
Mathematical Programming manuscript No.
(will be inserted by the editor)

Stochastic variance-reduced prox-linear algorithms for
nonconvex composite optimization

Junyu Zhang · Lin Xiao

Received: date

Abstract We consider the problem of minimizing composite functions of the
form f(g(x)) + h(x), where f and h are convex functions (which can be non-
smooth) and g is a smooth vector mapping. In addition, we assume that g is
the average of finite number of component mappings or the expectation over
a family of random component mappings. We propose a class of stochastic
variance-reduced prox-linear algorithms for solving such problems and bound
their sample complexities for finding an ε-stationary point in terms of the to-
tal number of evaluations of the component mappings and their Jacobians.
When g is a finite average of N components, we obtain sample complexity
O(N + N4/5ε−1) for both mapping and Jacobian evaluations. When g is a
general expectation, we obtain sample complexities of O(ε−5/2) and O(ε−3/2)
for component mappings and their Jacobians respectively. If in addition f is
smooth, then improved sample complexities of O(N +N1/2ε−1) and O(ε−3/2)
are derived for g being a finite average and a general expectation respectively,
for both component mapping and Jacobian evaluations.

Keywords stochastic composite optimization · nonsmooth optimization ·
variance reduction · prox-linear algorithm · sample complexity

Mathematics Subject Classification (2010) 68Q25 · 68W20 · 90C26

J. Zhang
Department of Industrial Systems Engineering and Management, National University of
Singapore, Singapore, 119077
E-mail: junyuz@nus.edu.sg

L. Xiao
Facebook AI Research (FAIR), Seattle, WA 98109, USA
E-mail: linx@fb.com

2 Junyu Zhang, Lin Xiao

1 Introduction

We consider composite optimization problems of the form

minimize
x∈Rn

f(g(x)) + h(x), (1)

where f : Rm → R is a convex and possibly nonsmooth function, g : Rn →
Rm is a smooth mapping (vector-valued function), and h : Rn → R is a
convex and lower-semicontinuous function. Although both f and h are convex,
the problem is in general nonconvex due to the composition of f and g. In
addition, we assume that g is either the average of finite number of component
mappings, i.e., g(x) = 1

N

∑N
i=1 gi(x), or the expectation of a family of random

component mappings, i.e., g(x) = Eξ[gξ(x)] where ξ is a random variable.
More explicitly, we consider the problems

minimize
x∈Rn

f

(
1

N

N∑
i=1

gi(x)

)
+ h(x) (2)

and
minimize
x∈Rn

f
(
Eξ[gξ(x)]

)
+ h(x). (3)

Clearly, problem (2) is a special case of (3) where the random variable ξ
follows the uniform distribution over the finite set {1, 2, . . . , N}. We consider
them separately because the sample complexity for solving problem (2) can
be much lower than that of the general case (3).

An effective method for solving the composite optimization problem (1)
is the (deterministic) prox-linear algorithm (e.g., [20,36], which iteratively
minimizes a model of the objective function where g(x) is replaced by a linear
approximation. Specifically, let g′ : Rn → Rm×n denote the Jacobian of g,
then each iteration of prox-linear algorithm takes the form

xk+1 = argmin
x

{
f
(
g(xk) + g′(xk)(x− xk)

)
+ h(x) +

M

2
‖x− xk‖2

}
, (4)

where M > 0 is a parameter to penalize the deviation of xk+1 from xk in
squared Euclidean distance. Since f and h are convex, the subproblem in (4)
is a convex optimization problem. For the algorithm to be efficient in practice,
we also need the functions f and h to be relatively simple, meaning that the
subproblem in (4) admits a closed-form solution or can be solved efficiently.

For problems (2) and (3), the finite-average and expectation structure of g
allow us to use a randomly sampled subset of gi or gξ and their Jacobians to
approximate the expectations g and g′. Specifically, during each iteration k,
let Bk and Sk be two subsets of {1, 2, . . . , N} sampled uniformly at random or
two sets of realizations of ξ sampled from its distribution. A straightforward
approach is to construct the mini-batch approximations

g̃k =
1

|Bk|
∑
i∈Bk

gi(x
k), J̃k =

1

|Sk|
∑
i∈Sk

g′i(x
k), (5)

Stochastic variance-reduced prox-linear algorithms 3

and use them to replace g(xk) and g′(xk) in (4), leading to the stochastic
prox-linear algorithm:

xk+1 = argmin
x

{
f
(
g̃k + J̃k(x− xk)

)
+ h(x) +

M

2
‖x− xk‖2

}
. (6)

While each iteration of (6) uses less samples of gξ and g′ξ than the full-batch
method (4), the simple mini-batch construction in (5) may not be able to
reduce the overall sample complexity due to increased number of iterations
required (see, e.g., [18] and [61, Section 3]).

In this paper, we develop a class of stochastic variance-reduced prox-linear
algorithms for solving problems (2) and (3). By leveraging the variance re-
duction techniques of SVRG [31,57] and SARAH/Spider [37,24], we obtain
significantly lower sample complexities than that of the full-batch prox-linear
method. Before getting to the details, we first present several applications.

1.1 Application examples

Composite optimization problems of the forms (2) and (3) arise from risk-
averse optimization (e.g, [48,51] and a mean-variance tradeoff example in [59])
and stochastic variational inequalities (e.g., [30,32], through a reformulation
in [26]). In machine learning, a well-known example is policy evaluation for
reinforcement learning (e.g., [15,52,54,55]). Here we give several additional ex-
amples, and explain how the stochastic prox-linear algorithms can be applied.

Systems of nonlinear equations for ERM Solving systems of nonlinear equa-
tions is one of the most fundamental problems in computational science and
engineering (e.g., [41]). Given a system of nonlinear equations g(x) = 0 where
g : Rn → Rm is a smooth mapping, a standard approach is to minimize
the composite function f(g(x)) where f is non-negative merit function and
f(z) = 0 if only if z = 0. A popular choice is the squared Euclidean norm
f(·) = ‖ · ‖2. The classical Gauss-Newton method iteratively minimizes a sim-
ple model by linearizing g at xk:

xk+1 = argmin
x

∥∥g(xk) + g′(xk)(x− xk)
∥∥2.

Nesterov [36] proposed a modified scheme with sharp merit functions such
as f(·) = ‖ · ‖ and a quadratic penalty term as in (4). For empirical risk
minimization (ERM) problems of the form

minimize
x

F (x) ,
1

N

N∑
i=1

Fi(x),

where each Fi is twice differentiable, we can apply Gauss-Newton type of
methods by letting gi(x) = F ′i (x) and g′(x) = F ′′i (x) (the gradient and Hes-
sian of Fi respectively) and use either a smooth or a sharp merit function f .

4 Junyu Zhang, Lin Xiao

The resulting optimization problem is of the form (2) and we can exploit the
finite-average structure with the sub-sampled prox-linear algorithm (6). This
approach can be particularly useful for solving nonconvex ERM problems (see,
e.g., [50] and [13]). Efficient numerical algorithms for solving the subproblem
in each iteration are discussed in [50] for f(·) = ‖·‖2 and in [36] for f(·) = ‖·‖.

Truncated stochastic gradient method Consider the stochastic optimization
problem

minimize
x

g(x) , E
[
gξ(x)

]
,

where each gξ : Rn → R is smooth. Suppose we know the minimum value
g∗ = infx g(x) or a lower bound of it (in many machine learning problems
g(x) ≥ 0), then the problem is equivalent to

minimize
x

f(g(x)), where f(z) = max{z, g∗}.

In this case, the mini-batch stochastic prox-linear method (6) becomes

xk+1 = argmin
x

{
max

{
g̃k + J̃k(x− xk), g∗

}
+
M

2
‖x− xk‖2

}
, (7)

which has a closed-form solution

xk+1 = xk −min

{
1

M
,
g̃k − g∗

‖J̃k‖2

}
· J̃k.

This update has a very similar step-size rule as Polyak’s rule for subgradient
method [44]. Because the simple model used in (7) truncates the linear model
with the known lower bound, it is called the truncated stochastic gradient
method. Recent studies [1,2,16] show that it converges faster and is more
stable than the classical stochastic gradient method with a wide range of step
sizes. In this paper, we use variance reduction techniques to construct the
estimates g̃k and J̃k and obtain better sample complexity for this method.

Minimax stochastic optimization Consider the problem of minimizing the max-
imum of m expectations:

minimize
x∈X

max
1≤j≤m

g(j)(x), where g(j)(x) = Eξj

[
g
(j)
ξj

(x)
]
.

Here we assume that X is a closed convex set and the random variables ξi
follow (slightly) different probability distributions. This is a special case of
distributionally robust optimization (see [47] and references therein), which
has many applications in operations research and statistical machine learning.
It can be put into the form of (3) with the definitions ξ = [ξ1, . . . , ξm] and

f(z) = max
1≤j≤m

zj , gξ(x) =
[
g
(1)
ξ1

(x), . . . , g
(m)
ξm

(x)
]
, h(x) = δX (x),

where δX denotes the indicator function of X . In this case, the update in (6) re-
quires solving a convex quadratic programming problem. Similar formulations
may apply to other distributionally robust optimization problems.

Stochastic variance-reduced prox-linear algorithms 5

Exact penalty method for stochastic optimization Consider the following con-
strained stochastic optimization problem

minimize
x∈X

Eξ0

[
g
(0)
ξ0

(x)
]

subject to Eξj

[
g
(j)
ξj

(x)
]
≥ 0, j = 1, . . . ,mI ,

Eξj

[
g
(j)
ξj

(x)
]

= 0, j = mI + 1, . . . ,m.

Using the exact penalty approach (see, e.g., [5,28]), this problem can be re-
formulated as

minimize
x

Eξ0

[
g
(0)
ξ0

(x)
]

+

mI∑
j=1

cj max
{

0, Eξj

[
g
(j)
ξj

(x)
]}

+

m∑
j=mI+1

cj

∣∣∣Eξj

[
g
(j)
ξj

(x)
]∣∣∣+ δX (x),

where cj > 0 for j = 1, . . . ,m are sufficiently large positive constants (to ensure
the penalty terms vanish at optimality). It is straightforward to rewrite the
above problem as (3) and we omit the details. The update in (6) also requires
solving a convex quadratic programming problem.

1.2 Related work

The deterministic composite optimization problem (1) is a classical problem
in nonconvex and nonsmooth optimization, and its study can date back to
the late 70s in the last century; see, e.g., [4,25,43]. Recently, there has been
a renewed interest in such problems due to many emerging applications, in-
cluding the robust phase retrieval problem considered in [23], the low-rank
semidefinite programming (SDP) problem considered in [3], and the robust
blind deconvolution problem considered in [12], and so on. In fact, many of
these applications involve the average or expectation over large amount of
component loss functions, similar to those shown in problems (2) and (3).

For solving the nonlinear least-square problems (when f = ‖ · ‖2), the idea
of linearizing the inner mapping g is well-known from the classical Gauss-
Newton method (e.g, [39, Section 10.3]). For nonsmooth f , the trial of lin-
earizing the inner mapping g was made in [7,10], where the linearization is
used to construct a descent direction for line-search. In [36], Nesterov pro-
posed the Gauss-Newton type of algorithm (4) for nonsmooth f , analyzed its
general convergence properties and proved local quadratic convergence under
a non-degeneracy assumption. More recently, it has received more attention
under the name of prox-linear algorithm. The authors of [11,21,40] discussed
its iteration complexity and the numerical cost of solving the subproblem in
each iteration. In [19,20], the authors studied its fast local convergence prop-
erty under the quadratic growth or the error-bound conditions. Additional
references can be found in [8,9,34].

6 Junyu Zhang, Lin Xiao

In the stochastic settings, it is worth noting that [16,17,22,27] have con-
sidered the problem

minimize
x∈X

Eξ

[
fξ(gξ(x))

]
,

where the expectation is taken outside of the composition (in many cases f
does not depend on the random variable ξ). This problem is essentially a
special case of the classical stochastic programming problem. The problems
we consider in (2) and (3) are quite different.

Algorithms for solving stochastic composite optimization problems of the
forms (2) and (3) have been studied recently in [6,29,35,46,54,55,58–60]. Since
these are all stochastic or randomized algorithms, a common measure of per-
formance is their sample complexity, i.e., the total number of samples of the
component mappings gi or gξ and their Jacobians required to output some
point x̄ such that E

[
‖G(x̄)‖2

]
≤ ε, where ε is a predefined precision and G(x̄)

is the composite gradient mapping at x̄ (for a precise definition, see (11) in
Section 2). When both f and g are smooth and g is a finite-average, the best
sample complexity is O(N + N1/2ε−1) given in [60], which matches the best
known complexity for nonconvex finite-sum optimization without composition
[24,38,42,56]. When both f and g are smooth and g is a general expectation,
the state-of-the-art sample complexity is the O(ε−3/2) obtained in [60]. When
f is convex but nonsmooth and g is a finite sum of N smooth mappings,
the authors of [46] applied the conjugate function of f and transformed prob-
lem (2) to a min-max saddle-point problem. The sample complexity of their
method (without counting subproblem cost) is O(Nε−1).

After the initial submission of this paper, we were brought to attention
the independent work [53]. The authors also consider problems (2) and (3)
and develop stochastic Gauss-Newton methods (same form as prox-linear al-
gorithms) using SARAH [37] for variance reduction. They obtained sample
complexity O(ε−5/2) for gξ and O(ε−3/2) for g′ξ, but for a slightly different
stationarity measure than the one used in this paper. We will comment on the
connections to our results at the ends of Sections 3 and 4.

