

As for the speed issue, the major off-line computational
costs of the proposed method come from LDA and the latent
factor model parts. For LDA, we can use parallel LDA (e.g.,
[1]) to accelerate the computational speed. For optimizing
the unified framework, it normally converges within 20
iterations and only some simple updates are necessary in
each iteration. For the more important issue of calculating
hashing codes of the query examples for similarity search, it
is very efficient since only some linear transformations are
necessary.

4. EXPERIMENTS
This section presents an extensive set of experiments to

demonstrate the advantages of the proposed research.

4.1 Datasets
A set of datasets are utilized in evaluation as follows:

1. ReutersV 1 (Reuters-Volume I): This dataset contains
over 800,000 manually categorized newswire stories
[18]. There are in total 126 tags associated with this
dataset. A subset of 365001 documents of ReutersV1
is used in our experiment. 328501 documents are
randomly selected as the training data, while the
remaining 36500 documents are used as testing queries.
106 tags are selected for training and 20 for testing.

2. Reuters (Reuters21578)2 is a collection of documents
that appeared on Reuters newswire in 1987. It
contains 21578 documents, and 135 tags/categories.
In our experiments, documents corresponding to the
top 57 categories are kept3, with approximately 10376
documents. 9339 documents are randomly chosen as
the training set, while 1037 for testing. 47 tags are
utilized in training and 10 left for testing.

3. 20Newsgroups4 corpus is collected and originally
used for document categorization in [17]. We use
the popular ‘18828’ version which contains 18828
documents. The data is organized into 20 different
newsgroups, each corresponding to a different topic.
Since some of the newsgroups are very closely
related to each other (e.g. comp.sys.ibm.pc.hardware
/ comp.sys.mac.hardware), while others are highly
unrelated (e.g. misc.forsale / soc.religion.christian).
Therefore, we partition these documents according to
subject matter into 6 categories, which are denoted as
6 different tags. 16946 documents are randomly chosen

2http://daviddlewis.com/resources/textcollections/reuters2
1578/.
3we removed the tags which only have a limited number of
examples.
4http://people.csail.mit.edu/jrennie/20Newsgroups/

218

Figure 1: Results of precision of top 100 examples and Precision within Hamming radius 2 on four datasets
with different hashing bits. (a)-(d): Precision of the top 100 retrieved examples. (e)-(h): Precision of the
retrieved examples within Hamming radius 2.

for training and the rest 1882 documents are used for
testing. 3 tags are utilized in training process and 3
for testing.

4. WebKB5 consists of 6883 webpages, collected from
four universities, and is divided into 7 categories/tags.
90% documents (6195) are randomly selected as
training data, while the remaining (688) documents
are used for testing. 4 tags are used in training while
3 for testing.

In all datasets, term frequency (i.e. tf) features are
used as content features and also used for learning topic
distributions. Note that tags in each dataset are divided
into two groups, one set is used only in training and the
other is treated as ground truth only for testing.

4.2 Evaluation Metrics
To conduct similarity search, each document in the

testing set is used as a query document to search
for similar documents in the corresponding training set
based on the hamming distance of their hashing codes.
The performance is measured with standard information
retrieval performance metrics: precision as the ratio of
the number of retrieved relevant documents to the number
of all retrieved documents and recall as the ratio of the
number of retrieved relevant documents to the number of
all relevant documents. The performance is averaged over
all test queries in the dataset.

There are several methodologies to determine whether a
retrieved document is relevant to the given query document.
In SH [34], the k closest documents in the original feature

5CMU world wide knowledge base (WebKB) project. Avail-
able at http://www.cs.cmu.edu/ WebKB/.

space are considered as the relevant documents. In STH [39]
and CHMIS [38], the documents with the same tag as the
query document are considered as the most relevant ones.
The former metric is not suitable since the similarity in the
original feature space may not well reflect the document
semantic similarity (as discussed in section 3.3). The latter
metric is also questionable since documents with more than
one tag are discarded in STH and CHMIS, while documents
are allowed to have multiple tags in our experiments.
Therefore, we adopt a similar metric as in [20] and [31] in
our experiments. In particular, a retrieved document that
shares any common test tag with the query document is
regarded as a relevant document.

