
Characterizing and Improving MPC-based Private
Inference for Transformer-based Models

Yongqin Wang
Facebook AI

yongqin@fb.com

Edward Suh
Facebook AI

edsuh@fb.com

Wenjie Xiong
Facebook AI

wenjiex@fb.com

Benjamin Lefaudeux
Facebook AI

lefaudeux@fb.com

Brian Knott
Facebook AI

brianknott@fb.com

Murali Annavaram
University of Southern California

annavara@usc.edu

Hsien-Hsin S. Lee
Facebook AI

leehs@fb.com

Abstract

Secure multi-party computation (MPC) is gaining popularity with the growing
demand for privacy-preserving cloud services. While there has been plenty of
attention to MPCs for convolution neural networks (CNNs) [1, 2, 3, 4, 5], MPC-
based private inference for Transformer models has not been studied in detail. This
paper provides a characterization study of the performance overhead for running
Transformer models with secure MPC, and proposes an optimization for embedding
tables. Our study shows that Transformers introduce a couple of new challenges
for MPC-based private inference: softmax and embedded tables. To address the
overhead of embedding table accesses under MPC, we propose to use tensor-train
(TT) decomposition, a mechanism that splits a large embedding tables into multiple
smaller embedding tables. For the NLP workloads, the experiments show that the
TT decomposition can speed up embedding table accesses by 2x with only a 1.19
drop in the masked-language model perplexity score.

1 Introduction

Data privacy is a pressing concern for privacy-preserving machine learning (PPML) in the cloud. To
address this challenge, secure computation techniques such as homomorphic encryption (HE) [6],
trusted execution environments (TEE) [7, 8, 9, 10, 11, 12], and secure multi-party computation
(MPC) [13] have been applied to PPML. The previous studies, however, focused primarily on
convolutional neural networks (CNNs) [1, 2, 3, 4, 5]. This paper studies MPC-based private inference
for Transformer-based models, which are commonly used for natural language processing (NLP) and
have been applied to computer vision [14] more recently.

As the first step to enable efficient MPC-based private inference for Transformer models, we per-
formed a detailed study of the performance overhead. The study uncovers two new challenges, which
are new to Transformers and have not been studied in the context of CNNs: softmax and embedding
tables. While non-linear activation functions such as ReLU are known to be a major source of
performance overhead for running CNNs in MPC, softmax accounts for an even larger portion of the
MPC execution time for Transformers. Unlike CNNs where softmax only needs to be performed at
the end, Transformers use softmax in each layer. An in-depth investigation also shows that the max
function that is used for numerical stability is the main source of softmax overhead.

Another new challenge for Transforms comes from embedding tables, which convert categorical data
into continuous data. Embedding tables can be as large as 1GB for NLP models, and embedding table
look-ups are commonly implemented as row selection operations. However, because embedding table
indices are from secret input data, embedded table accesses must be oblivious to input values in private

Preprint. Under review.



inference. To implement embedding tables securely in the MPC setting, one can “densify” embedding
table lookups by turning them into matrix multiplications. Unfortunately, our characterization study
shows that replacing an embedding table look-up with a matrix multiplication significantly increases
the execution time of embedding table operations.

For more efficient embedding table operations in MPC, we propose to utilize embedding tables’
compressibility. In particular, we use tensor train (TT) decomposition. The TT decomposition has
been applied to plaintext machine learning models [15, 16] to reduce the memory footprint and
speed up training processes. We exploit TT decomposition to reduce the size of matrices that encode
embedding tables and reduce the overhead for embedding table accesses. The experiments show that
the TT decomposition can speed up embedding table accesses by 2x with only a 1.19 drop in the
masked-language model perplexity score.