1.3 Contributions and outline

In this paper, we develop a class of stochastic variance-reduced prox-linear
algorithms for solving problems (2) and (3), by constructing the estimates g̃k

and J̃k in (6) with the variance reduction techniques of SVRG [31,57] and
SARAH/Spider [37,24]. Our main results are summarized below.

– When f is convex and nonsmooth and g is a finite average, we construct
an SVRG type estimator augmented with additional first-order correction,
and obtain the sample complexity O(N + N4/5ε−1) for both component
mapping (gi) and Jacobian (g′i) evaluations.

– When f is convex and nonsmooth and g is an expectation of random
smooth mappings, we use the SARAH/Spider estimator, and obtain a

Stochastic variance-reduced prox-linear algorithms 7

sample complexity of O(ε−5/2) for the random mappings (gξ) and O(ε−3/2)
for the Jacobians (g′ξ).

– When f is smooth, we also adopt the SARAH/Spider estimator. For both
component mapping and Jacobian evaluations, we obtain the sample com-
plexities O(N +

√
Nε−1) and O(ε−3/2) for the finite average case and ex-

pectation case respectively.

The first result above (with nonsmooth f and finite-sum g) appears to be new
and our sample complexity improves over the best known in the literature [46].
The second result is among the first in the literature to derive improved sample
complexity for nonsmooth f and with g being an expectation (see also [53]).
These results can be extended to the cases when f is weakly convex (see its
definition in, e.g., [16,21]). We omit details to keep the presentation relatively
simple, but will make remarks on the necessary changes where it is applicable.

Note that most work on stochastic composite optimization (SCO) construct
the gradient estimators based on chain-rule (see e.g. [54,60,61]), and they all
fail when f is nonsmooth. The significance of our results (and those in [53]) is
to show that using the prox-linear framework, instead of the chain-rule, can
take advantage of variance reduction techniques in the nonsmooth composite
setting to achieve better sample complexity. Another feature that distinguishes
our first two results from the existing smooth SCO literature is the imbalance
between the required estimation accuracy of g̃ and J̃ . Unlike the chain rule
based algorithms for smooth SCO problems where the required accuracy for g̃
and J̃ are of the same order (see e.g. [29,59,60]), the nonsmooth SCO problem
requires the order of estimation accuracy for g̃ to be much higher than J̃ . New
techniques are required to handle this challenge.

Our results with f being smooth match those in [60], which are obtained
by using variance-reduced gradient estimators based on the chain rule, i.e.,
(J̃k)T f ′(g̃k), in contrast to using the proximal mapping of f in (6). It is often
observed in practice that algorithms based on proximal mappings can be more
efficient than those based on gradients, even though in theory they have the
same sample complexity (e.g., [1,2,16]). Therefore it is very meaningful to
establish the convergence and complexity of proximal-mapping based methods
even when f is smooth. In addition, we comment on its effectiveness by relating
to the classical Gauss-Newton method at the end of this paper.

Organization In Section 2, we present a general framework of stochastic variance-
reduced prox-linear algorithms using the update formula (6), without speci-
fying how the estimates g̃k and J̃k are constructed. In Sections 3 and 4, we
assume that f can be nonsmooth, and present the constructions of g̃k and J̃k

and the resulting sample complexities for solving problems (2) and (3) re-
spectively. In Sections 5 and 6, we assume that f is smooth and present the
estimators and the corresponding sample complexities for solving these two
problems respectively. In Section 7, we present preliminary numerical exper-
iments to demonstrate the effectiveness of the proposed algorithms. We con-
clude the paper in Section 8 with further discussions on different variance
reduction techniques for stochastic composite optimization.

8 Junyu Zhang, Lin Xiao

2 The algorithm framework

In this section, we present a framework of stochastic variance-reduced prox-
linear algorithms using the update formula (6). In order to simplify notations,
we define

Φ(x) , f(g(x)) + h(x), (8)

where g is either the average of finite number of component mappings as in
problem (2), or the expectation of a family of random component mappings
as in (3). We make the following assumptions throughout the paper.

Assumption 1 The function f : Rm → R∪{+∞} is convex and `f -Lipschitz
continuous, i.e.,

|f(u)− f(v)| ≤ `f‖u− v‖, ∀u, v ∈ Rm.

The function h : Rn → R ∪ {+∞} is convex and lower semi-continuous.

Assumption 2 The vector mapping g : Rn → Rm is `g-Lipschitz continuous
and its Jacobian g′ : Rn → Rm×n is Lg-Lipschitz continuous, i.e.,

‖g(x)− g(y)‖ ≤ `g‖x− y‖,
‖g′(x)− g′(y)‖ ≤ Lg‖x− y‖,

for all x, y ∈ domh, where ‖ · ‖ for matrices denotes the spectral norm.

A direct consequence of the Lipschitz condition on g′ in Assumption 2 is∥∥g(x)− g(y)− g(y)′(x− y)
∥∥ ≤ Lg

2
‖x− y‖2. (9)

(See, e.g., [41, Theorem 3.2.12].) Throughout the paper, we also assume the
objective function Φ is lower bounded, as stated in the following assumption.

Assumption 3 There exists Φ∗ such that Φ∗ = infx Φ(x) > −∞.

Under these assumptions, we have the following result.

Lemma 1 Suppose Assumption 1 and 2 hold, then for any x, y ∈ domh,

f(g(x)) ≤ f(g(y) + g′(y)(x− y)) +
`fLg

2
‖x− y‖2. (10)

Proof By the Lipschitz continuity of f and g′, we have

f(g(x)) = f
(
g(y) + g′(y)(x− y)

)
+ f(g(x))− f

(
g(y) + g′(y)(x− y)

)
≤ f

(
g(y) + g′(y)(x− y)

)
+
∣∣f(g(x))− f

(
g(y) + g′(y)(x− y)

)∣∣
≤ f

(
g(y) + g′(y)(x− y)

)
+ `f

∥∥g(x)− g(y)− g′(y)(x− y)
∥∥

≤ f
(
g(y) + g′(y)(x− y)

)
+
`fLg

2
‖x− y‖2,

where the last inequality is due to (9). ut

Stochastic variance-reduced prox-linear algorithms 9

Algorithm 1: Stochastic variance-reduced prox-linear algorithm

1 input: initial point x10, M > 0, number of outer and inner iterations K and τ .
2 for k = 1, . . . ,K do
3 for i = 0, . . . , τ − 1 do
4 if i == 0 then

5 compute g̃k0 and J̃k0 using large batches Bk0 and Sk0 respectively.
6 else

7 compute g̃ki and J̃ki using small batches Bki and Ski respectively.
8 end

9 xki+1 = argmin
x

{
f
(
g̃ki + J̃ki (x− xki)

)
+ h(x) + M

2
‖x− xki ‖2

}
.

10 end

11 Set xk+1
0 = xkτ .

12 end

13 output: choose xk
∗
i∗ from {xki }

k=1,...,K
i=0,...,τ−1 uniformly at random.

As a result of Lemma 1, f(g(y) + g′(y)(x− y)) + h(x) + M
2 ‖x− y‖

2 is an
upper bound of the objective function f(g(x)) + h(x) as long as M ≥ `fLg.
This is exactly the principle of majorization used in the update (4). In order
to exploit the finite-average structure of problem (2), we can approximate the
full average g(xk) and g′(xk) with randomly sampled mini-batch estimators
g̃k and J̃k as in (5). For problem (3), sampling based methods are the only
choices because the full expectations Eξ[·] are impossible to evaluate in most
cases. As shown in several previous work (see, e.g., [18] and [61, Section 3]), the
simple mini-batching scheme (5) usually does not reduce the overall sample
complexity for problems with similar structure, compared with using the full-
batch in the finite-average case and using a single sample in the expectation
case.

In this paper, we propose a class of stochastic variance-reduced prox-linear
algorithms, outlined in Algorithm 1, and shown that they achieve better sam-
ple complexities than simple mini-batching. Following the celebrated SVRG
method [31,57], our framework employs an outer loop of K stages and an in-
ner loop of τ iterations. During the first iteration of each inner loop, the map-
ping and Jacobian approximations g̃k0 and J̃k0 are computed using relatively
large sample batches. In the rest of inner iterations, they are computed with
relatively small sample batches. It turns out that different variance-reduced
estimators are needed to obtain the best sample complexity under different
assumptions on f and the structure of g. We will present the details of con-
structing different estimators and their convergence analysis in the remaining
sections of this paper.

In order to characterize the sample complexity of different algorithms, we
first define what is an ε-stationary point. For any x ∈ domh, we define the
proximal point

x+ , argmin
y

{
f
(
g(x) + g′(x)(y − x)) + h(y) +

M

2
‖y − x‖2

}

10 Junyu Zhang, Lin Xiao

and the composite gradient mapping at x,

GM (x) ,M(x− x+). (11)

Given any ε > 0, we call x̄ an ε-stationary point of Φ defined in (8) if
‖GM (x̄)‖2 ≤ ε. Note that when h = 0 and f is the identity mapping, we
have GM (x) = ∇Φ(x) for any M > 0 and the definition of ε-stationary point
reduces to its classical form ‖∇Φ(x)‖2 ≤ ε for smooth optimization. For the
validity of ‖GM (·)‖2 as an optimality measure under nontrivial h and nons-
mooth f , the readers are referred to [20]. To simplify notation, we will omit
the subscript M (which is a constant throughout this paper) and denote the
composite gradient mapping as G(x).

The sample complexity of a randomized algorithm, such as Algorithm 1, is
the total number of evaluations of the component mappings gi or gξ and their
Jacobians required in order to output some x̄ satisfying

E
[
‖G(x̄)‖2

]
≤ ε, (12)

where the expectation is taken over all the random samplings during the iter-
ations of the algorithm.

Notice that the proximal point x+ used in the definition of G(x) is com-
puted with g(x) and g′(x), which can be very costly if not impossible to evalu-
ate. In Algorithm 1, the proximal point xki+1 is computed using the estimates

g̃ki and J̃ki , i.e.,

xki+1 = argmin
x

{
f
(
g̃ki + J̃ki (x− xki)

)
+ h(x) +

M

2
‖x− xki ‖2

}
. (13)

This leads to a convenient approximation,

G̃(xki) ,M(xki − xki+1), (14)

of the true gradient mapping G(xki) = M(xki − x̂ki+1), where

x̂ki+1 = argmin
x

{
f
(
g(xki) + g′(xki)(x− xki)

)
+ h(x) +

M

2
‖x− xki ‖2

}
. (15)

Since the definitions of ε-stationary point and sample complexity are based
on the true gradient mapping G but computationally we only have access
to the approximation G̃, we need to derive a bound between them for the
purpose of complexity analysis. Not surprisingly, such a bound depends on the
approximation quality of the estimators g̃ki and J̃ki , as shown in the following
lemma.

Lemma 2 Under Assumptions 1 and 2, the iterates generated by Algorithm 1
satisfy

M − `fLg
M2

∥∥G(xki)
∥∥2 ≤ 2M + `fLg

M2

∥∥G̃(xki)
∥∥2

+ 4`f
∥∥g̃ki − g(xki)

∥∥+
2`f
Lg

∥∥J̃ki − g′(xki)
∥∥2.

Stochastic variance-reduced prox-linear algorithms 11

Proof For the ease of notation, we denote

F (x;xki) = f
(
g(xki) + g′(xki)(x− xki)

)
, (16)

F̃ (x;xki) = f
(
g̃ki + J̃ki (x− xki)

)
. (17)

Since both f and h are convex (Assumption 1), the following two functions
are M -strongly convex:

F (x;xki) + h(x) +
M

2
‖x− xki ‖2, (18)

F̃ (x;xki) + h(x) +
M

2
‖x− xki ‖2. (19)

According to (15) and (13), x̂ki+1 and xki+1 are the minimizers of these two
functions respectively. Therefore

F (x̂ki+1;xki) + h(x̂ki+1) +
M

2
‖x̂ki+1 − xki ‖2

≤ F (xki+1;xki) + h(xki+1) +
M

2
‖xki+1 − xki ‖2 −

M

2
‖x̂ki+1 − xki+1‖2,

and

F̃ (xki+1;xki) + h(xki+1) +
M

2
‖xki+1 − xki ‖2

≤ F̃ (x̂ki+1;xki) + h(x̂ki+1) +
M

2
‖x̂ki+1 − xki ‖2 −

M

2
‖x̂ki+1 − xki+1‖2.

Summing the two inequalities above and rearranging the terms, we obtain

M‖x̂ki+1 − xki+1‖2 ≤ F (xki+1;xki)− F̃ (xki+1;xki)

+F̃ (x̂ki+1;xki)− F (x̂ki+1;xki). (20)

Using the Lipschitz property of f , we have∣∣F (xki+1;xki)− F̃ (xki+1;xki)
∣∣

=
∣∣∣f(g(xki) + g′(xki)(xki+1 − xki)

)
− f

(
g̃ki + J̃ki (xki+1 − xki)

)∣∣∣
≤ `f

∥∥∥(g(xki)− g̃ki
)

+
(
g′(xki)− J̃ki

)(
xki+1 − xki

)∥∥∥
≤ `f

(∥∥g̃ki − g(xki)
∥∥+

∥∥J̃ki − g′(xki)
∥∥∥∥xki+1 − xki

∥∥)
≤ `f

(∥∥g̃ki − g(xki)
∥∥+

1

2Lg

∥∥J̃ki − g′(xki)
∥∥2 +

Lg
2

∥∥xki+1 − xki
∥∥2) .

