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ABSTRACT
There have been multiple recent proposals on using deep neural
networks for code search using natural language. Common across
these proposals is the idea of embedding code and natural language
queries into real vectors and then using vector distance to approx-
imate semantic correlation between code and the query. Multiple
approaches exist for learning these embeddings, including unsuper-
vised techniques, which rely only on a corpus of code examples, and
supervised techniques, which use an aligned corpus of paired code
and natural language descriptions. The goal of this supervision is
to produce embeddings that are more similar for a query and the
corresponding desired code snippet.

Clearly, there are choices inwhether to use supervised techniques
at all, and if one does, what sort of network and training to use for
supervision. This paper is thefirst to evaluate these choices systemat-
ically. To this end, we assembled implementations of state-of-the-art
techniques to run on a common platform, training and evaluation
corpora. To explore the design space in network complexity, we
also introduced a new design point that is aminimal supervision
extension to an existing unsupervised technique.

Our evaluation shows that: 1. adding supervision to an existing
unsupervised technique can improve performance, though not nec-
essarily by much; 2. simple networks for supervision can be more
effective that more sophisticated sequence-based networks for code
search; 3. while it is common to use docstrings to carry out super-
vision, there is a sizable gap between the effectiveness of docstrings
and a more query-appropriate supervision corpus.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; •Softwareanditsengineering→Generalprogramming
languages;Reusability.
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1 INTRODUCTION
We have recently seen a significant uptick in interest in code search.
The goal of code search is to retrieve code fragments from a large
code corpus that most closely match a developer’s intent, which is
expressed in natural language. Being able to examine existing code
that is relevant to a developer’s intent is a fundamental productivity
tool. Sites such as Stack Overflow are popular because they are easy
to search for code relevant to a user’s question expressed in natural
language.

Proprietary code repositories in particular pose a challenge, as
developers can no longer rely on public sources such as Google or
Stack Overflow for assistance, as these may not capture the required
organization-specific API and library usage. However, recent works
from both academia and industry [15, 20, 22, 29] have taken steps to-
wards enabling more advanced code search using deep learning. We
call suchmethodsneural code search. See Figure 1 for some examples
of code snippets retrieved based on natural language queries: it is ev-
ident that the state of the technology has become promising indeed.
The type of queries presented in Figure 1, and the accompanying
results, also highlight the difficulties associated with tackling this
task purely based on simple approaches such as regular-expression
matching.

Figure 2 provides a general overview of neural code search and
outlines different techniques, which we address in detail through
this paper. The core abstraction in neural code search systems is the
notion of embeddings, which are vector representations of inputs in a
shared vector space. By computing a vector similarity measure, such
as cosine similarity [36], over these embeddings, search can retrieve
code fragments that are semantically related to a user query. For
example, in Figure 2, the query “How do I iterate through a hashmap?”
is mapped to the vector ⟨1.2,−0.1,5.5⟩ by one possible technique
(NCS). Candidate code snippets are also mapped to vectors using
the same technique. In Figure 2, one such code snippet, public

https://doi.org/10.1145/3338906.3340458
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Query 1: How can I convert a stack trace to a string?

public synchronized static String getStackTrace(Exception e) {
e.fillInStackTrace();
StringBuffer buffer = new StringBuffer();
buffer.append(e.getMessage() + "-");
for (StackTraceElement el: e.getStackTrace()) {
buffer.append(el.toString() + "-");

}
return buffer.toString();

}

https://github.com/Dynatrace/Dynatrace-AppMon-REST-Monitor-
Plugin/blob/master/src/com/realdolmen/dynatrace/restmonitor/RestMonitor.java

Query 2: How do I get a platform-dependent new line character?

public static String getPlatformLineSeparator() {
return System.getProperty("line.separator");

}

https://github.com/nutritionfactsorg/daily-dozen-
android/blob/master/app/src/main/java/org/nutritionfacts/dailydozen/Common.java

Figure 1: Example code search results. Each is selected from the top 1 result
foundby theUNIF model thatwe introduce.Theexisting code search interface
of github.com does not return any relevant code snippets in the top 10 results
for these queries.

void forValuesAtSameKey..., for example, is mapped to
the vector ⟨0.94,−0.2,1.2⟩. The candidate code snippets then can
be ranked using vector similarity. A key challenge in neural code
search is to learn these embeddings in a way that vector similarity
coincides with semantic relatedness.

As shown in Figure 2, the models used to learn these representa-
tions can be broadly grouped intounsupervised and supervised. In our
journey to explore the advantages of neural techniques, we started
with NCS, an effective, unsupervised, neural code search technique
we previously built in [29]. Because NCS showed promising results,
we wanted to experiment with the possibility of improving upon
this baseline through additional design enhancements. In partic-
ular, recent work [15, 20] presented promising supervised neural
code search techniques, labeled CODEnn and SCS respectively, that
successfully learned code and natural language embeddings using
corpora of source code and docstrings.

The goal of this supervision is to learn a mapping that produces
more similar vectors for user queries and the corresponding desired
code. In Figure 2, this goal is depicted by the solid arrows, which
move the embeddings for the query and correct code fragment closer
together when mapped using a supervised model.