4.3 Experiment Settings
The proposed SHTTM approach is compared with five

different methods on these datasets such as Semi-Supervised
Hashing (SSH) [31], Self Taught Hashing (STH) [39],
Spectral Hashing (SH) [34], PCA Hashing (PCAH) [19], and
Latent Semantic Hashing (LSH) [7] by using the evaluation
metric described above.

The parameters α, γ and λ in SHTTM are tuned by 3-
fold cross validation on the training set through the grid
{0.01, 0.1, 1, 10, 100}. The number of nearest neighbors is
tuned to be 7 when constructing the graph Laplacians for
STH in all experiments. For LSH, we randomly select
projections from a Gaussian distribution with zero-mean
and identity covariance to construct the hash tables. For
SSH, we sample 2k random points from the training set to
construct the pairwise constraint matrix. We evaluate the
performance of different methods by varying the number of
hashing bits in the range of {8, 16, 32, 64, 128} and calculate
the average result by repeating each experiment 10 times.

219

Figure 2: Results of Precision-Recall curve with 32
hashing bits on four datasets.

4.4 Results and Discussions
Four sets of experiments are conducted on each dataset to

measure the performance of the proposed SHTTM approach
and the five alternative methods to answer the following
questions: (1) Whether SHTTM can outperform other
methods in high-precision results such as the precision for
the top 100 retrieved documents based on the hamming
distance ranking and the precision for retrieved documents
within a fixed hamming distance 2; (2) How does the
SHTTM compare with other methods with recall-related
metrics as the precision-recall curve? In particular, for
each query document, we vary the number of retrieved
documents from 0 to the number of all training documents
while fixing the number of hashing bits to 32; (3) How
do the two components of the SHTTM approach work
that only utilize the tag information or the topic modeling
information? These two variants are compared with
corresponding baseline methods and the SHTTM approach
that combines both tag and topic modeling information; (4)
Whether SHTTM has robust performance with respect to
different values of meta model parameters.

In the first set of experiments, we report the precision for
the top 100 retrieved documents with different numbers of
hashing bits in Fig.1(a)-(d) and Table 2. The precisions for
the retrieved documents within hamming radius 2 are shown
in Fig.1(e)-(h). From these comparison results, it can seen
that SHTTM gives the overall best performance among all
six hashing methods on all four datasets.

In Fig.1(e)-(h), the precision of most compared methods
decreases when the number of hashing bits increases from
16 to 128 This is because when using longer hashing bits,
the Hamming space becomes increasingly sparse and very
few data points fall within the Hamming ball of radius 2,
resulting in even queries with precision 0. Similar behavior is
also observed in [20] and [31]. In this situation, the precision
results of top 100 documents from Fig.1(a)-(d) provide

better performance measurement, while the precision results
of SHTTM are still consistently better than other methods.

In the second set of experiments, the precision-recall
curves of different methods with 32 hashing bits on different
datasets are reported in Fig.2. It can be seen that among
all of these comparison methods, SHTTM shows the best
performance.

From these figures, we can see that LSH does not perform
well in most cases, especially its precision of the top
100 documents is not satisfactory. This is because LSH
method is data-oblivious and may lead to inefficient codes
in practice as also observed in [22] and [34]. For methods
SH and STH, although these methods try to preserve the
similarity between documents in their learned hashing codes,
they do not utilize the supervised information contained in
tags. Moreover, the similarity matrices in both methods
are computed from the original keyword feature space,
which may not fully reflect the semantic similarity between
documents that goes beyond keyword matching. Therefore,
the SHTTM method substantially outperforms these two
methods by leveraging tag information and topic modeling.
SSH achieves better results than SH and STH due to the
incorporation of pairwise similarity constraints. However, as
pointed out in Section 2.2, these coarse pairwise constraints
generated from tags may lose detailed tag information and
may not be reliable. On the other hand, the tag information
is fully exploited in the SHTTM approach via modeling
the semantic correlation between tags and hashing codes
through a latent factor model and thus SHTTM generates
higher quality hashing codes than SSH.

In the third set of experiments, the effectiveness of the
two components of the proposed SHTTM such as tag
modeling and topic modeling are evaluated separately. In
particular, the component of tag modeling is obtained by
setting γ to 0 in Eqn.7, which means we do not utilize
topic models. This method is named SHTTM-TagOnly in
our experiment. SHTTM-TagOnly is compared with SSH
which incorporates summary tag information as pairwise
constraints into learning hashing codes. the component of
topic modeling is obtained by setting the tag matrix CCC = 000
in Eqn.7, which means we do not utilize any tag information
in learning hashing codes. This method is called SHTTM-
TopicOnly and it is compared with STH that calculates the
document similarity in the original keyword feature space.