Replacing xki+1 in the above inequality with x̂ki+1, we get∣∣F (x̂ki+1;xki)− F̃ (x̂ki+1;xki)
∣∣

≤ `f

(∥∥g̃ki − g(xki)
∥∥+

1

2Lg

∥∥J̃ki − g′(xki)
∥∥2 +

Lg
2

∥∥x̂ki+1 − xki
∥∥2) .

12 Junyu Zhang, Lin Xiao

Combining the two bounds above with (20) gives

M
∥∥x̂ki+1 − xki+1

∥∥2 ≤ 2`f
∥∥g̃ki − g(xki)

∥∥+
`f
Lg

∥∥J̃ki − g′(xki)
∥∥2

+
`fLg

2

∥∥xki+1 − xki
∥∥2 +

`fLg
2

∥∥x̂ki+1 − xki
∥∥2.

Next, using the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 and the above inequality,
we have

M
∥∥x̂ki+1 − xki

∥∥2] ≤ 2M
∥∥xki+1 − xki

∥∥2 + 2M
∥∥x̂ki+1 − xki+1

∥∥2
≤ 2M

∥∥xki+1 − xki
∥∥2 + 4`f

∥∥g̃ki − g(xki)
∥∥+

2`f
Lg

∥∥J̃ki − g′(xki)
∥∥2

+`fLg
∥∥xki+1 − xki

∥∥2 + `fLg
∥∥x̂ki+1 − xki

∥∥2.
Rearranging the terms yields

(M − `fLg)
∥∥x̂ki+1 − xki

∥∥2 ≤ (2M + `fLg)
∥∥xki+1 − xki

∥∥2
+ 4`f

∥∥g̃ki − g(xki)
∥∥ +

2`f
Lg

∥∥J̃ki − g′(xki)
∥∥2.

Finally, using the definitions G(xki) = M(xki −x̂ki+1) and G̃(xki) = M(xki −xki+1),
we obtain the desired result. ut

Extension to the weakly convex case. The function f is ρ-weakly convex if
f(x) + ρ

2‖x‖
2 is convex. In order to extends results in this paper for weakly

convex f , we need to increase M to ensure that the functions in (18) and (19)
are strongly convex (in fact, strong convexity in expectation is sufficient).

3 The nonsmooth and finite-average case

In this section, we consider the composite finite-average problem (2) with
nonsmooth f and smooth gi’s. In particular, we replace Assumption 2 with
the following more structured one, which implies Assumption 2.

Assumption 4 For each i = 1, . . . , N , the mapping gi : Rn → Rm, is
`g,i-Lipschitz continuous and its Jacobian matrix g′i : Rn → Rm×n is Lg,i-
Lipschitz continuous. Namely,

‖gi(x)− gi(x)‖ ≤ `g,i‖x− y‖,
‖g′i(x)− g′i(x)‖ ≤ Lg,i‖x− y‖,

for all x, y ∈ domh and i = 1, . . . , N .

Stochastic variance-reduced prox-linear algorithms 13

A direct consequence of this assumption is that g is
(

1
N

∑N
i `g,i

)
-Lipschitz

continuous and g′ is
(

1
N

∑N
i Lg,i

)
-Lipschitz continuous. Due to the root-mean

square inequality z1+...+zN
N ≤

√
z21+...+z

2
N

N , We define

`g =

√√√√ 1

N

N∑
i

`2g,i, Lg =

√√√√ 1

N

N∑
i

L2
g,i, (21)

which can serve as the Lipschitz constants of g and g′ respectively as in As-
sumption 2.

In this case, we construct the estimates g̃k0 and J̃k0 using the full batch. In
other words, we let Bk0 = Sk0 = {1, 2, . . . , N} and replace Line 5 in Algorithm 1
with

g̃k0 = g(xk0) =
1

N

N∑
i=1

gi(x
k
0), (22)

J̃k0 = g′(xk0) =
1

N

N∑
i=1

g′i(x
k
0). (23)

For i > 0, we sample with replacement from {1, 2, . . . , N} to obtain smaller
sets Bki and Ski (whose cardinalities will be determined later), and apply the
following construction:

g̃ki =
1

|Bki |
∑
j∈Bk

i

(
gj(x

k
i)− gj(xk0)− g′j(xk0)(xki − xk0)

)
+ g(xk0) + g′(xk0)(xki − xk0),

(24)

J̃ki =
1

|Ski |
∑
j∈Sk

i

(
g′j(x

k
i)− g′j(xk0)

)
+ g′(xk0). (25)

It is worth noting that here we use the standard SVRG estimator [31] to con-
struct J̃ki , but the estimator for g̃ki is augmented with a first-order correction
(a similar estimator was proposed in [62]).

We remark that for nonsmooth f , the first-order correction scheme in (24)
is essential for achieving a sample complexity that is sublinear in N , whereas
purely applying the SVRG estimator will only result in a sample complexity
linear in N . This is very different from the case with smooth f (see e.g. [29,
35]). The main reason for such distinction is that nonsmooth SCO problem
requires the estimation accuracy for g̃ki to be much higher than J̃ki . In addition,
the SARAH/Spider estimators seem to be not compatible with the first-order
correction technique and we are not able to combine them together in order
to obtain a sample complexity that is sublinear in N .

The following lemma bounds the approximation errors of these estimators.

14 Junyu Zhang, Lin Xiao

Lemma 3 Suppose Assumption 4 holds and g̃ki and J̃ki are constructed ac-
cording to (24) and (25) respectively, then

E
[∥∥g̃ki − g(xki)

∥∥ ∣∣xki] ≤ Lg

2
√
|Bki |

∥∥xki − xk0∥∥2,
E
[∥∥J̃ki − g′(xki)

∥∥2 ∣∣xki] ≤ L2
g

|Ski |
∥∥xki − xk0∥∥2,

where E[·|xki] denotes conditional expectation given xki , i.e., expectation with
respect to the random indices in Bki and Ski .

Proof To prove the first inequality, we start with (24) and write

g̃ki − g(xki) =
1

|Bki |
∑
j∈Bk

i

Zj , (26)

where

Zj = gj(x
k
i)− gj(xk0)− g′j(xk0)(xki − xk0) + g(xk0) + g′(xk0)(xki − xk0) − g(xki).

Since j is randomly sampled from {1, 2, . . . , N}, we have E[gj(x
k
i)] = g(xki)

and E[g′j(x
k
i)] = g′(xki), which implies E[Zj |xki] = 0. That is, g̃ki is an unbiased

estimate of g(xki). In addition, we have

E
[
gj(x

k
i)− gj(xk0)− g′j(xk0)(xki − xk0)

∣∣xki]= g(xki)− g(xk0)− g′(xk0)(xki − xk0).

This allows us to bound the variance of Zj as follows:

E
[
‖Zj‖2

∣∣xki] = E
[∥∥gj(xki)− gj(xk0)− g′j(xk0)(xki − xk0)

∥∥2 ∣∣xki]
−
∥∥g(xki)− g(xk0)− g′(xk0)(xki − xk0)

∥∥2
≤ E

[∥∥gj(xki)− gj(xk0)− g′j(xk0)(xki − xk0)
∥∥2 ∣∣xki]

≤ 1

N

N∑
j=1

(
Lg,j

2
‖xki − xk0‖2

)2

=
L2
g

4
‖xki − xk0‖4,

where the last inequality is due to (9) and Assumption 4 respectively. In the
last equality, we used the definition of Lg in (21).

Combining the above inequality with (26) yields

E
[∥∥g̃ki − g(xki)

∥∥2 ∣∣xki] ≤ L2
g

4|Bki |
∥∥xki − xk0∥∥4.

Next, using the concavity of
√
· and Jensen’s inequality, we obtain the desired

result:

E
[∥∥g̃ki − g(xki)

∥∥ ∣∣xki] ≤√E
[∥∥g̃ki − g(xki)

∥∥2 ∣∣xki] ≤ Lg

2
√
|Bki |

∥∥xki − xk0∥∥2.

Stochastic variance-reduced prox-linear algorithms 15

To prove the second inequality, we define Zj = g′j(x
k
i)−g′j(xk0)+g′(xk0)−g′(xki)

and follow a similar line of arguments. ut

Next, we prove a descent property of the algorithm, which is a crucial step
for the convergence analysis.

Lemma 4 Suppose Assumptions 1 and 4 hold and the estimates g̃k0 , J̃k0 , g̃ki
and J̃ki in Algorithm 1 are constructed as in (22)-(25) respectively. Then for
k = 1, . . . ,K and i = 0, . . . , τ − 1,

Φ(xki+1) ≤ Φ(xki)− M − 2`fLg
2M2

∥∥G̃(xki)
∥∥2

+ 2`f
∥∥g̃ki − g(xki)

∥∥+
`f

2Lg

∥∥J̃ki − g′(xki)
∥∥2. (27)

Proof By the definition of Φ in (8) and Lemma 1, we have

Φ(xki+1) ≤ f(g(xki) + g′(xki)(xki+1 − xki)) +
`fLg

2

∥∥xki+1 − xki
∥∥2 + h(xki+1)

= f
(
g̃ki + J̃ki (xki+1 − xki)

)
+ h(xki+1) +

M

2

∥∥xki+1 − xki
∥∥2

−M − `fLg
2

∥∥xki+1 − xki
∥∥2

+ f
(
g(xki) + g′(xki)(xki+1 − xki)

)
− f

(
g̃ki + g′(xki)(xki+1 − xki)

)︸ ︷︷ ︸
T1

+ f
(
g̃ki + g′(xki)(xki+1 − xki)

)
− f

(
g̃ki + J̃ki (xki+1 − xki)

)︸ ︷︷ ︸
T2

. (28)

According to (13), we have

f
(
g̃ki + J̃ki (xki+1 − xki)

)
+ h(xki+1) +

M

2

∥∥xki+1 − xki
∥∥2 ≤ f(g̃ki) + h(xki).

Therefore,

Φ(xki+1) ≤ f(g̃ki) + h(xki)− M − `fLg
2

‖xki+1 − xki ‖2 + T1 + T2

≤ f(g(xki)) + h(xki)− M − `fLg
2

‖xki+1 − xki ‖2 + T1 + T2

+ f(g̃ki)− f(g(xki))︸ ︷︷ ︸
T3

= Φ(xki)− M − `fLg
2

‖xki+1 − xki ‖2 + T1 + T2 + T3. (29)

By the Lipschitz property of f , we have

T1 ≤ `f
∥∥g̃ki − g(xki)

∥∥, T3 ≤ `f
∥∥g̃ki − g(xki)

∥∥,

16 Junyu Zhang, Lin Xiao

and

T2 ≤ `f
∥∥(J̃ki − g′(xki)

)
(xki+1 − xki)

∥∥ ≤ `f
∥∥J̃ki − g′(xki)

∥∥ · ∥∥xki+1 − xki
∥∥

≤ `f
2Lg

∥∥J̃ki − g′(xki)
∥∥2 +

`fLg
2

∥∥xki+1 − xki
∥∥2. (30)

Combining the bounds on T1, T2 and T3 and the inequality (29) yields

Φ(xki+1) ≤ Φ(xki)−
(
M

2
− `fLg

)∥∥xki+1 − xki
∥∥2

+ 2`f
∥∥g̃ki − g(xki)

∥∥+
`f

2Lg

∥∥J̃ki − g′(xki)
∥∥2,

which, upon noticing G̃(xki) = −M(xki+1 − xki), is equivalent to the desired
result. ut

Recall the definition that G̃(xki) := M(xki −xki+1). In order to complete the
convergence analysis, we define a stochastic Lyapunov function

Rki = E

[
Φ(xki) + ci

∥∥∥∥i−1∑
t=0

G̃(xkt)

∥∥∥∥2
]
, k = 1, . . . ,K, i = 0, . . . , τ, (31)

where the coefficients ci for i = 0, 1, . . . , τ are obtained through the recursion:

cτ = 0,

ci = ci+1

(
1 +

1

τ

)
+

1

3M
√
|Bki |

+
1

5M |Ski |
, i = τ − 1, . . . , 0. (32)

(Our choices or |Bki | and |Ski | will not depend on k.) In addition, we define the
following constant

γ , min
0≤i≤τ−1

1

3

(
1

4M
− ci+1(1 + τ)

)
.

We can ensure γ > 0 by choosing τ , |Bki | and |Ski | appropriately. We will
discuss how to set these values after the following lemma, where we simply
assume γ > 0.