With so many techniques to choose from, how does anyone try-
ing to design and deploy a code search solution make an informed
choice? For instance, supervision sounds like a good idea, but how
muchbenefit does it provide, relative to theoverheadof obtaining the
supervision data?Howmuch value, if any, do themore sophisticated
networks – which have many more parameters – bring compared to
a simpler network, one of which we introduce in this work (UNIF in
Figure 2, described further below)? Does model supervision carried
out using docstrings potentially limit performance whenmodels are
applied to real user queries?

In this work, we attempt to understand these tradeoffs quantita-
tively. To do so, we formulate experiments in the context of the code
search techniques mentioned above. Three of these techniques are
exactly as in previous work, and are state-of-the-art at this time:
• NCS: An unsupervised technique for neural code search devel-
oped at Facebook [29], which uses only word embeddings derived
from a code corpus.

• CODEnn: A supervised technique from a recent paper on code
search using deep neural networks [15], which uses multiple
sequence-to-sequence-based networks, and was shown to outper-
form other state-of-the-art code search techniques. We use the
implementation provided by the authors [16].

• SCS: A supervised neural code search system using multiple
sequence-to-sequence networks. We use the implementation pro-
vided by the authors in a blog post [20, 21].

Because we wanted to understand the extent to which the complex
sequence-of-words based networks help, we also developed a min-
imal extension to the NCS technique, just adding supervision and
nothing else:
• UNIF : A supervised extension of the baseNCS technique of our
owncreation.UNIF uses abag-of-words-basednetwork,whichhas
significantly lower complexity compared to sequence-of-words-
based networks. This simple model is a new contribution of this
paper.
Our evaluation is structured using the following three research

questions; we also give the summary of our findings along with the
question.

Research Question 1. : Does extending an effective unsupervised
code search technique with supervision based on a corpus of paired
code and natural language descriptions improve performance?

Our results show that UNIF performed better than NCS on our
benchmarkqueries, though the improvementwasnot seenuniformly
across all data sets.

Research Question 2. : Do more sophisticated networks improve
performance in supervised neural code search?

Our results show that UNIF , a simple, bag-of-words-based net-
work, outperformed the sequence-of-words-based CODEnn and SCS
on our benchmarks. The additional sophistication did not add value.

Research Question 3. : How effective is supervision based on doc-
strings as the natural language component of the training corpus?

We found that supervision based on docstrings – which is com-
monly the natural language component of an aligned corpus – did
not always improve performance, contrary to expectations. To un-
derstand the possible room for improvement, we constructed an
ideal alternate training corpus, where the code snippets and natural
language, while disjoint from our benchmark queries, were drawn
from the same source.

When trained on this corpus, all supervised techniques improved
significantly, showing that, as a proof of concept, if given a training
corpus that matches expected user evaluation, these techniques can
provide impressive search performance.

Contributions. 1. We believe this is the first paper to compare
recent neural code search systems running on the same platform
and evaluation using the same corpora.

https://github.com/Dynatrace/Dynatrace-AppMon-REST-Monitor-Plugin/blob/master/src/com/realdolmen/dynatrace/restmonitor/RestMonitor.java
https://github.com/Dynatrace/Dynatrace-AppMon-REST-Monitor-Plugin/blob/master/src/com/realdolmen/dynatrace/restmonitor/RestMonitor.java
https://github.com/nutritionfactsorg/daily-dozen-android/blob/master/app/src/main/java/org/nutritionfacts/dailydozen/Common.java
https://github.com/nutritionfactsorg/daily-dozen-android/blob/master/app/src/main/java/org/nutritionfacts/dailydozen/Common.java
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Code:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}
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Source
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Unsupervised
Model
(NCS)

Combined
Embedding

Ec, Eq

Code Embedding

Query Embedding

[0.2, 0.4, 0.5]
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[0.94, -0.2, 1.2]

Training Corpus

Inference (search) time

Code:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}

Code:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}

Candidate code snippets:
public	void	forValuesAtSameKey(
				Map	<K,V>	map,	...)	{	...	}

Query:
“How do I iterate through a hashmap”

query embedding
correct code embedding
incorrect code embedding

Large scale
repositories

(GitHub) 0.895
Cosine

Similarity

0.982
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Figure 2: When using embeddings for code search, the query and the candidate code snippets are mapped to a shared vector space, using functions Eq and Ec ,
respectively, and maximizing cosine similarity between corresponding query embedding and code embeddings. These vector representations can be learned in an
unsupervisedmanner,whichjustusescode,or inasupervisedmanner,whichexploitanaligned corpusofcodeandtheircorrespondingnatural languagedescriptions.

2. We present a new design point in the spectrum of neural code
search systems: UNIF , an extension to NCS that minimally adds
supervision and nothing else.
3. Our findings are that UNIF outperforms some of the more so-
phisticated network designs (CODEnn and SCS) as well asNCS, the
unsupervised technique. Moreover, the choice of the aligned corpus
used in supervision is extremely pertinent: an idealized training
corpus shows that supervised techniques can deliver impressive
performance, and highlights the differences in performance that
may not be immediately evident from training on the typical code
and docstring aligned corpora.

These findings have implications for anyone considering design-
ing and deploying a neural code search system in their organization.
The findings also have implications for researchers, who should
consider simple baseline models in evaluating their designs.

Outline. The rest of the paper is organized as follows. Section 2
introduces the core idea of embeddings and their use in neural code
search. Section 3 details each of the techniques explored in this paper.
Section 4 presents our evaluation methodology. Section 5 provides
results supporting our research questions’ answers. Section 6 and
Section 7 discuss threats to validity and relatedwork, respectively. Fi-
nally, Section 8 concludeswith themain takeaways and implications
for neural code search system designers.