2 Transformer-based Model MPC Inference Characterization

Secure Multi-Party Computation. In the MPC setting, an MPC client wishes to have remote
servers (non-colluding MPC servers) perform a sensitive task, such as translating classified sentences,
without revealing secret data. The secret data is encrypted into secret share #1 & #2, in a way that
each share does not leak any information about the secret. There are two main secret sharing formats:
additive and binary format. The binary secret sharing format is suitable for bit-wise operations,
whereas additive shares are more suitable for addition and multiplication. Details about those formats
can be found in [17]. After MPC servers receive their secret share, each cloud server only sees and
manipulates its own secret share, and returns the results to the client. The client can combine the
results from both servers to obtain the plaintext result. While MPC requires that multiple parties do
not collude and incur non-trivial communication overhead, MPC represents one of the most promising
techniques for PPML as its overhead is often much lower compared to HE.

(a) A 12-layer Transformer-based Model Operator
2-PC Inference Runtime Decomposition

(b) A 6-layer Transformer-based Model Operator
2-PC Inference Runtime Decomposition

Figure 1: Transformer-based Model Operator 2-PC Inference Runtime Decomposition

Experimental Setup. In our characterization study, we obtained a secure 2-PC inference runtime.
We implemented MPC models using the CrypTen MPC framework [17]. The token embedding table
size is [250002× 1024], and there are 6/12 layers of Transformers in the model (L = 6/12, H =
1024, A = 16). Embedding tables are implemented as “densified” matrix multiplications. Runtimes
are obtained from using two nodes on the same server rack, and each node has an NVIDIA Tesla
V100 Volta GPU.

MPC vs. Plaintext Inference. Comparing with the plaintext single GPU inference, total inference
runtime is 12x slower with MPC. Embedding table accesses are 2, 523x slower; Matrix multiplications
are 3.5x slower; Softmax functions are 465x slower; and ReLU functions are 1, 372x slower. Among
all the operators, softmax sees the most overhead when MPC protocols are implemented.

MPC Execution Time Breakdown. Figure 1a and Figure 1b show the breakdown of inference
runtime. Embedding table accesses make up 12% of total inference runtime. Softmax functions and
activation functions make up 40% and 28% of total inference runtime, respectively. Lightweight
non-linear functions such as ReLUs and Softmax dominate the inference runtime when MPC is used
because they need to be approximated with arithmetic or binary functions. Note that in the above
experiments the length of each input sentence is 128. If we increase the number of tokens in each

2



sentence, MPC softmax runtime grows more rapidly than all other operators because the input size
of softmax increases quadratically with sentence length. When token length of input sentences is
1024, softmax can account for 85% of the total inference runtime, and the total 2-party Transformer
inference is 316x slower than the computation in plaintext.

Analysis of Softmax Overhead. Among all the operations, softmax shows the largest showdown
when MPC is applied. This slowdown is mainly due to a maximum function used in softmax for
numerical stability. Softmax functions for the ith element in a vector size of n is defined as

Softmax(xi) =
exi∑n

k=1 e
xk

(1)

The exponential function is approximated using limit approximation [17]. The exponential function
can explode quickly even in plaintext, causing overflow when some input values are big. To achieve
numerical stability, softmax is practically implemented as

Softmax(xi) =
exi−xmax∑n

k=1 e
xk−xmax

(2)

where xmax is the maximum value in the given vector. The subtraction of the maximum value does
not change the final value of the softmax function, but it greatly improves the numerical stability. The
“maximum” function is typically cheap. However, in the context of MPC, the maximum function turns
into an extremely expensive operation. When using MPC, inputs are additively shared among multiple
parties. The maximum function requires a large number of comparisons, which are expensive in MPC
because comparisons require two secret sharing format conversions. This communication during
secret sharing format conversions makes maximum functions expensive, and there are O(log(N))
comparisons. Our experiments show that if the maximum function is removed (for timing purpose
only) from the softmax operation, the softmax function becomes 7x and 9x faster on CPU and GPU,
respectively.