Lemma 5 Suppose Assumptions 1 and 4 hold and the estimates g̃k0 , J̃k0 , g̃ki
and J̃ki in Algorithm 1 are constructed as in (22)-(25) respectively. In addition,
we assume M ≥ 4`fLg and γ > 0. Then for each k = 1, . . . ,K,

τ−1∑
i=0

E
[∥∥G(xki)

∥∥2] ≤ Rk0 −Rkτ
γ

=
E[Φ(xk0)]−E[Φ(xk+1

0)]

γ
. (33)

Stochastic variance-reduced prox-linear algorithms 17

Proof For the ease of notation, we write the stochastic Lyapunov function as

Rki = E
[
Φ(xki) + ci‖Gki ‖2

]
,

where

Gki =

i−1∑
t=0

G̃(xkt) = −M(xki − xk0). (34)

In particular, we have Gk0 = −M(xk0 − xk0) = 0. Moreover, we have

E
[
‖Gki+1‖2

]
= E

[
‖Gki + G̃(xki)‖2

]
≤
(

1 +
1

τ

)
E
[
‖Gki ‖2

]
+ (1 + τ)E

[
‖G̃(xki)‖2

]
. (35)

Combining Lemmas 2 and 4 yields

E
[
Φ(xki+1)

]
≤ E

[
Φ(xki)

]
− M − 2`fLg

2M2
E
[∥∥G̃(xki)

∥∥2]+

(
`fLg√
|Bki |

+
`fLg
2|Ski |

)
E
[
‖xki − xk0‖2

]
= E

[
Φ(xki)

]
− M − 2`fLg

2M2
E
[∥∥G̃(xki)

∥∥2]+
1

M2

(
`fLg√
|Bki |

+
`fLg
2|Ski |

)
E
[
‖Gki ‖2

]
,

where in the last equality we used (34). Adding both sides of (35) to that of
the above inequality and using the assumption M ≥ 4`fLg, we obtain

E
[
Φ(xki+1) + ci+1‖Gki+1‖2

]
≤ E

[
Φ(xki)

]
−
(
M − 2`fLg

2M2
− ci+1(1 + τ)

)
E
[
‖G̃(xki)‖2

]
+

(
1

M2

(
`fLg√
|Bki |

+
`fLg
2|Ski |

)
+ ci+1

(
1 +

1

τ

))
E
[
‖Gki ‖2

]
≤ E

[
Φ(xki)

]
−
(

1

4M
− ci+1(1 + τ)

)
E
[
‖G̃(xki)‖2

]
(36)

+

(
1

4M

(
1√
|Bki |

+
1

2|Ski |

)
+ ci+1

(
1 +

1

τ

))
E
[
‖Gki ‖2

]
.

Next, combining Lemma 2 with Lemmas 3 yields

M − `fLg
M2

E
[
‖G(xki)‖2

]
≤ 2M + `fLg

M2
E
[
‖G̃(xki)‖2

]
+

(
2`fLg√
|Bki |

+
2`fLg
|Ski |

)
E
[
‖xki − xk0‖2

]
.

18 Junyu Zhang, Lin Xiao

Using the equality Gki = −M(xki − xk0) and the assumption M ≥ 4`fLg, the
above inequality implies

3

4M
E
[
‖G(xki)‖2

]
≤ 9

4M
E
[
‖G̃(xki)‖2

]
+

1

2M

(
1√
|Bki |

+
1

|Ski |

)
E
[
‖Gki ‖2

]
. (37)

Multiplying both sides of (37) by
(

1
4M − ci+1(1 + τ)

) /
9

4M , which is positive
by the assumption γ > 0, and adding the resulting inequality to (36), we get

E
[
Φ(xki+1) + ci+1‖Gki+1‖2

]
≤ E

[
Φ(xki) +

(
ci+1

(
1 +

1

τ

)
+

1

3M
√
|Bki |

+
1

5M |Ski |

)
‖Gki ‖2

]

−1

3

(
1

4M
− ci+1(1 + τ)

)
E[‖G(xki)‖2].

Now, using the definitions in (31) and (32), the above inequality is the same
as

1

3

(
1

4M
− ci+1(1 + τ)

)
E
[
‖G(xki)‖2

]
≤ Rki −Rki+1.

Recalling the definition of γ and summing up the above inequality over i from 0
to τ − 1, we get

γ

τ−1∑
i=0

E
[
‖G(xki)‖2

]
≤ Rk0 −Rkτ = E

[
Φ(xk0)

]
−E

[
Φ(xkτ)

]
,

where the last equality is due to the observations that cτ = 0 and Gk0 = 0.
Finally, dividing both sides by γ and using xk+1

0 = xkτ give the desired result.
ut

The next lemma shows how to choose the inner loop length τ and the two
mini-batch sizes |Bki | and |Ski | to ensure γ > 0. We use d·e to denote the nearest
integer from above.

Lemma 6 If we choose τ =
⌈
1
2N

1/5 − 1
⌉
, |Bki | =

⌈
4N4/5

⌉
and |Ski | =

⌈
N2/5

⌉
for i = 1, . . . , τ − 1, then γ ≥ 1

15M .

Proof To simplify notation, let B = |Bki | and S = |Ski | for i = 1, . . . , τ − 1.
From (32), we deduce

(ci + C) = (ci+1 + C)

(
1 +

1

τ

)
, where C =

τ

3M
√
B

+
τ

5MS
.

Consequently, with cτ = 0, we have for all i = 1, . . . , τ ,

ci = (cτ +C)

(
1 +

1

τ

)τ−i
−C ≤ C

(
1 +

1

τ

)τ
−C ≤ Ce−C = C(e− 1),

Stochastic variance-reduced prox-linear algorithms 19

where the last inequality is due to the fact that (1+1/τ)τ ≤ e with e is Euler’s
number (the basis of natural logarithm). Therefore,

γ = min
0≤i≤τ−1

1

3

(
1

4M
− ci+1(1 + τ)

)
≥ 1

3

(
1

4M
− C(e− 1)(1 + τ)

)
=

1

3M

(
1

4
−
(

1

3
√
B

+
1

5S

)
(e− 1)τ(1 + τ)

)
≥ 1

3M

(
1

4
−
(

1

3
√
B

+
1

5S

)
2(1 + τ)2

)
.

Finally, setting τ = 1
2N

1/5− 1, B = 4N4/5 and S = N2/5 yields γ ≥ 1
15M . ut

Combining Lemma 5 and Lemma 6, we arrive at the main result of this
section.

Theorem 1 Suppose Assumptions 1, 3 and 4 hold for problem (2). Let the
estimates g̃k0 , J̃k0 , g̃ki and J̃ki in Algorithm 1 be given in (22)-(25) respectively.
If we choose M ≥ 4`fLg and τ =

⌈
1
2N

1/5 − 1
⌉
, and

|Bki | =
⌈
4N4/5

⌉
, |Ski | =

⌈
N2/5

⌉
, i = 1, . . . , τ − 1, k = 1, . . . ,K,

then the output of Algorithm 1 satisfies

E
[
‖G(xk

∗

i∗)‖2
]
≤

15M
(
Φ(x10)− Φ∗

)
Kτ

. (38)

To get an ε-stationary point in expectation, the total sample complexity for the
component mappings gj and their Jacobians are both O(N +N4/5ε−1).

Proof Summing up the inequality (33) over k from 1 to K and using the fact
Φ(xKτ) > Φ∗, we get

K∑
k=1

τ−1∑
i=0

E
[
‖G(xki)‖2

]
≤ Φ(x10)− Φ(x∗)

γ
.

By the random choice of the output xk
∗

i∗ , we can get the inequality (38).
To get an ε-stationary point in expectation, we need to set Kτ = O(ε−1),

which implies
K = O(τ−1ε−1) = O(N−1/5ε−1).

Consequently, the sample complexity of the component mappings (the gi’s) is

KN +KτB = O(N−1/5ε−1) ·N +O(ε−1) · 4N4/5 = O(N +N4/5ε−1).

and the sample complexity for the component Jacobians is

KN +KτS = O(N−1/5ε−1) ·N +O(ε−1) ·N2/5 = O(N +N4/5ε−1).

This completes the proof. ut

20 Junyu Zhang, Lin Xiao

Remark 1 Up to this point, we notice that all the analysis leading to Theo-
rem 1 only requires the sample batches between iterations to be independent.
Whereas within each iteration we do not require the independence between Bki
and Ski . Therefore, in practice one can simply use the same mini-batch Bki = Ski
to estimate both g̃ki and J̃ki , with batch size equal to max{S,B} = d4N4/5e.
Or, we can use a random subset of Bki of size dN2/5e to compute J̃ki in order
to save computation.

Remark 2 The nonsmooth and finite-sum case is also considered in [53]. But
their results are limited to using the simple mini-batch scheme for both com-
ponent mapping and Jacobian estimation. As a consequence, their sample
complexities for the component mappings and their Jacobians are O(ε−3) and
O(ε−2) respectively, without explicit dependence on N . They are similar to our
results in Section 4.1 on using mini-batches when g is a general expectation.

4 The nonsmooth and expectation case

In this section, we consider the composite stochastic optimization problem (3),
which we repeat here for convenience:

minimize
x

Φ(x) , f(g(x)) + h(x), where g(x) = Eξ

[
gξ(x)

]
.

We assume that f and h satisfy Assumption 1 and the gξ’s satisfy the following
assumption.

Assumption 5 The random mappings gξ : Rn → Rm and their Jacobians
are mean-squares Lipschitz continuous, i.e., there exist constants `g and Lg
such that for all x, y ∈ domh,

E
[
‖gξ(x)− gξ(y)‖2

]
≤ `2g‖x− y‖2,

E
[
‖g′ξ(x)− g′ξ(y)‖2

]
≤ L2

g‖x− y‖2.

Furthermore, there exist constants σ2
g and σ2

g′ such that for all x ∈ domh,

E
[
‖gξ(x)− g(x)‖2

]
≤ σ2

g ,

E
[
‖g′ξ(x)− g′(x)‖2

]
≤ σ2

g′ .

Assumption 5 implies Assumption 2, but is weaker than assuming that gξ and
g′ξ are almost surely `g- and Lg-Lipschitz respectively.

In this case, the first-order correction used in (24) is no longer useful in
reducing the estimation errors because we cannot evaluate g(xk0) or g′(xk0)
accurately. Instead, we turn to the SARAH/Spider estimator developed in
[37,24]. But before doing that, we first examine the simple mini-batch scheme
outlined in (5) and (6).

Stochastic variance-reduced prox-linear algorithms 21

Algorithm 2: Simple mini-batch prox-linear algorithm

1 input: initial point x0, parameter M > 0, and number of iterations T .
2 for i = 0, . . . , T − 1 do

3 sample mini-batches Bi and Si from distribution of ξ, and compute g̃i and J̃i
as in (39).

4 xi+1 = argmin
x

{
f
(
g̃i + J̃i(x− xi)

)
+ h(x) + M

2
‖x− xi‖2

}
.

5 end
6 output: choose xi∗ from {x0, x1, . . . , xT−1} uniformly at random.

4.1 The simple mini-batch method

The simple mini-batch method is to run Algorithm 1 with only one epoch
(K = 1) and τ = T iterations, where during each iteration we set

g̃i =
1

|Bi|
∑
ξ∈Bi

gξ(xi), and J̃i =
1

|Si|
∑
ξ∈Si

g′ξ(xi). (39)

Since there is only one epoch, we omit the superscript k on xki , g̃ki and J̃ki to
write xi, g̃i and J̃i. Similar to Remark 1, we do not require the independence
between Bi and Si. For clarity, we present the resulting method as Algorithm 2.
The following complexity result holds.

Theorem 2 Suppose Assumptions 1, 3 and 5 hold for problem (3). If we

choose M ≥ 4`fLg and the batch sizes |Bi| = B ≥ 36`2fσ
2
g

ε2 and |Si| = S ≥
2`fσ

2
g′

Lgε
, then the output xi∗ of Algorithm 2 satisfies

E
[
‖G(xi∗)‖2

]
≤ 12M

(
Φ(x0)− Φ∗

T
+ ε

)
. (40)

Consequently by setting T = O(ε−1), the sample complexities for the compo-
nent mappings gξ and their Jacobians for getting an ε-solution are O(ε−3) and
O(ε−2) respectively.

Proof From the construction of g̃i and J̃i in (39), we have E[g̃i] = g(xi) and
E[J̃i] = g′(xi). Moreover, by Assumption 5, we have

E
[
‖g̃i − g(xi)‖2

]
≤
σ2
g

B
, E

[
‖J̃i − g′(xi)‖2

]
≤
σ2
g′

S
.

Using Jensen’s inequality, the variance bound on g̃i further implies that E
[
‖g̃i−

g(xi)‖
]
≤ σg√

B
. Together with Lemma 4, we have

M − 2`fLg
2M2

E
[
‖G̃(xki)‖2

]
≤ E[Φ(xi)]−E[Φ(xi+1)] +

2`fσg√
B

+
`fσ

2
g′

2LgS
. (41)

22 Junyu Zhang, Lin Xiao

On the other hand, applying Lemma 2 yields

M − `fLg
M2

E
[
‖G(xki)‖2

]
≤ 2M + `fLg

M2
E
[
‖G̃(xki)‖2

]
+

4`fσg√
B

+
2`fσ

2
g′

LgS
. (42)

Next, we multiply both sides of (42) by
M−2`fLg

2(2M+`fLg)
and add them to (41) to

cancel the terms containing E
[
‖G̃(xki)‖2

]
. Then with M ≥ 4`fLg, we have

M−2`fLg

2(2M+`fLg)
∈
[
1
9 ,

1
4

]
and obtain

1

12M
E[‖G(xi)‖2] ≤ E[Φ(xi)]−E[Φ(xi+1)] +

3`fσg√
B

+
`fσ

2
g′

LgS
.

Summing up the above inequality over i from 0 to T − 1 and dividing by T ,
we obtain

1

T

T−1∑
i=0

E
[
‖G(xi)‖2

]
≤ 12M

(
Φ(x0)− Φ∗

T
+

3`fσg√
B

+
`fσ

2
g′

LgS

)
.

Finally, using |Bi| = B ≥ 36`2fσ
2
g

ε2 and |Si| = S ≥ 2`fσ
2
g′

Lgε
yields (40). The sample

complexities for gξ and g′ξ can be obtained as TB = O(ε−3) and TS = O(ε−2)
respectively. ut

4.2 Using the SARAH/SPIDER estimator

In this section, we show that by using the SARAH/Spider estimator [37,
24], the sample complexities for the component mappings and Jacobians can
be improved to O(ε−5/2) and O(ε−3/2), respectively. We note that for solving
problem (3) when f is nonsmooth and convex (more generally weakly convex),
even the O(ε−3) and O(ε−2) sample complexities established in Theorem 2
seem to be new in the literature.