2 EMBEDDINGS FORCODE
An embedding refers to a real-valued vector representation for an
input. An embedding function E :X→Rd takes an input x in the
domainofX andproduces its correspondingvector representation in
ad-dimensional vector space. This vector is said to be distributed [6],
where each dimension of the vector is not attributed to a specific
hand-coded feature of the input, but rather the “meaning” of the
input is captured by the vector as a whole.

Embeddingspresentmultiple appealingproperties.Theyaremore
expressive than local representations, such as one hot encodings, as
values along each dimension are continuous [6]. Embeddings can
also be learned, which makes them applicable to different domains

where we have example data. One possibility is to learn these em-
beddings using a neural network, such that the function E uses a
network’s learned weights.

2.1 Running Example
We present a running example to illustrate some of the key concepts
for the use of embeddings in code search. Suppose we want to pro-
duce a vector that can successfully represent the code snippet below.

for (entry : map.entrySet()) {
System.out.println(entry);

}

One possible approach is to treat this source code as text, and
tokenize this input into a collection of individual words. The extent
of tokenization (and filtering certain words) may depend on the
specific model design. For this example, we will tokenize based on
standard English conventions (e.g. white-space, punctuation) and
punctuation relevant to code (e.g. snake and camel case). The code
snippet can now be treated as the collection of words.

for entry map entry set system out println entry

One approach to learning token embeddings is with an unsuper-
vised model. One popular technique isword2vec, which implements
a skip-grammodel [7, 27]. In the skip-grammodel, the embedding for
a target token is used to predict embeddings of context tokenswithin
a fixed window size. In our example, given the embedding for the
token set and a window size 2, the skip-grammodel would learn
to predict the embeddings for the tokens map, entry, system,
and out. The objective of this process is to learn an embedding
matrixT , where each row corresponds to the embedding for a to-
ken in the vocabulary, and where two embeddings are similar if the
corresponding tokens often occur in similar contexts.

At this point, we can map each word in our tokenized code
snippet to its corresponding embedding. For example, for may
be represented by ⟨0.2,−1.0,3.8⟩, and entrymay be represented
by ⟨0.8,0.9,−2.0⟩.
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2.2 Bags and Sequences of Embeddings
The next step in our procedure will be to combine the token-level
embeddings for our code snippet into a single embedding that appro-
priately represents the snippet as a whole. We discuss two possible
approaches to doing so using standard neural network architectures.

So far we have not discussed the impact of the token order in
our snippet. We can decide to treat the words as a bag, occasionally
called a multiset, and ignore order. In such a case, our example

for entry map entry set system out println entry

would be equivalent to every other permutation, such as

entry for map println entry set out entry system

A corresponding bag-based neural network would compute the
representation for our code snippet without regard to token order.
One simple example of such a bag-of-words-based architecture is
onewherewe useT , thematrix of learned token embeddings, to look
up the embedding for each word in the tokenized example and then
average (either simple or weighted) these vectors to obtain a single
output vector.

In contrast, a neural network may instead consume the tokens
in an input as a sequence, such that the ordering of elements is sig-
nificant. We provide details on one common approach to handling
sequence-based inputs: recurrent neural networks (RNN) [12].

An RNN starts with an initial hidden state, often initialized ran-
domly, represented as h0, and processes the words in the input se-
quentially one by one. In our example, the two permutations of the
tokenized code snippet are no longer equivalent.

After processing each word, the RNN updates the hidden state.
If the t th word in the sequence iswt and the hidden state after pro-
cessing the words beforewt isht−1, then the next hidden state after
processingwt is obtained as follows:

ht = tanh(W .[ht−1;wt ]) (1)

whereW is a matrix whose parameters are learned, [x ;y] is the
vector obtained by concatenating the vector x andy, and tanh(x)=
ex−e−x
ex+e−x is a non-linear activation function which ensures that the
value ofht lies between -1 and 1.

There are multiple approaches to obtain a snippet-level embed-
ding using this RNN. For example, one model might take the last
hidden statehn as the snippet embedding. Another could collect the
hidden stateshi and apply a reduction operation such as dimension-
wise max or mean to produce the snippet embedding.

Thenetwork described above is a simpleRNN; in practice, anRNN
is implemented by using a more complex function onht−1 andwt .
An example of such an RNN is long-short termmemory (LSTM) [18].

2.3 Bi-Modal Embeddings
So far, we have only discussed how to produce a representative
vector given a code snippet. However, neural code search uses em-
beddings for both code snippets and the user’s natural language
query. This means that our embedding approachmust be able to rep-
resent both the code for (entry : map.entrySet) ... ,
and the query “how to iterate through a hashmap”, which is expressed

in natural language. Such embeddings that relate two different kinds
of data are called bi-modal embeddings [2].

The computation of bi-modal embeddings of a code snippet and
its natural language description can be abstractly formulated as two
functions: Ec : C → Rd and Eq : Q → Rd , where C is the domain
of code snippets, Q is the domain of natural language descriptions,
Rd is a real-valued vector of length d , Ec is an embedding function
that maps a code snippet to a d-dimensional vector, and Eq is an
embedding function that maps a natural language description to a
vector in the same vector space. The goal is to learn the functions
Ec and Eq such that for some similarity measure sim, such as cosine
similarity [36], sim(Ec (c),Eq (q)) is maximized for a code snippet c
and its corresponding natural language description q. Alternatively,
for unsupervisedmodels, such asNCS,Ec andEq maybe instantiated
with the same token-level embeddingmatrixT , as shown in Figure 2.