3 Tensor-Train Decomposition for Efficient Embedding Tables

Tensor-Train (TT) Decomposition. The basic idea of TT decomposition is to represent a big matrix
using tensor products of several smaller matrices. A tensor product is a function:

RM1×M2...×Mk

⊗
RN1×N2...×Nk −→ RM1·N1×M2·N2...×Mk·Nk (3)

Generalizing TT decomposition to an embedding matrix W ∈ RM×N , W can be decomposed into d

smaller matrices wk ∈ RRk−1×mk×nk×Rk , where M =
∏d

k=1 mk, N =
∏d

k=1 nk, and R0 = Rd =
1. We refer Rk as the ranks of decomposed matrices. For example, if d is 2, an embedding size
of [250002 × 1024] can be decomposed into two smaller matrices of [1 × 500 × 32 × rank] and
[rank × 502× 32× 1]. Note that 502× 500 > 250002 and 32× 32 = 1024. If the rank of the all
decomposed matrices are 4, the original matrix with 24M parameters can be decomposed into two
smaller 64K-element matrices. When accessing certain locations in the original embedding table, a
entry in every decomposed matrices is fetched (this fetching is implemented as dense one-hot matrix
multiplications). To reconstruct the original entry, apply dot products at the dimension of the rank
among fetched entries.

TT Decomposition for Embedding Tables in MPC. TT decomposition can be applied to the matrix
multiplications that are used for embedded tables to reduce the overhead, enabling a trade-off
between performance and model accuracy. Here, we present the embedding table query runtime and
model accuracy using different configurations of TT decomposition. We use d/ranks to represent
TT decomposition configurations. d represents the number of smaller decomposed matrices, and
ranks represents the rank of each decomposed matrix. Configuration 3/64 means that the original
embedding table is decomposed into 3 smaller 64-rank matrices. Throughout our experiments, the
original embedding table size is [250002 × 1024]. With fixed configurations, the dimensions of
smaller matrices using different configurations of TT decomposition are shown in Table 1. The
performance results are obtained by running 2-party inference using CrypTen [17] on two nodes on
the same server rack, each node with an NVIDIA Tesla V100 Volta GPU. To evaluate the impact
of model accuracy, the experiments on a masked language model are performed without MPC on a
single node with 8 NVIDIA Tesla V100 Volta GPUs.

3



3/ranks 4/ranks 5/ranks

1× 50× 8× ranks 1× 20× 4× ranks 1× 10× 4× ranks
ranks× 65× 8× ranks ranks× 24× 4× ranks ranks× 10× 4× ranks
ranks× 80× 16× 1 ranks× 25× 8× ranks ranks× 10× 4× ranks

- ranks× 25× 8× 1 ranks× 13× 4× ranks
- - ranks× 20× 4× 1

Table 1: Matrix Dimensions using TT Decomposition

Number of Matrices 3 4 5
Ranks 64 128 196 64 128 196 64 128 196

Batch=32 Speedup 16.37 6.95 2.91 16.68 5.68 3.35 17.88 6.11 2.91
Batch=64 Speedup 11.93 3.84 2.09 9.28 3.15 1.34 8.01 3.40 1.44
Batch=128 Speedup 8.65 2.90 1.18 6.34 1.99 0.88 6.98 1.78 0.88
Batch=256 Speedup 6.56 1.79 0.90 4.67 1.41 0.64 3.97 1.39 0.65
Batch=512 Speedup 4.95 1.19 0.56 2.98 0.93 0.40 2.50 0.95 0.40

Table 2: TT Decomposition Inference Runtime Improvement

Table 2 demonstrates embedding table inference speedups using different TT decomposition configu-
rations with batch sizes. The batch size represents the number of embedded table accesses that are
performed together. When batched accesses are small, most configurations demonstrate speedups.
However, with more batched accesses, the configurations with more decomposed matrices and more
ranks begin to show negative speedups. Computations needed and the number of bytes of data
communicated for reconstructing embedding entries from decomposed matrices increases linearly
with the numbers of accesses. On the contrary, the baseline’s one-hot matrix multiplication’s runtime
does not grow linearly because the number of communication rounds is amortized as the number of
batched accesses grows (the size of the embedding table does not depend on batch sizes). The results
suggest that TT decomposition can significantly improve performance for cases with small batch
sizes as in real-time inference settings. For example, users’ inputs to real-time translation software
are generally no longer than 50 tokens where one token corresponds to one embedding table access;
length of 90% data points in MNLI[18], XNLI[19] and CoNLL-2003 [20] is smaller than 75.