The SARAH/Spider estimators for Algorithm 1 are constructed as follows.
For i = 0, we set

g̃k0 =
1

|Bk0 |
∑
ξ∈Bk

0

gξ(x
k
0), and J̃k0 =

1

|Sk0 |
∑
j∈Sk

0

g′ξ(x
k
0). (43)

For the rest iterations with i = 1, . . . , τ − 1,

g̃ki = g̃ki−1 +
1

|Bki |
∑
ξ∈Bk

i

(
gξ(x

k
i)− gξ(xki−1)

)
, (44)

J̃ki = J̃ki−1 +
1

|Ski |
∑
ξ∈Sk

i

(
g′ξ(x

k
i)− g′ξ(xki−1)

)
, (45)

Here Bki and Ski for i = 0, 1, . . . , τ − 1 are mini-batches sampled from the
underlying distribution of the random variable ξ. We require the batches Bki

Stochastic variance-reduced prox-linear algorithms 23

(and Ski) to be independently sampled for different iterations, whereas in each
iteration Bki and Ski can be dependent or even identical. The mean-squared
estimation errors of the above estimators are bounded via the following lemma,
which is adapted from [37, Lemma 2] or [24, Lemma 1]. A complete proof can
be found in [60, Lemma 1].

Lemma 7 Suppose Assumption 5 holds and g̃ki and J̃ki are constructed through
(43)-(45). Then we have for k = 1, . . . ,K and τ = 0, 1, . . . , τ − 1,

E
[
‖g̃ki − g(xki)‖2

]
≤ E

[
‖g̃k0 − g(xk0)‖2

]
+

i∑
r=1

`2g
|Bkr |

E
[
‖xkr − xkr−1‖2

]
, (46)

E
[
‖J̃ki − g′(xki)‖2

]
≤ E

[
‖J̃k0 − g′(xk0)‖2

]
+

i∑
r=1

L2
g

|Skr |
E
[
‖xkr − xkr−1‖2

]
. (47)

The following theorem establishes the convergence of Algorithm 1 by spec-
ifying the batch sizes used in the SARAH/Spider estimators, and gives the
sample complexities for gξ and g′ξ.

Theorem 3 Suppose Assumptions 1, 3 and 5 hold for problem (3). Let the
estimates g̃k0 , J̃k0 , g̃ki and J̃ki in Algorithm 1 be given in (43)-(45). If we choose
M ≥ 4`fLg and τ = dε−1/2e, and the batch sizes as

|Bk0 | =
⌈

25`2fσ
2
g

4ε2

⌉
, |Sk0 | =

⌈
3`fσ

2
g′

4Lgε

⌉
, |Bki | =

⌈
25`2f `

2
g

Mε3/2

⌉
, |Ski | =

⌈
12`fLg
Mε1/2

⌉
,

for i = 1, . . . , τ − 1, then the output xk
∗

i∗ satisfies

E
[∥∥G(xk

∗

i∗)
∥∥2] ≤ 24M

(
Φ(x10)− Φ∗

Kτ
+ 3ε

)
. (48)

Consequently by setting K = O(ε−
1
2), then we get an output E[‖G(xk

∗

i∗)‖2] ≤
O(ε) with a function evaluation complexity of O(ε−5/2) and a Jacobian evalu-
ation complexity of O(ε−3/2).

Proof We will choose batch sizes that do not depend on k. For the ease of
notation, we set |Bk0 | = B, |Sk0 | = S, and |Bki | = b and |Ski | = s for i =
1, . . . , τ − 1. First, by Assumption 5 and (43), we have

E
[
‖g̃k0 − g(xk0)‖2

]
=
σ2
g

B
, E

[
‖J̃k0 − g′(xk0)‖2

]
=
σ2
g′

S
,

which can be substituted into Lemma 7. Then by Lemma 7, we know that

E
[
‖g̃ki −g(xki)‖

]
≤
√

E
[
‖g̃ki − g(xki)‖2

]
≤ σg√

B
+

√√√√`2g
b

i∑
r=1

E
[
‖xkr − xkr−1‖2

]
.

24 Junyu Zhang, Lin Xiao

Moreover, for any δ > 0, we have√√√√`2g
b

i∑
r=1

E
[
‖xkr − xkr−1‖2

]
≤ δ

2
+

`2g
2bδ

i∑
r=1

E
[
‖xkr − xkr−1‖2

]
.

Now we invoke Lemma 4. Taking expectation on both sides of (27) and ap-
plying (47) and the above bounds, we obtain

E
[
Φ(xki+1)

]
≤ E[Φ(xki)]− M − 2`fLg

2
E
[
‖xki+1 − xki ‖2

]
+
`fσ

2
g′

2LgS
+

2`fσg√
B

+

(
`fLg

2s
+
`f `

2
g

bδ

) i∑
r=1

E
[
‖xkr − xkr−1‖2

]
+ `fδ, (49)

Similarly, with Lemma 2, we have

M − `fLg
M2

E
[
‖G(xki)‖2

]
≤ (2M + `fLg)E

[
‖xki+1 − xki ‖2

]
+

2`fσ
2
g′

LgS
+

4`fσg√
B

+

(
2`fLg
s

+
2`f `

2
g

bδ

) i∑
r=1

E
[
‖xkr − xkr−1‖2

]
+ 2`fδ. (50)

Because M ≥ 4`fLg, we have 1
2 ·

M−2`fLg

2(2M+`fLg)
∈
[

1
18 ,

1
8

]
. Therefore, multiply-

ing(50) by 1
2 ·

M−2`fLg

2(2M+`fLg)
and adding to (49) gives

1

24M
E
[
‖G(xki)‖2

]
≤ E

[
Φ(xki)

]
−E

[
Φ(xki+1)

]
− M − 2`fLg

4
E
[
‖xki+1 − xki ‖2

]
+

(
3`fLg

4s
+

5`f `
2
g

4bδ

) i∑
r=1

E
[
‖xkr − xkr−1‖2

]
+

3`fσ
2
g′

4LgS
+

5`fσg

2
√
B

+
5

4
`fδ.

Next, we replace
∑i
r=1 E

[
‖xkr−xkr−1‖2

]
in the above inequality by

∑τ
r=1 E

[
‖xkr−

xkr−1‖2
]
. Then summing up the above inequality for i = 0, . . . , τ − 1 gives

1

24M

τ−1∑
i=0

E
[
‖G(xki)‖2

]
≤E[Φ(xk0)]−E[Φ(xkτ)]

−
(
M

8
− 3τ`fLg

4s
−

5τ`f `
2
g

4bδ

) τ∑
r=1

E
[
‖xkr − xkr−1‖2

]
+

(
3`fσ

2
g′

4LgS
+

5`fσg

2
√
B

+
5

4
`fδ

)
τ.

Stochastic variance-reduced prox-linear algorithms 25

If we set δ = 4ε
5`f

, B =
25`2fσ

2
g

4ε2 , S =
3`fσ

2
g′

4Lgε
, s =

12`fLg

M τ and b =
20`f `

2
g

Mδ τ =

25`2f `
2
g

Mε τ , then

M

8
− 3τ`fLg

4s
−

5τ`2g`f

4bδ
≥ 0 and

3`fσ
2
g′

4LgS
+

5`fσg

2
√
B

+
4

5
`fδ ≤ 3ε.

Therefore,

1

24M

τ−1∑
i=0

E
[
‖G(xki)‖2

]
≤ E[Φ(xk0)]−E[Φ(xkτ)] + 3τε.

Summing up the above inequality for k = 1, . . . ,K, and dividing by Kτ , we
obtain

1

Kτ

K∑
k=1

τ−1∑
i=0

E
[
‖G(xki)‖2

]
≤ 24M

(
Φ(x10)− Φ∗

Kτ
+ 3ε

)
.

Since xk
∗

i∗ is randomly chosen from
{
xki
}k=1,...,K

i=0,...,τ−1, it satisfies (48). Moreover,

in this case, we have b = O(τ/ε) and s = O(τ). To find an ε-stationary
point in expectation, we further set τ = ε−1/2 and K = O(ε−1/2), which
implies E

[
‖G(xk

∗

i∗)‖2
]
≤ O(ε). Consequently, the sample complexity for the

component mappings is

KB +Kτb = O(ε−1/2) · O(ε−2) +O(ε−1/2) · ε−1/2 · O(ε−3/2) = O(ε−5/2),

and the sample complexity for the Jacobians is

KS +Kτs = O(ε−1/2) · O(ε−1) +O(ε−1/2) · ε−1/2 · O(ε−1/2) = O(ε−3/2).

This finishes the proof. ut

Remark 3 The sample complexities O(ε−5/2) and O(ε−3/2), for component
mappings and their Jacobians respectively, are also obtained using the SARAH
estimator in [53], but for a slightly different stationarity measure. Specifically,

their results are derived for finding a point x that satisfies E[‖G̃(x)‖2] ≤ ε,

where G̃(x) is the approximate gradient mapping defined in (13) and (14). Since

‖G̃(x)‖ = 0 alone may not be a good measure for stationarity, [53] defined
a primal-dual stationarity measure which requires additional conditions. In
contrast, our results directly guarantee E[‖G(x)‖2] ≤ ε, where G(x) is the
(exact) gradient mapping defined in (11).

26 Junyu Zhang, Lin Xiao

5 The smooth and finite-average case

In this section, we consider problem (2) under the assumption that f is smooth
and convex. Specifically, we assume that the component mappings gi satisfy
Assumption 4. For f and h, in addition to Assumption 1, we make the following
additional assumption.

Assumption 6 The gradient of f , denoted as f ′, is differentiable and Lf -
Lipschitz continuous.

Under Assumptions 4 and 6, the composite function f ◦ g is smooth and its
gradient has a Lipschitz constant

Lf◦g , `fLg + Lf `
2
g. (51)

See [60] for a proof of this claim.
Algorithms for solving problem (2) under the above assumptions have been

studied in [29,35,59,60]. The best sample complexity is O(N +N1/2ε−1) ob-
tained in [60], using the SARAH/Spider estimator for g′(x)f ′(g(x)), which
is the gradient of f(g(x)) by the chain rule. In this section, we study an al-
gorithm using the proximal mapping of f instead of the composite gradient.
It is no surprising that we can attain the sample complexity here. Despite the
same sample complexity in theory, it is often observed in practice that algo-
rithms based on proximal mappings can be more efficient than those based
on gradients (e.g., [1,2,16]). Therefore, it is very meaningful to establish the
sample complexity of proximal-mapping based methods when f is smooth.

We again apply the SARAH/Spider estimator to construct g̃ki and J̃ki . For
i > 0, we use (44) and (45), where ξ is interpreted as a random index drawn
from {1, . . . , N} with replacement. For i = 0, we exploit the finite-average
structure of g by using the construction in (22) and (23), i.e.,

g̃k0 = g(xk0) and J̃k0 = g′(xk0). (52)

This implies that E[‖g̃k0 − g(xk0)‖2] = 0 and = E[‖J̃k0 − g′(xk0)‖2] = 0, which
can be substituted into Lemma 7 to get the following result.

Corollary 1 Suppose Assumption 5 holds. Let g̃ki and J̃ki be constructed ac-
cording to (52) for i = 0 and (44) and (45) for i = 1, . . . , τ − 1. Then we have
for i = 0, 1, . . . , τ − 1,

E
[
‖g̃ki − g(xki)‖2

]
≤

i∑
r=1

`2g
|Bkr |

E
[
‖xkr − xkr−1‖2

]
,

E
[
‖J̃ki − g′(xki)‖2

]
≤

i∑
r=1

L2
g

|Skr |
E
[
‖xkr − xkr−1‖2

]
.

Next, we prove a descent property of the algorithm. The additional as-
sumption that f is smooth allows us to derive a tighter descent bound than
Lemma 4. In particular, we can replace the term 2`f‖g̃ki − g(xki)‖ in (27) with
Lf‖g̃ki − g(xki)‖2, which leads to reduction of the sample complexity for the
component mappings.

Stochastic variance-reduced prox-linear algorithms 27

Lemma 8 Suppose Assumptions 1, 2 and 6 hold. Then Algorithm 1 has the
following descent property:

Φ(xki+1) ≤ Φ(xki)− M − 2Lf◦g
2M2

∥∥G̃(xki)
∥∥2

+Lf
∥∥g̃ki − g(xki)

∥∥2 +
`f

2Lg

∥∥J̃ki − g′(xki)
∥∥2, (53)

where Lf◦g is defined in (51).

Proof We revisit the proof of Lemma 4. In particular, the inequality (29) still
holds, i.e.,

Φ(xki+1) = Φ(xki)− M − `fLg
2

‖xki+1 − xki ‖2 + T1 + T2 + T3. (54)

Moreover, we can reuse the bound for T2 in (30). and only need to rebound
the terms T1 and T3.

Under Assumption 6, we denote the Hessian of f as f ′′ and it holds that
‖f ′′(z)‖ ≤ Lf for all z ∈ Rm. For the ease of notation, we denote

∆k
i , g̃ki − g(xki), zki , g(xki) + g′(xki)(xki+1 − xki).