2.4 Applying Embeddings to Code Search
Given Ec and Eq , code search can be performed given the user query
and a code corpus.

Figure 2 illustrates how embeddings are used in code search. The
code embedding function Ec is used to convert each candidate code
snippet in our search corpus into a vector.

For example, given the code snippet

public void forValuesAtSameKey(Map <K, V> map, ...) {
...

}

in our search index, an unsupervised Ec (labeledNCS in the figure)
returns the vector representation ⟨0.94,−0.2,1.2⟩. All the snippets in
a corpus can be embedded in a similar fashion and used to construct
an index that allows for fast lookups based on a similarity metric.

The user query can be similarly embedded using Eq . For exam-
ple, “How do I iterate through a hashmap?” is mapped to the vector
⟨0.2,0.4,0.5⟩. To retrieve relevant code snippets, thecodeembeddings
index can be searched based on similarity to the query embedding.
The top N results based on this similarity are returned.

There are a number of possible neural architectures used to learn
Eq and Ec , and we will explore several of them in this paper.

3 NEURALCODE SEARCHMODELS
We now introduce each of the neural techniques explored in this
paper.

3.1 NCS
In NCS [29], a specific technique named after the general concept
of Neural Code Search, the embedding functions Ec and Eq are im-
plemented using a combination of token-level embeddings using
fastText [7], which is similar toword2vec [27], and conventional in-
formation retrieval techniques, such as TF–IDF [11, 30]. As such this
technique does not use conventional deep neural networks nor su-
pervised training. NCS computes an embedding matrixT ∈R |Vc |×d

, where |Vc | is the size of the code token vocabulary, d is the chosen
dimensionality of token embeddings, and the kth row inT is the em-
bedding for thekthword inVc . Once thematrixT has been computed
using fastText, it is not further modified using supervised training.
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Figure 3: NCS embeds the code and query input with the fastText [7]
embeddings. The code sentence embedding ec is computed from the bag of
code embeddings with TF-IDF weights. The query sentence embedding eq is
produced by averaging the bag of query embeddings.

NCS applies the same embedding matrixT to both the code snip-
pets and the query as follows. Let c= {c1,...,cn } and q= {q1,...,qm }

represent the code snippet and query, respectively, as a multiset
(i.e. order insensitive) of tokens. NCS generates a bag of embedding
vectors {T [c1],...,T [cn ]} for the code snippet and {T [q1],...,T [qm ]}

for the query, whereT [w] is the embedding vector in the matrixT
for the tokenw .

To combine the bag of code token embeddings into a single code
vector ec , NCS sums the embeddings for the set of unique tokens
weighed by their corresponding TF–IDFweight. The TF–IDFweight
is designed to increase the weight of tokens that appear frequently
in a code snippet, and decrease the weight of tokens that appear
too frequently globally across all of the code corpus. We elide the
classical TF–IDF weighing formula here for brevity.

For the query, NCS averages the bag of query token embeddings
into a single query vector eq .1 The high level architecture of theNCS
model is illustrated in Figure 3.

3.2 UNIF : A Supervised Extension ofNCS
Wewill introduce UNIF next, as it is a supervised minimal extension
of theNCS technique. In this model, we use supervised learning to
modify the initial token embedding matrixT and produce two em-
beddingmatrices,Tc andTq , for code and query tokens, respectively.
We also replace the TF-IDF weighing of code token embeddings
with a learned attention-based weighing scheme. We refer to this
extended approach as Embedding Unification (UNIF ).

We assume that an aligned corpus of code snippets and their nat-
ural language descriptions is available for training. We denote this
corpus as a collection of (c,q), where c is bag of tokens c1,...,cn from
a code snippet andq is a bag of tokens from its corresponding natural
language description.

The functions Ec and Eq are constructed as follows. Let Tq ∈

R |Vq |×d andTc ∈R |Vc |×d be two embedding matrices mapping each
word from the natural language description (specifically the doc-
strings and the query) and code tokens, respectively, to a vector
of length d . The twomatrices are initialized using the same initial
weights,T , and modified separately during training.

We apply the respective embedding matrices to each element in
the paired corpus, such that for a code snippet c we obtain a bag of

1 The authors ofNCS also introduce a variant of their model that heuristically extends
user queries using code and natural language token co-occurrences. We do not use
this heuristic extension in order to directly observe the impact of extending training
with natural language supervision.

Code Input Embedding
Tc

Attention
ac

NL Desc / Query
Input

Embedding
Tq

Cosine
Similarity

UNIF

ec

eq
Average

Figure 4: The UNIF network uses attention ac to combine per-token embed-
dings Tc and produce the code sentence embedding ec. The query sentence
embedding eq is produced by averaging the bag of query embeddings Tq. Both
Tc and Tq are initialized with the fastText [7] embeddings and are further
fine-tuned during training.

embedding vectors {Tc [c1],...,Tc [cn ]}, and similarly for eachdescrip-
tion q. We compute a simple average to combine the query token
embeddings into a single vector. The simple averaging is also present
inNCS andwe found it to outperform attention-based weighing dur-
ing experiments.