The precision results of top 100 retrieved documents of
SHTTM-TagOnly, SHTTM-TopicOnly, SHTTM and the
corresponding baseline methods are shown in Fig.3 when
different numbers of hashing bits are used. The experimental
results in Fig.3 indicate that the modeling of tag information
and utilizing topic modeling are beneficial for improving the
effectiveness of hashing separately as SHTTM-TagOnly is
more effective than SSH while SHTTM-TopicOnly is more
effective than STH. In particular, the SHTTM-TagOnly
method incorporates the complete tag information into
learning hashing codes via a latent factor model, while
SSH only utilizes the partial tag information in pairwise
constraints. The SHTTM-TopicOnly method preserves the
document similarity in the topic/semantic, while the original
keyword feature space used by STH may not fully reflect the
semantic relationships that go beyond keyword matching.
Finally, combining these two components together, the
proposed SHTTM achieves even better performance, which
is consistent with our expectation.

220

Figure 3: Precision of the top 100 retrieved documents of SHTTM-TagOnly, SHTTM-TopicOnly and SHTTM
on four datasets with different hashing bits. (a)-(d): Comparison results of using tag model only. (e)-(h):
Comparison results of using topic model only.

The fourth set of experiments study the performance of
SHTTM with respect to the meta parameters α, γ and
λ. To prove the robustness of the proposed method, we
conduct parameter sensitivity experiments on all datasets.
In each experiment, we tune only one parameter from
{0.5, 1, 2, 4, 8, 16, 32, 128}, while fixing the other two to the
optimal values obtained from the first set of experiments.
We report the results on ReutersV 1 and 20Newsgroups in
Fig.4. It is clear from these experimental results that the
performance of SHTTM is relatively stable with respect to
α, γ and λ. We also observe similar results of the proposed
method in the other two datasets. But due to the limit of
space, they are not presented here.

The prediction procedure for generating hashing codes
is very fast. The linear hashing function allows a quick
mapping of a query document from the original high-
dimensional feature space to the low-dimensional space of
hashing codes. We implement our method using Matlab on
a PC with Intel Duo Core i5-2400 CPU 3.1GHz and 4GB
RAM. It takes 0.0002 second average per query document
for the prediction procedure (Table 1) on all datasets.

5. CONCLUSIONS
Similarity search has become an important technique

in many information retrieval applications such as search
and recommendation. Many applications with similarity
search often involve a large amount of data, which demands
effective and efficient solutions. Semantic hashing has
been proposed for the problem to map data examples like
documents in a high-dimensional space (e.g., a vector space
of keywords in the vocabulary) into a low-dimensional binary
vector space, which at the same time preserves the semantic

Figure 4: Parameter Sensitivity for α, γ and
λ. Results of precision of the top 100 retrieved
documents with 32 hashing bits.

relationship of the data examples as much as possible.
Valuable prior research has been conducted in this direction
for learning hashing codes and mapping function with
techniques such as unsupervised learning and supervised
learning. However, most existing research on semantic
hashing is only based on content similarity computed in the
original keyword feature space. Moreover, tag information
is not fully utilized in existing research, although they are
often available in many information retrieval applications.

This paper proposes novel research for semantic hashing
that jointly considers tag information and semantic simi-
larity in generating hashing codes. The proposed research
utilizes topic modeling to explore semantic similarity
between documents that goes beyond keyword matching.
The new SHTTM approach incorporates two components as

221

tag consistency and topic consistency together into a joint
objective function for learning desired tag representation
and topic representation simultaneously. An iterative
coordinate descent method is proposed to obtain the optimal
hashing codes by solving the objective function. An
extensive set of experiments has shown that the proposed
new research can generate more accurate hashing codes
than several other state-of-the-art hashing methods. In
particular, the experiments clearly demonstrate the benefits
of utilizing tag information and topic modeling information
separately, and further show that the joint approach
generates the best results by combining both two types of
information.

There are several possible directions to explore in the
future research. For example, the research in this paper only
utilizes a fixed number of topics, which may not be optimal
for different types of datasets. We plan to explore new
research for automatically adjusting the number of topics
with either model selection methods or a nonparametric
Bayesian approach.