Starting with T1, which is defined in (28), we use the second-order Taylor
expansion of f to obtain

T1 = f
(
zki
)
− f

(
zki +∆k

i

)
= f

(
zki
)
−
(
f
(
zki
)

+
〈
f ′
(
zki
)
, ∆k

i

〉
+

1

2
(∆k

i)T f ′′
(
zki + θ∆k

i

)
∆k
i

)
= −

〈
f ′
(
zki
)
, ∆k

i

〉
− 1

2
(∆k

i)T f ′′
(
zki + θ∆k

i

)
∆k
i ,

where θ ∈ [0, 1]. Since f is convex and the spectral norm of f ′′ is bounded
by Lf , we have

T1 ≤ −
〈
f ′
(
zki
)
, ∆k

i

〉
≤ −

〈
f ′
(
g(xki)

)
, ∆k

i

〉
+
∣∣〈f ′(g(xki)

)
− f ′

(
zki)
)
, ∆k

i

〉∣∣
≤ −

〈
f ′
(
g(xki)

)
, ∆k

i

〉
+ Lf

∥∥g(xki)− zki
∥∥‖∆k

i ‖
= −

〈
f ′
(
g(xki)

)
, ∆k

i

〉
+ Lf

∥∥g′(xki)(xki+1 − xki)
∥∥‖∆k

i ‖.

Notice that by Assumption 4 we have ‖g′(xki)‖ ≤ `g, which gives

T1 ≤ −
〈
f ′
(
g(xki)

)
, ∆k

i

〉
+ Lf `g‖xki+1 − xki ‖‖∆k

i ‖

≤ −
〈
f ′
(
g(xki)

)
, ∆k

i

〉
+ Lf

(
`2g
2
‖xki+1 − xki ‖2 +

1

2
‖∆k

i ‖2
)

=
Lf
2

∥∥∆k
i

∥∥2 +
Lf `

2
g

2
‖xki+1 − xki ‖2 −

〈
f ′
(
g(xki)

)
, ∆k

i

〉
. (55)

28 Junyu Zhang, Lin Xiao

For the term T3 in (29), we have for some θ ∈ [0, 1],

T3 = f
(
g(xki) +∆k

i

)
− f

(
g(xki)

)
= f

(
g(xki)

)
+
〈
f ′
(
g(xki)

)
, ∆k

i

〉
+

1

2
(∆k

i)T f ′′
(
g(xki) + θ∆k

i

)
∆k
i − f

(
g(xki)

)
≤ Lf

2

∥∥∆k
i

∥∥2 +
〈
f ′
(
g(xki)

)
, ∆k

i

〉
.

Substituting the new bounds on T1 and T3 and the existing bound on T2 in (30)
into (54), we obtain

Φ(xki+1) ≤ Φ(xki)−
(
M

2
− `fLg −

1

2
Lf `

2
g

)∥∥xki+1 − xki
∥∥2

+Lf
∥∥g̃ki − g(xki)

∥∥2 +
`f

2Lg

∥∥J̃ki − g′(xki)
∥∥2.

The desired result holds by noting the definitions of Lf◦g and G̃(xki). ut

Parallel to Lemma 2, we have the following result.

Lemma 9 Suppose Assumptions 1, 2 and 6 hold. Let xki+1 and x̂ki+1 are de-
fined in (13) and (15) respectively. Then we have

M − Lf◦g
M2

∥∥G(xki)
∥∥2 ≤ 2M + Lf◦g

M2

∥∥G̃(xki)
∥∥2 (56)

+ 3Lf
∥∥g̃ki − g(xki)

∥∥2 +
2`f
Lg

∥∥J̃ki − g′(xki)
∥∥2.

Proof We revisit the proof of Lemma 2, and start with the inequality (20),
which is

M‖x̂ki+1 − xki+1‖2 ≤ F (xki+1;xki)− F̃ (xki+1;xki) + F̃ (x̂ki+1;xki)− F (x̂ki+1;xki).

We can establish a tighter bound for the right-hand-side when f is smooth.
From the definitions of F and F̃ in (16) and (17) and the definitions of T1 nd
T2 in (28), we have

F (xki+1;xki)− F̃ (xki+1;xki)

= f
(
g(xki) + g′(xki)(xki+1 − xki)

)
− f

(
g̃ki + J̃ki (xki+1 − xki)

)
= T1 + T2

≤ Lf
2

∥∥g̃ki − g(xki)
∥∥2 +

`f
2Lg

∥∥J̃ki − g′(xki)
∥∥2 (57)

+
`fLg + Lf `

2
g

2

∥∥xki+1 − xki
∥∥2 − 〈f ′(g(xki)

)
, ∆k

i

〉
,

Stochastic variance-reduced prox-linear algorithms 29

where the last inequality is due to (30) and (55). Following similar arguments,
we can derive

F̃ (x̂ki+1;xki)− F (x̂ki+1;xki) ≤ Lf
∥∥g̃ki − g(xki)

∥∥2 +
`f

2Lg

∥∥J̃ki − g′(xki)
∥∥2 (58)

+
`fLg + Lf `

2
g

2

∥∥x̂ki+1 − xki
∥∥2 +

〈
f ′
(
g(xki)

)
, ∆k

i

〉
.

Summing up (57) and (58) and noting the definition of Lf◦g, we have

M
∥∥x̂ki+1 − xki+1

∥∥2 ≤ 3Lf
2

∥∥g̃ki − g(xki)
∥∥2 +

`f
Lg

∥∥J̃ki − g′(xki)
∥∥2

+
Lf◦g

2

∥∥x̂ki+1 − xki
∥∥2 +

Lf◦g
2

∥∥xki+1 − xki
∥∥2.

Combining the above inequality with

M
∥∥x̂ki+1 − xki

∥∥2 ≤ 2M
∥∥xki+1 − xki

∥∥2 + 2M
∥∥x̂ki+1 − xki+1

∥∥2
yields (following similar arguments at the end of proof for Lemma 2)

(M − Lf◦g)
∥∥x̂ki+1 − xki

∥∥2 ≤ (2M + Lf◦g)
∥∥xki+1 − xki

∥∥2
+ 3Lf

∥∥g̃ki − g(xki)
∥∥2 +

2`f
Lg

∥∥J̃ki − g′(xki)
∥∥2.

Finally we obtain the desired result using the definitions of G(xki) and G̃(xki).
ut

The main result of this section is given by the following theorem.

Theorem 4 Suppose Assumptions 1, 2, 3 and 6 hold for problem (2). In
Algorithm 1, let g̃ki and J̃ki be constructed according to (52) for i = 0 and (44)
and (45) for i = 1, . . . , τ − 1. If we choose M ≥ 4Lf◦g and τ = d

√
Ne, and

set the batch sizes |Bki | = |Ski | = 2d
√
Ne for i = 1, . . . , τ − 1, then

E
[∥∥G(xk

∗

i∗)
∥∥2] ≤ 24M

(
Φ(x10)− Φ∗

)
Kτ

. (59)

The total sample complexity of reaching an ε-stationary point in expectation
is O(N +

√
Nε−1).

Proof Under the assumption M ≥ 4Lf◦g, we have 1
2 ·

M−2Lf◦g
2(2M+Lf◦g)

∈
[

1
18 ,

1
8

]
.

Multiplying both sides of (56) by 1
2 ·

M−2Lf◦g
2(2M+Lf◦g)

and adding them to (53), we

obtain

1

24M

∥∥G(xki)
∥∥2 ≤ Φ(xki)− Φ(xki+1)− M − 2Lf◦g

4M2

∥∥G̃(xki)
∥∥2

+
11

8
Lf
∥∥g̃ki − g(xki)

∥∥2 +
3`f
4Lg

∥∥J̃ki − g′(xki)
∥∥2. (60)

30 Junyu Zhang, Lin Xiao

Taking expectation on both sides of the above inequality and applying Corol-
lary 1, we have

1

24M
E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xki)

]
−E

[
Φ(xki+1)

]
− M − 2Lf◦g

4M2
E
[∥∥G̃(xki)

∥∥2]
+

11

8
Lf `

2
g

i∑
r=1

1

|Bkr |
E
[∥∥xkr − xkr−1∥∥2]

+
3`fLg

4

i∑
r=1

1

|Skr |
E
[∥∥xkr − xkr−1∥∥2].

We will use constant batch sizes and let |Bki | = |Ski | = S for all k = 1, . . . ,K

and i = 1, . . . , τ − 1. In addition, we can increase the summation from
∑i
r=1

to
∑τ
r=1, which leads to

1

24M
E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xki)

]
−E

[
Φ(xki+1)

]
− M − 2Lf◦g

4M2
E
[∥∥G̃(xki)

∥∥2]
+

11

8

Lf `
2
g

S

τ∑
r=1

E
[∥∥xkr − xkr−1∥∥2]

+
3`fLg

4S

τ∑
r=1

E
[∥∥xkr − xkr−1∥∥2].

Plugging in G̃(xki) = −M(xki+1 − xki) and noticing that

11

8

Lf `
2
g

S
+

3`fLg
4S

≤ 3

2

`fLg + Lf `
2
g

S
=

3

2

Lf◦g
S

,

we obtain

1

24M
E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xki)

]
−E

[
Φ(xki+1)

]
− M − 2Lf◦g

4
E
[∥∥xki+1 − xki

∥∥2]
+

3

2

Lf◦g
S

τ∑
r=1

E
[∥∥xkr − xkr−1∥∥2].

Summing up the above inequality for i = 0, . . . , τ − 1 yields

1

24M

τ−1∑
i=0

E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xk0)

]
−E

[
Φ(xk+1

0)
]

−
(
M

4
− 2τ

S
Lf◦g

) τ−1∑
i=0

E
[∥∥xki+1 − xki

∥∥2].
The choices of M ≥ 4Lf◦g, τ = d

√
Ne and S = 2τ ensure M

4 −
2τ
S Lf◦g ≥ 0.

Therefore

1

24M

τ−1∑
i=0

E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xk0)

]
−E

[
Φ(xk+1

0)
]
.

Stochastic variance-reduced prox-linear algorithms 31

Summing up the above inequality for k = 1, . . . ,K and noticing the choice of
xk
∗

i∗ in Algorithm 1, we obtain (59).
To get an ε-stationary point in expectation, we need to set Kτ = O(ε−1),

which implies
K = O(τ−1ε−1) = O(N−1/2ε−1).

Consequently, the sample complexity for both the component mappings and
their Jacobians is

KN +KτS = O(N−1/2ε−1) ·N +O(ε−1) · 2N1/2 = O(N +N1/2ε−1).

This finishes the proof. ut

6 The smooth and expectation case

In this section we focus on problem (3) when f is smooth and convex. Specif-
ically, we proceed with Assumptions 1, 5 and 6. Under these assumptions, we
still use the SARAH/Spider estimators in (43), (44) and (45). Since that the
mean-square error bounds bounds on the estimators in Lemma 7 only depends
on Assumption 5, they remain valid in this section. We have the following re-
sult.

Theorem 5 Suppose Assumptions 1, 3, 5 and 6 hold for problem (3). Let
the estimates g̃k0 , J̃k0 , g̃ki and J̃ki in Algorithm 1 be given in (43)-(45), and we
choose M ≥ 4Lf◦g. For any ε > 0, if we choose τ = dε−1/2e and the batch
sizes as∣∣Bk0 ∣∣ =

⌈
11Lfσ

2
g

4ε

⌉
,

∣∣Sk0 ∣∣ =

⌈
3`2fσ

2
g′

2Lgε

⌉
,

∣∣Bki ∣∣ =
∣∣Ski ∣∣ = 2

⌈
ε−1/2

⌉
,

where i = 1, . . . , τ − 1, then we have

1

24M
E[‖G(xk

∗

i∗)‖2] ≤ Φ(x10)− Φ(x∗)

Kτ
+ ε. (61)

Consequently, we have E
[
‖G(xk

∗

i∗)‖2
]

= O(ε) by setting K = O(ε−1/2), and

the total sample complexity is O(ε−3/2).

Proof We choose batch sizes that do not depend on k. For the ease of notation,
let |Bk0 | = B and |Sk0 | = S, and |Bki | = |Ski | = b for i = 1, . . . , τ − 1. Taking
expectation of both sizes of (60) and applying Lemma 7, we get

1

24M
E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xki)

]
−E

[
Φ(xki+1)

]
− M − 2Lf◦g

4M2
E
[∥∥G̃(xki)

∥∥2]
+

11

8

Lfσ
2
g

B
+

3`fσ
2
g′

4LgS
+

11

8

Lf `
2
g

b

i∑
r=1

E
[∥∥xkr − xkr−1∥∥2]

+
3`fLg

4b

i∑
r=1

E
[∥∥xkr − xkr−1∥∥2].

32 Junyu Zhang, Lin Xiao

Summing up the above inequality for i = 0, . . . , τ − 1 and following similar
steps as in the proof of Theorem 4, we have

1

24M

τ−1∑
i=0

E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xk0)

]
−E

[
Φ(xk+1

0)
]

+ τ

(
11

8

Lfσ
2
g

B
+

3`fσ
2
g′

4LgS

)

−
(
M

4
− 2τ

b
Lf◦g

) τ−1∑
i=0

E
[∥∥xki+1 − xki

∥∥2].
The choices of M ≥ 4Lf◦g and b = 2τ ensure M

4 −
2τ
b Lf◦g ≥ 0, and choices of

B =
11Lfσ

2
g

4ε and S =
3`2fσ

2
g′

2Lgε
further ensure the constant term to be less than

τε. Therefore

1

24M

τ−1∑
i=0

E
[∥∥G(xki)

∥∥2] ≤ E
[
Φ(xk0)

]
−E

[
Φ(xk+1

0)
]

+ τε, (62)

which, upon summing over k = 1, . . . ,K and noting the choice of xk
∗

i∗ , yields (61).
The sample complexities can be calculated as KB +Kτb. ut

In Theorem 5, the choices of τ and batch sizes all depend on a fixed ac-
curacy ε, which can be hard to determine in advance in many situations, and
running more iterations will not improve the solution due to the existence of
a O(ε) bias term in (61). Therefore, it would be desirable to develop an algo-
rithm that adaptively chooses the batch sizes to keep improving the accuracy
of the solution. Such an adaptive scheme is presented in the following theorem.