To combine each bag of code token vectors into a single code
vector that captures the semantic meaning of the corresponding
entity, we use an attention mechanism [3] to compute a weighted
average. The attention weights, ac ∈Rd , is a d-dimensional vector,
which is learned during training. ac acts as a learned counterpart to
the TF-IDF weights in NCS.

Given a bag of code token embedding vectors {e1, ... ,en }, the
attention weight αi for each ei is computed as follows:

αi =
exp(ac .e

⊺
i )∑n

i=1exp(ac .e
⊺
i )

(2)

Herewe compute the attentionweight for each embedding vector
as the softmaxover the inner product of the embedding and attention
vectors.

The summary code vector of a bag of embedding vectors is then
computed as the sum of the embedding vectors weighted by the
attention weights αi :

e=
n∑
i=1

αiei (3)

e corresponds to the output of Ec .
Our trainingprocess learns parametersTq ,Tc , andac using classic

backpropagation. Figure 4 shows a high level diagram of UNIF .

3.3 CODEnn
Similar to UNIF , CODEnn [15] also models both Ec and Eq using
neural networks and employs supervised learning; however, the
networks used are more sophisticated and deep. We adhere to the
original authors’ naming and refer to this model as CODEnn, short
for Code Description Embedding Neural Network. Instead of treating
a code snippet as a bag of tokens, CODEnn extracts a sequence of
words from the name of the method containing the code snippet, the
sequence of API calls in the snippet, and a bag of tokens from the
code snippet. The word sequence from a method name is extracted
by splitting the method name on camel-case and snake-case.

The method name sequence and API sequence are given as input
to two separate bi-directional long-short termmemory (bi-LSTM)
networks [18].
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Figure 5:CODEnn, the network proposed for code search uses RNNs to embed
the method name (r1), API sequence (r2), and query (r3). It uses a feed for-
ward network (MLP) to embed the code body tokens (m1), and combines this
embeddingwith themethodnameandAPIembeddingwithanotherMLP(m2).

After applying two separate LSTMs to the method name and API
sequences,CODEnnobtains two sequences of hidden states.CODEnn
summarizes each such sequence of hidden states to obtain a single
vector. For summarization, CODEnn uses the max-pooling function.

Each token in the bag of code tokens is given individually as input
to a feed forward dense neural network and the output vectors are
max-pooled. A final code embedding is then obtained by concate-
nating these three vectors (two from the LSTMs and one from the
feed-forward network) and feeding them to a dense neural network
which produces a single summary vector ec . All the above networks
together implement the function Ec .

CODEnn implements the functionEq using a bi-directional LSTM,
which takes as input sequence the description of the code snippet
found in the doc string to produce eq . Figure 5 provides an overview
of the architecture.

3.4 SCS
We introduce another supervised sequence-based deep neural net-
work for code search, described and implemented by the data science
team at GitHub [20]. We will refer to this model as SCS, short for
Semantic Code Search.

SCS isdivided into three separate trainingmodules.Asequence-to-
sequence gated recurrent unit (GRU) network [8] learns to generate
a docstring token sequence given a code token sequence. We refer
to this as the code-to-docstring model.

An LSTM network [26] learns a language model for docstrings in
the training corpus [32]. Thismodel canbeused to embednatural lan-
guage and compute the probability of a given natural language input.

A final module learns a transformation (in the form of a feed for-
ward layer) to predict a query embedding given a sequence of code
tokens. To learn this transformation, the module takes the encoder
portion of the code-to-docstring model, freezes its layers, and trains
the network on code sequence inputs and the corresponding query
embedding produced using the language model. A final training
phase fine-tunes the network as a whole by unfreezing the encoder
layer for a few epochs. SCS uses this fine-tuned encoder portion of
the code-to-docstring model as Ec and the language model as Eq .
Figure 6 provides an overview of the architecture.

Table 1 provides an overview of the network details for mod-
els that employ supervision when learning their Ec and Eq : UNIF ,
CODEnn, and SCS.

Code Input

Train code-to-docstring 
model

Code
Encoder

r1

Docstring
Decoder

r2

NL Desc / Query
Input

Train language model

Sentence
Encoder

r3

SCS
Docstring

Output

Cosine Similarity

NL Desc / Query
InputCode Input Sentence

Encoder
Code

Encoder
MLP
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Figure 6: SCS uses the encoder portion of the code-to-docstring sequence-
based network to embed sequences of code tokens. Separately, it trains a
language model to embed sequences of query tokens. A feed forward layer
is added to the code encoder to transform code embeddings into query
embeddings (derived from the languagemodel).

4 EVALUATIONMETHODOLOGY
Our evaluation uses different datasets and benchmarks. We use the
following terminology throughout for clarity:

• training corpus refers to a dataset of paired code and natural
language. An example for natural language could be the code frag-
ment’s corresponding docstring. A training corpus is used to train
the models and may contain duplicate code / natural language
pairs. An unsupervised model, such as NCS, uses only the code
fragments from a dataset.

• search corpus refers to a dataset of unique code entries2. Entries
are unique in order to avoid repetition in search results. We apply
a trained model to a search corpus to search for the top results for
a given user query. This dataset is used during the evaluation of
the models.

• benchmark queries refers to a set of evaluation queries used to
gauge the performance of trained models. Each query in a bench-
mark is accompanied by a gold-standard code fragment result,
which we use to score results retrieved from a search corpus by
a trained model.