6. ACKNOWLEDGMENTS
This work is partially supported by NSF research grants

IIS-0746830, CNS- 1012208 and IIS-1017837. This work
is also partially supported by the Center for Science of
Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370.

7. REFERENCES
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and

A. J. Smola. Scalable inference in latent variable models. In
WSDM, pages 123–132, 2012.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In
FOCS, pages 459–468, 2006.

[3] D. Blei and J. Lafferty. Topic models. Text Mining: Theory
and Applications, 2009.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to algorithms. The MIT press, 2001.

[6] J. S. Culpepper and A. Moffat. Efficient set intersection for
inverted indexing. ACM Trans. Inf. Syst., 29(1):1, 2010.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Symposium on Computational Geometry,
pages 253–262, 2004.

[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent semantic
analysis. JASIS, 41(6):391–407, 1990.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, pages 518–529,
1999.

[10] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning
algorithm for deep belief nets. Neural Computation,
18(7):1527–1554, 2006.

[11] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[12] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, pages 50–57, 1999.

[13] T. Hofmann. Collaborative filtering via gaussian
probabilistic latent semantic analysis. In SIGIR, pages
259–266, 2003.

[14] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering

for implicit feedback datasets. In ICDM, pages 263–272,
2008.

[15] W. Kong and W.-J. Li. Isotropic hashing. In NIPS, pages
1655–1663. 2012.

[16] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In ICCV, pages
2130–2137, 2009.

[17] K. Lang. Newsweeder: Learning to filter netnews. In ICML,
pages 331–339, 1995.

[18] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research.
Journal of Machine Learning Research, 5:361–397, 2004.

[19] R.-S. Lin, D. A. Ross, and J. Yagnik. Spec hashing:
Similarity preserving algorithm for entropy-based coding.
In CVPR, pages 848–854, 2010.

[20] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In CVPR, pages
2074–2081, 2012.

[21] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing
with graphs. In ICML, pages 1–8, 2011.

[22] R. Salakhutdinov and G. E. Hinton. Semantic hashing. Int.
J. Approx. Reasoning, 50(7):969–978, 2009.

[23] G. Salton. Developments in automatic text retrieval.
Science, 253(5023):974–980, August 1991.

[24] G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Inf. Process. Manage.,
24(5):513–523, 1988.

[25] L. Si and R. Jin. Flexible mixture model for collaborative
filtering. In ICML, pages 704–711, 2003.

[26] F. Silvestri and R. Venturini. Vsencoding: efficient coding
and fast decoding of integer lists via dynamic
programming. In CIKM, pages 1219–1228, 2010.

[27] B. Stein. Principles of hash-based text retrieval. In SIGIR,
pages 527–534, 2007.

[28] V. Vapnik. The nature of statistical learning theory.
Springer Verlag, 2000.

[29] C. Wang and D. M. Blei. Collaborative topic modeling for
recommending scientific articles. In KDD, pages 448–456,
2011.

[30] J. Wang, S. Kumar, and S.-F. Chang. Sequential projection
learning for hashing with compact codes. In ICML, pages
1127–1134, 2010.

[31] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for large-scale search. IEEE Trans. Pattern Anal.
Mach. Intell., 34(12):2393–2406, 2012.

[32] Q. Wang, L. Si, and D. Zhang. A discriminative
data-dependent mixture-model approach for multiple
instance learning in image classification. In ECCV (4),
pages 660–673, 2012.

[33] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In VLDB, pages 194–205, 1998.

[34] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, pages 1753–1760, 2008.

[35] H. Xia, P. Wu, S. C. H. Hoi, and R. Jin. Boosting
multi-kernel locality-sensitive hashing for scalable image
retrieval. In SIGIR, pages 55–64, 2012.

[36] X. Yi and J. Allan. Evaluating topic models for information
retrieval. In CIKM, pages 1431–1432, 2008.

[37] L. Zelnik-Manor and P. Perona. Self-tuning spectral
clustering. In NIPS, 2004.

[38] D. Zhang, F. Wang, and L. Si. Composite hashing with
multiple information sources. In SIGIR, pages 225–234,
2011.

[39] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing
for fast similarity search. In SIGIR, pages 18–25, 2010.

[40] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), 2006.

222