Theorem 6 Suppose Assumptions 1, 3, 5 and 6 hold for problem (3). Let
the estimates g̃k0 , J̃k0 , g̃ki and J̃ki in Algorithm 1 be given in (43)-(45), and we
choose M ≥ 4Lf◦g. Let {εk}∞k=1 be a sequence of positive real numbers. If we

run each epoch of Algorithm 1 for τk = ε
−1/2
k iterations, and set the batch sizes

to be∣∣Bk0 ∣∣ =

⌈
11Lfσ

2
g

4εk

⌉
,

∣∣Sk0 ∣∣ =

⌈
3`2fσ

2
g′

2Lgεk

⌉
,

∣∣Bki ∣∣ =
∣∣Ski ∣∣ = 2

⌈
ε
−1/2
k

⌉
,

where i = 1, . . . , τ − 1, then we have

1

20M
E[‖G(xk

∗

i∗)‖2] ≤ Φ(x10)− Φ(x∗)∑K
k=1 τk

+

∑K
k=1 ε

1/2
k∑K

k=1 τk
(63)

Specifically, setting εk = k−2 results in

1

20M
E[‖G(xk

∗

i∗)‖2] = O
(

lnK

K2

)
. (64)

Consequently, given any ε > 0, we can set K = ε−1/2, which leads to an
O
(
ε ln 1

ε

)
-stationary solution with total sample complexity of O(ε−3/2).

Stochastic variance-reduced prox-linear algorithms 33

Proof Note that the inequality (62) still holds but with a specific set of pa-
rameters for each k. Specifically, we have

1

24M

τk−1∑
i=0

E
[
‖G(xki)‖2

]
≤ E

[
Φ(xk0)

]
−E

[
Φ(xk+1

0)
]

+ τkεk, k = 1, . . . ,K.

Since we choose τk = ε
−1/2
k , it holds that τkεk = ε

1/2
k . Summing this up over k

gives

1

24M

K∑
k=1

τk−1∑
i=0

E
[
‖G(xki)‖2

]
≤ Φ(x10)− Φ∗ +

K∑
k=1

ε
1/2
k .

Because xk
∗

i∗ is randomly chosen from
{
xki
}k=1,...,K

i=0,...,τ−1, we conclude (63) holds.

If we choose εk = k−2, then τk = ε−1/2 = k and we have

K∑
k=1

τk =
1

2
K(K + 1) and

K∑
k=1

ε
1/2
k =

k∑
k=1

k−1 ≤ 1 +

∫ K

1

z−1dz = 1 + lnK.

Substituting the above relationships into (63) yields (64). The total sample
complexity for the gξ’s for running these K epochs will be

K∑
k=1

(
|Bk0 |+ τk|Bk1 |

)
= O

(
K∑
k=1

ε−1k

)
= O(K3).

Similarly, the sample complexity for the Jacobians is also O(K3). Finally by
setting K = ε−1/2, we will get an O

(
ε ln 1

ε

)
-stationary solution with total

sample complexity of O(ε−3/2). ut

7 Numerical experiments

In this section, we present the numerical experiments of our methods and
compare with related methods (following the experiment setup in [53]). For
the ease of reference, we denote the algorithms in comparison as follows:

– PL: the deterministic prox-linear algorithm described by (4).

– S-PL: the mini-batch stochastic prox-linear algorithm in Algorithm 2. We
note that S-PL coincides with SGN method in the concurrent work [53].

– SVR-PL: Algorithm 1 where the SVRG estimator is applied and augmented
with 1st-order correction technique.

– Sarah-PL: Algorithm 1 using the SARAH estimator. Specifically, when f
is nonsmooth, Sarah-PL overlaps with SGN2 [53].

– When f is smooth, we also compare with the CIVR method [60] and the
N-Spider method [61] for stochastic composite optimization.

34 Junyu Zhang, Lin Xiao

7.1 Nonsmooth nonlinear systems

In this experiment, we solve the following nonsmooth problem:

minimize
x∈Rn

Φ(x) :=
∥∥∥ 1

N

N∑
j=1

gj(x)
∥∥∥
1

+ β‖x‖1,

where we want to find a sparse x s.t. 1
N

∑N
j=1 gj(x) is close to 0. Let aj ∈ Rn

be the j-th data point and bj ∈ {−1,+1} be the corresponding label. The
function gj : Rn 7→ R4 is defined as

gj(x) =

1− tanh(zj)(
1− 1

1+e−zj

)2
log (1 + e−zj)− log

(
1 + e−zj−1

)
log
(
1 + (zj − 1)2

)
 with zj = bj · aTj x, (65)

where each row of gj corresponds a certain type of binary classification loss,
which can be viewed as a mixture of multiple models. We test our methods
with the ijcnn1 dataset1 and the MNIST dataset2. For ijcnn1, we randomly
extract N = 10000 data points. For MNIST, we extract N = 10000 data
points of two digits (Figure 1 shows the plots for “1” and “9”). Specifically,
each data point aj in the ijcnn1 dataset is 22 dimensional, we set β = 0 for
ijcnn1 dataset, meaning that we do not require the solution to be sparse. For
the MNIST dataset, each aj are 784 dimensional where most entries are 0. In
this case, we set β = N−1 as the sparsity penalty parameter.

In the experiment, we test PL, S-PL/SGN, SVR-PL and Sarah-PL/SGN2
algorithms. For SVR-PL and Sarah-PL, we estimate g and g′ with the mini-
batch sizes suggested in Remark 1. Specifically, for SVR-PL, we choose |Ski | =
|Bki | = dcN4/5e. For Sarah-PL, we choose ε = 10−2, therefore we choose the
large batches to be |Sk0 | = |Bk0 | = ε−2 = N . For this finite sum problem we
slightly revise the Sarah-PL such that g̃k0 = g(xk0) and J̃k0 = g′(xk0) and we set
|Ski | = |Bki | = dcε−3/2e for i > 0. For both SVR-PL and Sarah-PL, c is set to
be c = 0.1 after tuning from the set {0.01, 0.05, 0.1, 0.5, 1, 2}. For S-PL, the
batch size is set to be 500. For all methods, we select the best performing M
from the discrete range {1, 5, 10, 20, 40, 60, 80, 100}. For ijcnn1 dataset, M = 1
works best for all methods; For MNIST dataset, M = 40 works best for all
methods. All methods start from the initial solution x = 0.

The results are shown in Figure 1, where each curve is plotted by aver-
aging 5 rounds of running an algorithm. We can see that in terms of sample
complexity, all stochastic methods significantly outperforms the deterministic
PL algorithm. Among the stochastic methods, SVR-PL and Sarah-PL perform
better than S-PL (mini-batch only). Sarah-PL performs the best for this par-
ticular experiment, benefiting from using |Sk0 | = |Bk0 | = N in the finite-sum
setting, even though we do not have theory to support its advantage.

1 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
2 http://yann.lecun.com/exdb/mnist/

Stochastic variance-reduced prox-linear algorithms 35

0 0.5 1 1.5 2 2.5 3

of samples 10
5

10
-3

10
-2

10
-1

10
0

10
1

(x
k
)

-
*

ijcnn dataset

PL

S-PL

SVR-PL

Sarah-PL

0 0.5 1 1.5 2 2.5 3

of samples 10
5

10
-3

10
-2

10
-1

10
0

(x
k
)

-
*

mnist dataset, numbers 1 & 9

PL

S-PL

SVR-PL

Sarah-PL

0 0.5 1 1.5 2 2.5 3

of samples 10
5

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

||
G

M
(x

k
)|

|2

ijcnn dataset

PL

S-PL

SVR-PL

Sarah-PL

0 0.5 1 1.5 2 2.5 3

of samples 10
5

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

||
G

M
(x

k
)|

|2

mnist dataset, numbers 1 & 9

PL

S-PL

SVR-PL

Sarah-PL

Fig. 1 Comparison of the deterministic and various stochastic prox-linear methods for
nonsmooth composite optimization: the left column is for the ijcnn1 dataset and the right
column is for the MNIST dataset (digits “1” and “9”). The first row shows the decrease of
objective gap versus number of samples (where Φ∗ is approximated by collecting the lowest
value after running all algorithms for a much longer time). The second row shows squared
norm of the (exact) gradient mapping (computed off-line using the full dataset).

7.2 Smooth nonlinear systems

In this experiment, we solve the following smooth problem:

minimize
x∈Rn

Φ(x) :=
∥∥∥ 1

N

N∑
j=1

gj(x)
∥∥∥2,

where gj : Rn 7→ R4 is defined by (65). We compare Sarah-PL, CIVR [60], and
the N-Spider algorithm [61]. For all three methods, the batch sizes are set to

be
⌈√

N
⌉
. For N-Spider, we set εki = 10

1+k for ijcnn1 and εki = 10−2

1+k for MNIST
after some tuning. For both Sarah-PL and CIVR, their parameter M or step
size η = M−1 are chosen from the set {0.1, 0.5, 1, 5, 10, 20, 40, 60}. For ijcnn1,
Sarah-PL works best with M = 0.1 and CIVR works best with η = 0.5−1.
For MNIST, Sarah-PL works best with M = 10 and CIVR works best with
η = 20−1.

The results are shown in Figure 2, where each curve is plotted by aver-
aging 5 rounds of running an algorithm. For ijcnn1, Sarah-PL significantly
outperforms CIVR and N-Spider, demonstrating the potential advantage of

36 Junyu Zhang, Lin Xiao

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

of samples 10
5

10
-8

10
-6

10
-4

10
-2

10
0

(x
k
)

-
*

ijcnn dataset

CIVR

N-Spider

Sarah-PL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

of samples 10
5

10
-3

10
-2

10
-1

10
0

(x
k
)

-
*

mnist dataset, numbers 1 & 9

CIVR

N-Spider

Sarah-PL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

of samples 10
5

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
G

M
(x

k
)|

|2

ijcnn dataset

CIVR

N-Spider

Sarah-PL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

of samples 10
5

10
-6

10
-4

10
-2

10
0

10
2

||
G

M
(x

k
)|

|2

mnist dataset, numbers 1 & 9

CIVR

N-Spider

Sarah-PL

Fig. 2 Comparison of stochastic variance-reduction methods for smooth composite opti-
mization: the left column is for the ijcnn1 dataset and the right column is for the MNIST
dataset (digits “1” and “9”). The first row shows objective gap versus number of samples
(where Φ∗ is approximated by collecting the lowest value after running all algorithms for a
much longer time). The second row shows squared norm of the (exact) gradient mapping
(computed off-line using the full dataset).

prox-linear algorithms over chain-rule based methods (both with variance re-
duction). For MNIST, all three methods performs similarly.

7.3 Constrained stochastic optimization through penalty method

We consider a risk-sensitive portfolio optimization problem. Let ri ∈ Rd be
the vector of expected reward of d stocks at time period i, for i = 1, 2, ..., N .
The problem of maximizing the expected total reward across N periods, with
a constraint on the conditional value at risk (CVaR) is formulated as [49,33]

maximize
x∈∆d,τ∈R

(1

N

N∑
i=1

ri

)T
x s.t. τ +

1

βN

N∑
i=1

max
{
−rTi x− τ, 0

}
≤ 0,

where ∆d :=
{
x : x ≥ 0,

∑d
j=1 xj = 1

}
is the probability simplex. Using the

exact penalty method (Section 1.1), this problem can be reformulated as

minimize
x∈∆d,τ∈R

−
(1

N

N∑
i=1

ri

)T
x+ ρ ·max

{
0, τ +

1

βN

N∑
i=1

max{−rTi x− τ, 0}
}
.

Stochastic variance-reduced prox-linear algorithms 37

0 0.5 1 1.5 2 2.5 3 3.5 4

of samples 10
5

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(x
k
)

-
*

Industrial-38 dataset

PL

S-PL

SVR-PL

Sarah-PL

0 0.5 1 1.5 2 2.5 3 3.5

of samples 10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(x
k
)

-
*

Industrial-49 dataset

PL

S-PL

SVR-PL

Sarah-PL

0 0.5 1 1.5 2 2.5 3 3.5 4

of samples 10
5

10
-8

10
-6

10
-4

10
-2

10
0

10
2

||
G

M
(x

k
)|

|2

Industrial-38 dataset

PL

S-PL

SVR-PL

Sarah-PL

0 0.5 1 1.5 2 2.5 3 3.5

of samples 10
5

10
-3

10
-2

10
-1

10
0

10
1

10
2

||
G

M
(x

k
)|

|2

Industrial-49 dataset

PL

S-PL

SVR-PL

Sarah-PL

Fig. 3 Comparison of different prox-linear algorithms for constrained stochastic optimiza-
tion through penalty formulation: the left column is for the Industrial-38 dataset and the
right column is for the Industrial-49 dataset. The first row shows objective gap versus num-
ber of samples (where Φ∗ is approximated by collecting the lowest value after running all
algorithms for a much longer time). The second row shows squared norm of the (exact)
gradient mapping (computed off-line using the full dataset).