Our evaluation uses three different training corpora, two search
corpora, and two sets of benchmark queries.

4.1 Training Corpora
We use three training corpora for our experiments.

CODEnn-Java-Train is the dataset publicly released by the au-
thors of [15]. This corpus consists of approximately 16 million pre-
processed Java methods and their corresponding docstrings, in-
tended for training.Thedataset includes four types of inputs:method
name sequences, API sequences, a bag of method body tokens, and
docstring sequences. We additionally derive another input by con-
catenating the method name sequences to the API sequences and
treating this concatenated sequence as a bag of tokens. This derived
input is used to train UNIF and SCS.34

2Dataset is deduplicated after tokenization.
3Supervised models trained on CODEnn-Java-Train train for 50 hours on an Nvidia
Tesla M40 GPU.
4This data has been generously made available by the CODEnn authors at
https://drive.google.com/drive/folders/1GZYLT_lzhlVczXjD6dgwVUvDDPHMB6L7

https://drive.google.com/drive/folders/1GZYLT_lzhlVczXjD6dgwVUvDDPHMB6L7
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Table 1: Summary of details for models trained with supervision. In terms of network complexity (parameters and layers), from least to most complex, we have:
UNIF ,CODEnn, and SCS.

Model Summary Parameters

UNIF
Embeds code/query tokens.
Combines code embeddings with attention.

Embedding matricesTc ,Tq (Figure 4 Tc, Tq).
Attention vector ac (Figure 4 ac)

CODEnn

Embeds method name, API sequence and query as sequences.
Embeds a bag of tokens from body.
Combines method name, API, and token embeddings using another layer.

Embedding matricesT1,T2,T3,T4 (Figure 5 T1, T2, T3, T4)
Bi-directional LSTM parameters for RNNs (Figure 5 r1, r2, r3)
MLP parameters (Figure 5 m1, m2)

SCS

Embeds sequence of code tokens.
Embeds sequence of query tokens.
Transforms code embedding into query token space.

GRU parameters for RNNs (Figure 6 r1, r2)
LSTM parameters for RNN (Figure 6 r3)
MLP parameters (Figure 6 m1)

GitHub-Android-Train is an Android-specific corpus that we
built by collectingmethods fromapproximately 26,109GitHub repos-
itories with the Android tag. We took all methods with an accom-
panying docstring (approximately 787,000 in total) and used these
as training data. Similar to CODEnn-Java-Train, we derive the four
types of input collections (method name sequences, API sequences,
bag of method body tokens, and docstring sequences) necessary
to train CODEnn. We train UNIF and SCS on the input sequence
generated for NCS, which uses a parser to qualify method names
with their corresponding class, method invocations, enums, string
literals and source code comments, while ignoring variable names,
and applies a camel and snake case tokenization [29].5

StackOverflow-Android-Train is an Android-specific training
corpus that we built by collecting Stack Overflow question titles and
code snippets answers. We prepared this dataset by extracting all
StackOverflow posts with anAndroid tag from a data dump publicly
released by Stack Exchange [31]. The dataset is filtered on the fol-
lowing heuristics: (1) The code snippet must not contain XML tags;
(2) The code snippet must contain a left parenthesis ‘(’ to indicate
presence of a method call; and (3) The post title must not contain
keywords like “gradle”, “studio” and “emulator”. After filtering, we
end up with 451k Stack Overflow title and code snippet pairs. This
dataset isdisjoint from theAndroid-287 benchmarkqueries described
later on in Section 4.3.

The goal of StackOverflow-Android-Train is to serve as an alter-
nate training corpus that is ideal for our evaluation, which leverages
Stack Overflow titles and code snippets as benchmark queries and
answers, respectively. By training on this corpus, we can measure
the potential for improvement compared to training on a typical
aligned corpus, which uses docstrings as natural language.6

4.2 Search Corpora
We use two search corpora during our evaluation.

CODEnn-Java-Search: 4 million unique Java methods released
by the authors of CODEnn.

GitHub-Android-Search: 5.5 million unique Android methods
collected from GitHub. This corpus is derived from the same 26,109
repositories used to construct GitHub-Android-Train, but also in-
cludes methods that do not have a docstring available.

5Supervised models trained on GitHub-Android-Train train for 3 hours on an Nvidia
Tesla M40 GPU.
6Supervised models trained on StackOverflow-Android-Train train for 3 hours on an
Nvidia Tesla M40 GPU.

4.3 Benchmark Queries
We use two sets of queries as evaluation benchmarks for our models.
In both benchmark sets, the queries correspond to Stack Overflow
titles and the ground truth answers for each query are the accepted
answer or highly voted answer for the corresponding post, whichwe
independently collected. This approach to collecting ground truth
answers was borrowed from the original NCS paper [29]. The use of
Stack Overflow titles as queries, rather than a small set of initial key-
words, aims to evaluate the extent to which the different techniques
successfully map natural language fragments and code to a shared
space, and was chosen to directly compare to prior work [15, 29].

Java-50 is a set of 50 queries used to evaluate CODEnn in the
original paper. These queries correspond to Stack Overflow titles
for the top 50 voted Java programming questions. The authors in-
cluded questions that had a “concrete answer” in Java, included an
accepted answer in the thread with code, and were not duplicate
questions. When evaluating on this benchmark, models are trained
on CODEnn-Java-Train.