The speedups and compression come with a cost. Besides inference runtime reduction, we also
measured the TT decomposition’s impact on model accuracy. We have run a masked language model
on WikiText-103 [21]. The Transformer configuration we used is (L = 24, H = 1024, A = 16),
and the token embedding table size is [250002× 1024]. We have trained the model for ten epochs
and reported their best perplexity score. Table 3 presents perplexity of various TT decomposition
configurations. Configuration 3/64 achieves a speedup of 2.09x, while incurring a 1.19 loss in
perplexity score. If applications can tolerate higher loss in perplexity scores, using TT decomposition
configurations such as (3/64, 3/128, 4/64) can achieve even more speedups.

4 Conclusions

Transformers are widely used in NLP tasks and will likely represent an important workload for PPML
in the future. Interestingly, this paper shows that Transformers introduce new research challenges that
do not exist for private inference of CNNs. While this paper shows that TT decomposition can be
used to speed up embedding table accesses, further optimizations, especially for non-linear operations
such as softmax, are needed to enable private real-time NLP inference.

Configs Plaintext 3/64 3/128 3/196 4/64 4/128 3/196 5/64 5/128 5/196

PPL 12.8 17.0 15.17 14.04 18.25 16.47 14.41 17.82 16.09 14.83
Table 3: Masked Language Model Perplexity Score

4



References
[1] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul

Sharma. Cryptflow: Secure tensorflow inference. In IEEE Symposium on Security and Privacy.
IEEE, May 2020.

[2] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal
Rabin. Falcon: Honest-majority maliciously secure framework for private deep learning.
Proceedings on Privacy Enhancing Technologies, 2020.

[3] Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg, and Chinmay Hegde. Sphynx:
Relu-efficient network design for private inference. 2021.

[4] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. Deepreduce: Relu
reduction for fast private inference. Proceedings of the 38 th International Conference on
Machine Learning, 2021.

[5] Zahra Ghodsi, Nandan Kumar Jha, Brandon Reagen, and Siddharth Garg. Circa: Stochastic
relus for private deep learning. arXiv preprint arXiv:2106.08475, 2021.

[6] Xiaoqiang Sun, Peng Zhang, Joseph K. Liu, Jianping Yu, and Weixin Xie. Private machine
learning classification based on fully homomorphic encryption. IEEE Transactions on Emerging
Topics in Computing, 8(2):352–364, 2020.

[7] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. Intel software
guard extensions: Epid provisioning and attestation services. 2016.

[8] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell,
and Mark Horowitz. Architectural support for copy and tamper resistant software. ACM
SIGARCH Computer Architecture News, 2000.

[9] ARM Limted. Arm security technology building a secure system using trustzone technology.
2016.

[10] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution of neural
networks in trusted hardware. arXiv preprint arXiv:1806.03287, 2019.

[11] Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav Balasubramaniam, and Murali An-
navaram. Privacy-preserving inference in machine learning services using trusted execution
environments. IEEE International Conference on Cloud Computing, 2021.

[12] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. Darknight: A data privacy scheme
for training and inference of deep neural networks. Proceedings on the 54th International
Symposium on Microarchitecture, 2021.

[13] Oded Goldreich. Secure multi-party computation. 1998.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly
andJakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. Proceedings of Ninth ICLR, 2021.

[15] Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and Ivan Oseledets.
Tensorized embedding layers for efficient model compression. Proceedings of Ninth ICLR,
2021.

[16] Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean Wu. Tt-rec: Tensor train compression
for deep learning recommendation model embeddings. arXiv preprint arXiv:2101.11714, 2021.

[17] B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P. van der Maaten.
Crypten: Secure multi-party computation meets machine learning. In arXiv 2109.00984, 2021.

[18] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2018.

5



[19] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. arXiv
preprint arXiv:1809.05053, 2018.

[20] Erik F., Tjong Kim Sang, and Fien De Meulder. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. arXiv preprint arXiv:0306050, 2003.

[21] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

6


	Introduction
	Transformer-based Model MPC Inference Characterization
	Tensor-Train Decomposition for Efficient Embedding Tables
	Conclusions