Following the suggestion of [53], the nonsmooth term β−1 ·max{−rTi x− τ, 0}
is smoothed as 1

2β

(√
(rTi x+ τ)2 + γ2 − rTi x− τ − γ

)
.

In this experiment, we test different methods on the Industrial-38 and
the Industrial-49 dataset3. From each dataset, N = 10000 data points are
extracted for the experiment. The parameters in the problem formulation are
set to be β = 10−1, ρ = 5, and γ = 10−3. For algorithmic parameters, their
tuning process is the same as that described in Section 7.1. The following
results are obtained. In Industrial-38 dataset, M = 40, 60, 40, 60 works best
for PL, S-PL,SVR-PL and Sarah-PL respectively; For S-PL, the batch size is
chosen to be 1000; For both SVR-PL and Sarah-PL, the batch sizes are the
same as those in Section 7.1 with c = 2.

Figure 3 shows the results, again averaged over 5 runs of each algorithm. In
this experiment, SVR-PL performs the best. It is worth noting that although
S-PL has fast convergence in the initial stage, it stagnates at a relatively high
error floor. SVR-PL and Sarah-PL reach higher accuracy due to their advanced
variance-reduction schemes.

3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

38 Junyu Zhang, Lin Xiao

8 Discussions

In this paper, we have mostly relied on the SARAH/Spider estimators for
variance reduction, except that for the nonsmooth and finite-average case
(Section 3) we used a modified SVRG estimator with first-order correction.
If we use the SVRG type of estimators for other cases, then the resulting
sample complexities are suboptimal. More specifically, when f is smooth, we
have derived sample complexity of O(N + N2/3ε−1) and O(ε−5/3) for the
cases of g being a finite average and a general expectation respectively. They
are inferior compared to the O(N +

√
Nε−1) and O(ε−3/2) bounds using the

SARAH/Spider estimators obtained in Sections 5 and 6.
The sample complexities of our methods for smooth f are the same as

the stochastic gradient descent type of methods that use the chain-rule to
construct gradient estimators [60,61]. However, it is often observed that al-
gorithms based on proximal mappings can be more efficient than those based
on gradients in practice (see e.g., [1,2,16]). Here we shed more light from
a theoretical perspective. Consider the least squares problem of minimizing
F (x) := 1

2‖g(x)‖2, where g(x) = 1
N

∑N
i=1 gi(x). Given any SARAH/Spider

variance reduced estimator g̃ki and J̃ki , our proxi-linear scheme construct the
update as

xki+1 = xki −
(
M · I + [J̃ki]T J̃ki

)−1
[J̃ki]T g̃ki ,

which is a damped Gauss-Newton iteration. Note that if g(x∗) ≈ 0, then
∇2F (x∗) ≈ [g′(x∗)]T g′(x∗) (see [39]). This indicates that the Gauss-Newton
matrix [J̃ki]T J̃ki becomes a better approximation of the Hessian ∇2F (xki) as xki
moves closer to x∗. Therefore, prox-linear based methods (Gauss-Newton espe-
cially) can take advantage of the second-order information whenever possible,
while chain-rule based gradient methods cannot.

It is worth noting that both SVRG and SARAH/Spider schemes need
a large sample batch at the beginning of each epoch, and slightly smaller
sample batches in later iterations. However, under many circumstances it is
more preferable if constant small batches are taken in each iteration. Recently,
a STOchastic Recursive Momentum (STORM) variance reduction scheme that
takes one sample per iteration has been proposed to solve smooth stochastic
programming problem [14], and has been extended to a distributionally robust
optimization (DRO) problem of form (3) with f being smooth [45]. An optimal
O(ε−3/2) sample complexity is achieved in these works. However, we were not
able to extend the STORM technique to problems with nonsmooth f . Deriving
an algorithm with (constant) small mini-batch sizes for problems (2) and (3)
with nonsmooth f remains open.

Acknowledgments

The authors thank Dmitriy Drusvyatskiy for contributing the example of trun-
cated stochastic gradient method in Section 1.1. We are also grateful to the
two anonymous referees for their helpful comments and suggestions.

Stochastic variance-reduced prox-linear algorithms 39

References

1. Hilal Asi and John C Duchi. The importance of better models in stochastic optimization.
Proceedings of the National Academy of Sciences, 116(46):22924–22930, 2019.

2. Hilal Asi and John C Duchi. Stochastic (approximate) proximal point methods: Con-
vergence, optimality, and adaptivity. SIAM Journal on Optimization, 29(3):2257–2290,
2019.

3. Yu Bai, John C Duchi, and Song Mei. Proximal algorithms for constrained com-
posite optimization, with applications to solving low-rank SDPs. arXiv preprint
arXiv:1903.00184, 2019.

4. Dimitri P Bertsekas. Approximation procedures based on the method of multipliers.
Journal of Optimization Theory and Applications, 23(4):487–510, 1977.

5. Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997.

6. Jose Blanchet, Donald Goldfarb, Garud Iyengar, Fengpei Li, and Chaoxu Zhou. Un-
biased simulation for optimizing stochastic function compositions. arXiv preprint
arXiv:1711.07564, 2017.

7. James V Burke. Descent methods for composite nondifferentiable optimization prob-
lems. Mathematical Programming, 33(3):260–279, 1985.

8. James V Burke and Abraham Engle. Line search methods for convex-composite opti-
mization. arXiv preprint arXiv:1806.05218, 2018.

9. James V Burke and Abraham Engle. Strong metric (sub) regularity of Karush–Kuhn–
Tucker mappings for piecewise linear-quadratic convex-composite optimization and the
quadratic convergence of Newton’s method. Mathematics of Operations Research,
45(3):1164–1192, 2020.

10. James V Burke and Michael C Ferris. A Gauss-Newton method for convex composite
optimization. Mathematical Programming, 71(2):179–194, 1995.

11. Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. On the evaluation com-
plexity of composite function minimization with applications to nonconvex nonlinear
programming. SIAM Journal on Optimization, 21(4):1721–1739, 2011.

12. Vasileios Charisopoulos, Damek Davis, Mateo Dı́az, and Dmitriy Drusvyatskiy. Com-
posite optimization for robust rank one bilinear sensing. Information and Inference: A
Journal of the IMA, 10(2):333–396, 2021.

13. Rixon Crane and Fred Roosta. DINGO: Distributed newton-type method for gradient-
norm optimization. In Advances in Neural Information Processing Systems, volume 32,
pages 9498–9508. 2019.

14. Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-
convex SGD. In Advances in Neural Information Processing Systems, volume 32, 2019.

15. Christoph Dann, Gerhard Neumann, and Jan Peters. Policy evaluation with temporal
differences: a survey and comparison. Journal of Machine Learning Research, 15(1):809–
883, 2014.

16. Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of
weakly convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

17. Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradi-
ent method for nonsmooth, nonconvex problems. SIAM Journal on Optimization,
29(3):1908–1930, 2019.

18. Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed
online prediction using mini-batches. Journal of Machine Learning Research, 13:165–
202, 2012.

19. Dmitriy Drusvyatskiy. The proximal point method revisited. SIAG/OPT Views and
News (A Forum for the SIAM Activity Group on Optimization), 26(1):1–8, 2017.

20. Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear
convergence of proximal methods. Mathematics of Operations Research, 43(3):919–948,
2018.

21. Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions
of convex functions and smooth maps. Mathematical Programming, 178:503–558, 2019.

22. John C Duchi and Feng Ruan. Stochastic methods for composite and weakly convex
optimization problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018.

40 Junyu Zhang, Lin Xiao

23. John C Duchi and Feng Ruan. Solving (most) of a set of quadratic equalities: Composite
optimization for robust phase retrieval. Information and Inference: A Journal of the
IMA, 8(3):471–529, 2019.

24. Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In Advances
in Neural Information Processing Systems, pages 687–697, 2018.

25. Roger Fletcher and G Alistair Watson. First and second order conditions for a class of
nondifferentiable optimization problems. Mathematical Programming, 18(1):291–307,
1980.

26. Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi Wang. A single timescale stochastic
approximation method for nested stochastic optimization. SIAM Journal on Optimiza-
tion, 30(1):960–979, 2020.

27. Tamir Hazan, Shoham Sabach, and Sergey Voldman. Stochastic proximal linear method
for structured non-convex optimization. Optimization Methods and Software, 35:921–
937, 2020.

28. Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimiza-
tion algorithms I: Fundamentals, volume 305. Springer science & business media, 2013.

29. Zhouyuan Huo, Bin Gu, Ji Jiu, and Heng Huang. Accelerated method for stochastic
composition optimization with nonsmooth regularization. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence, pages 3287–3294, 2018.

30. Alfredo N Iusem, Alejandro Jofré, Roberto Imbuzeiro Oliveira, and Philip Thompson.
Extragradient method with variance reduction for stochastic variational inequalities.
SIAM Journal on Optimization, 27(2):686–724, 2017.

31. Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in neural information processing systems, pages 315–
323, 2013.

32. Jayash Koshal, Angelia Nedic, and Uday V Shanbhag. Regularized iterative stochastic
approximation methods for stochastic variational inequality problems. IEEE Transac-
tions on Automatic Control, 58(3):594–609, 2012.

33. Guanghui Lan and Zhiqiang Zhou. Algorithms for stochastic optimization with function
or expectation constraints. Computational Optimization and Applications, 76(2):461–
498, 2020.

34. Adrian S Lewis and Stephen J Wright. A proximal method for composite minimization.
Mathematical Programming, 158(1-2):501–546, 2016.

35. Xiangru Lian, Mengdi Wang, and Ji Liu. Finite-sum composition optimization via
variance reduced gradient descent. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 1159–1167, 2017.

36. Yu Nesterov. Modified Gauss–Newton scheme with worst case guarantees for global
performance. Optimisation Methods and Software, 22(3):469–483, 2007.

37. Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method
for machine learning problems using stochastic recursive gradient. In International
Conference on Machine Learning, pages 2613–2621. PMLR, 2017.

38. Lam M Nguyen, Marten van Dijk, Dzung T Phan, Phuong Ha Nguyen, Tsui-Wei Weng,
and Jayant R Kalagnanam. Optimal finite-sum smooth non-convex optimization with
SARAH. arXiv preprint arXiv:1901.07648, 2019.

39. Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, 2nd edition,
2006.

40. Peter Ochs, Jalal Fadili, and Thomas Brox. Non-smooth non-convex Bregman minimiza-
tion: Unification and new algorithms. Journal of Optimization Theory and Applications,
181:244–278, 2019.

41. James M Ortega and Werner C Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. Academic Press, New York, 1970.

42. Nhan H Pham, Lam M Nguyen, Dzung T Phan, and Quoc Tran-Dinh. ProxSARAH:
An efficient algorithmic framework for stochastic composite nonconvex optimization.
arXiv preprint arXiv:1902.05679, 2019.

43. BT Poljak. On the Bertsekas’ method for minimization of composite functions. In Inter-
national Symposium on Systems Optimization and Analysis, pages 179–186. Springer,
1979.

Stochastic variance-reduced prox-linear algorithms 41

44. Boris T Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.
45. Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, and Tianbao Yang. A practical online method

for distributionally deep robust optimization. arXiv preprint arXiv:2006.10138, 2020.
46. Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Weakly-convex–concave

min–max optimization: provable algorithms and applications in machine learning. Op-
timization Methods and Software, pages 1–35, 2021.

47. Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: a review.
arXiv preprint, arXiv:1908.05659, 2019.

48. R Tyrrell Rockafellar. Coherent approaches to risk in optimization under uncertainty.
INFORMS TutORials in Operations Research, 2007.

49. R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-
risk. Journal of risk, 2:21–42, 2000.

50. Fred Roosta, Yang Liu, Peng Xu, and Michael W Mahoney. Newton-MR: Newton’s
method without smoothness or convexity. arXiv preprint arXiv:1810.00303, 2018.

51. Andrzej Ruszczyński. Advances in risk-averse optimization. INFORMS TutORials in
Operation Research, 2013.

52. Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

53. Quoc Tran-Dinh, Nhan Pham, and Lam Nguyen. Stochastic Gauss-Newton algorithms
for nonconvex compositional optimization. In International Conference on Machine
Learning, pages 9572–9582. PMLR, 2020.

54. Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent:
algorithms for minimizing compositions of expected-value functions. Mathematical Pro-
gramming, 161(1-2):419–449, 2017.

55. Mengdi Wang, Ji Liu, and Ethan Fang. Accelerating stochastic composition optimiza-
tion. In Advances in Neural Information Processing Systems, pages 1714–1722, 2016.

56. Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. SpiderBoost and
momentum: Faster variance reduction algorithms. In Advances in Neural Information
Processing Systems, pages 2406–2416. 2019.

57. Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

58. Yue Yu and Longbo Huang. Fast stochastic variance reduced ADMM for stochastic
composition optimization. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI), pages 3364–3370, 2017.

59. Junyu Zhang and Lin Xiao. A composite randomized incremental gradient method. In
Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 7454–7462, 2019.

60. Junyu Zhang and Lin Xiao. A stochastic composite gradient method with incremental
variance reduction. In Advances in Neural Information Processing Systems, volume 32,
pages 9078–9088. 2019.

61. Junyu Zhang and Lin Xiao. Multilevel composite stochastic optimization via nested
variance reduction. SIAM Journal on Optimization, 31(2):1131–1157, 2021.

62. Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced cubic regular-
ized Newton methods. In Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 5990–5999.
PMLR, 2018.