Android-287 is a set of 287 Android-specific queries used to eval-
uate NCS in the original paper. These questions were chosen by a
script with the following criteria: (1) the question title includes “An-
droid” and “Java” tags; (2) there exists an upvoted code answer; and
(3) the ground truth code snippet has at least onematch in a corpus of
GitHubAndroid repos.When evaluating on this benchmark, models
are trained on GitHub-Android-Train, unless otherwise specified.

Table 2 provides a summary of the training corpora, search cor-
pora, and benchmark queries used in our evaluation, and what com-
binations we use for our results.

4.4 Evaluation Pipeline
We found that manually assessing the correctness of search results
can be difficult to do in a reproducible fashion, as deciding the rel-
evance or correctness of a code snippet relative to the input query
can vary across authors and people trying to reproduce our results.
As such, we decided to carry out our evaluation using an automated
evaluation pipeline. Our pipeline employs a similarity metric [24]
between search results and a ground truth code snippet to assess
whether a query was correctly answered. With this pipeline, we
can scale our experiments to a much larger set of questions, such
asAndroid-287 , and assess correctness of results in a reproducible
fashion. We use code answers found on Stack Overflow to provide
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Table 2: Summary of data used. When evaluating on Android-287, we use GitHub-Android-Search as search corpus and train on GitHub-Android-Train or
StackOverflow-Android-Train. When evaluating on Java-50, we useCODEnn-Java-Search as search corpus and train onCODEnn-Java-Train.

(a) Training corpora

Dataset Code/Natural Language Number of Observations

CODEnn-Java-Train [15] Method/docstring 16mm
GitHub-Android-Train Method/docstring 787k

StackOverflow-Android-Train Forum code snippet/Forum title 451k

(b) Search corpora

Dataset Number of Entries

CODEnn-Java-Search [15] 4mm
GitHub-Android-Search 5.5mm

(c) Benchmark Queries

Benchmark Queries Number of Queries

Java-50 [15] 50
Android-287 287

Question 
(Stack Overflow) 

Benchmark Queries

Ground truth 
(code snippet) 

Code 
Embeddings 

Docstring / 
NL Description 

Training Corpus

Code 

offline
compute

Train

Query Embedding
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Source
Code
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similarity score 

Top Search
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Source
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Similarity
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Code Encoder 
Ec 

Query Encoder 
Eq 

Figure 7: Evaluation pipeline.

a consistent ground truth for evaluation.7 This approach was in-
troduced by the authors of [29]. Figure 7 gives an overview of this
evaluation pipeline.

The automated pipeline does require that we pick a similarity
threshold to decide whether a query has been answered. To decide
this value, two authors manually assessed the relevance of the top
10 search results for Java-50 produced by CODEnn and UNIF . This
assessment was done individually and conflicting decisions were
cross-checked and re-assessed. Once a final set of relevant results
was determined, we computed the similarity metric for each result
with respect to the appropriate ground truth answer. This yielded
a distribution of scores that was approximately normal. We took
the mean and use this as the similarity threshold in our evaluation.
This threshold chosen produces evaluation metrics for CODEnn that
generally correspond to those in its original paper [15].

In our evaluation, we present the number of questions answered
in the top k results. We consider the top 1, 5 and 10 results, and
7 We tried to obtain code snippetsmarked as relevant from the originalCODEnn authors
for completeness, but they were unable to share them [14].

Table 3: Number of queries answered in Java-50 in the top 1, 5, and 10 results
improves when we extend NCS (unsupervised) to UNIF (supervised). For
Android-287, supervision increased results in the top 5 and top 10.

Benchmark queries Model Answered@1 Answered@5 Answered@10

Java-50 NCS 15 29 37
UNIF 22 39 43

Android-287 NCS 33 74 98
UNIF 25 74 110

display the corresponding number of questions answered as An-
swered@1,5,10, respectively.

5 RESULTS
We now present our study’s results and the answer for each of the
research questions posed.

5.1 RQ1
Does extending an effective unsupervised code search technique with
supervision based on a corpus of paired code and natural language
improve performance?

As detailed in Section 3.2, UNIF is an extension ofNCS that adds
supervision to modify embeddings during training and replaces
the TF-IDF weights used to combine code token embeddings with
learned attention. Table 3 shows that UNIF answers more questions
across the board for Java-50. UNIF improves the number of answers
in the top 10 results for Android-287 but performs slightly worse for
answers in the top 1.We conclude that extending aNCS, an unsuper-
vised technique, with supervision improves performance for code
search, but not uniformly across our datasets.

5.2 RQ2
Do more sophisticated networks improve performance in supervised
neural code search?

Whenselectingpossible supervised techniques,neural codesearch
system designers may choose to incorporate more sophisticated ar-
chitectures such as CODEnn or SCS, or favor a simple architecture,
such as that used in UNIF . In order to navigate this question, we
consider the number of queries answered by different techniques,
as well as their computational cost.
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Table 4: The evaluation results on both benchmarks show that UNIF outper-
formsmore sophisticated sequence-based networks such asCODEnn and SCS.

Benchmark queries Model Answered@1 Answered@5 Answered@10

Java-50
UNIF 22 39 43

CODEnn 16 31 39
SCS 9 17 21

Android-287
UNIF 25 74 110

CODEnn 22 60 82
SCS 9 19 34

We first compare model performance in terms of the number of
queries correctly answered. Table 4 shows that UNIF , which uses
a simple bag-of-words approach, outperformed both CODEnn and
SCS on both benchmark query sets. CODEnn performed better than
SCS in both cases.

Fully explaining the performance differential in neural systems
is an open research question [25, 33, 38]. As such, providing an in-
depth discussion of the factors influencing UNIF ’s out-performance
is out-of-scope. However, we conjecture that CODEnn’s and SCS’s
use of token order leads to overfitting, while UNIF ’s bag-oriented
embeddings results in a form of regularization that generalizes bet-
ter during evaluation. However, we note that this conjecture is not
something we have explored with experiments.

A second consideration in the complexity tradeoff is the cost of
computation across architectures. More sophisticated networks, in
particular those that consume sequences and thus maintain interme-
diate state, are typically slower due to the amount of computation
they perform. A simpler architecture can provide faster inference
and reduced training time.

As a way to quantify the increase in computation, we measured
the time to embeda sample of code andnatural languagedescriptions
fromCODEnn-Java-Train. Code entries were embedded in a batch of
size 1000, while queries were embedded one at a time, to reflect the
expected behavior in a code search system, where code is embedded
offline and stored in an index and queries are embedded in real-time.

Table 5 shows the ratios of inference times relative toUNIF in
each column, such that a value above 1.0 indicates slower inference
for that column. Sequence-based networks such as CODEnn and SCS
take longer to embed both code and natural language inputs.

Note that all systems can embed code fragments offline, and the
amount of time to embed a query in real-time is relatively small.
However, the relative increases in time to embed code and query
when going from the simple UNIF to more complex networks (CO-
DEnn and SCS) highlight the increased amount of computation that
those networks perform.

Table 5: Time ratios relative to UNIF to embed sampled code and natural
language from CODEnn-Java-Train. Values above 1 represent an inference
time longer thanUNIF ’s for that column.

Model code (CPU) code (GPU) query (CPU) query (GPU)

CODEnn 11.72 58.55 103.83 10.75
SCS 11.92 35.01 105.10 15.94

5.3 RQ3
Howeffective is supervision based ondocstrings as the natural language
component of the training corpus?

The supervised techniques presented so far use the same kind of
natural language during training: docstrings. Docstrings are used as
a proxy for user queries and allow neural code search practitioners
to collect sizeable aligned datasets for training. However, Section 5.3
shows that when training onGitHub-Android-Train, search perfor-
mance did not always improve, contrary to expectations.

In this experiment, we use an alternate idealized training corpus,
StackOverflow-Android-Train, which is drawn from the same source
as our benchmarks Android-287 , but is still disjoint from the queries.
Intuitively, the performance attained with this corpus provides a
measure for howmuch supervised techniques could improve search,
given a training corpus that matches eventual user queries.

Table 6 shows thatwhenwe trainon StackOverflow-Android-Train,
all supervised techniques improve significantly (with one exception,
queries answered in the top 1 using the SCS). This highlights the
impressive search performance that a supervised technique could
deliver, if given access to an ideal training corpus with a natural
language component that better matches user queries.

Table 6: The number ofAndroid-287 answered in the top 1, 5, and 10 when the
supervised techniques were trained on our idealized StackOverflow-Android-
Train corpus. Search performance increases substantially, demonstrating the
potential for supervised techniques, when given access to a training corpus
that resembles eventual user queries.

Model Answered@1 Answered@5 Answered@10

UNIF 25� 104 74� 164 110� 188
CODEnn 22� 36 60� 91 82� 117
SCS 9� 11 19� 24 34� 47

Section 5.3 provides a comprehensive performance summary de-
tailed previously in each research question.

6 THREATS TOVALIDITY
Our evaluation shows that a supervised extension ofNCS performed
better than the original unsupervised version. There may exist other
unsupervised techniques which require more in-depth modification
to successfully take advantage of supervision. Our goal, however, is
not to show that ourminimal extension is guaranteed to improve any
unsupervised technique, but rather that it improvesNCS specifically.

UNIF is presented as a simple alternative to state-of-the-art mod-
els. We explored two techniques from current literature and show
that UNIF outperforms them. More sophisticated architectures may
successfullyoutperformUNIF butwebelieve thatour resulthighlight
the importance of exploring parsimonious configurations first.

We relied on an automated evaluation pipeline to provide repro-
ducible and scalable evaluation of code search results. With this
we scaled evaluation to a much larger set of benchmark queries
(Android-287 ). While performance may vary depending on the sim-
ilarity threshold and algorithm chosen, we derived our similarity
threshold choice through manual evaluation of answers produced
by two techniques (CODEnn and UNIF ) and believe it correlates well
with human judgment. This threshold and the similarity algorithm
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Table 7: Summary of evaluation results.

Benchmark queries Search corpus Training corpus Model Answered@1 Answered@5 Answered@10 MRR

Java-50 CODEnn-Java-Search

Unsupervised NCS 15 29 37 0.437

CODEnn-Java-Train
UNIF 22 39 43 0.582

CODEnn 16 31 39 0.456
SCS 9 17 21 0.166

Android-287 GitHub-Android-Search

Unsupervised NCS 33 74 98 0.189

GitHub-Android-Train
UNIF 25 74 110 0.178

CODEnn 22 60 82 0.150
SCS 9 19 34 0.124

StackOverflow-Android-Train
UNIF 104 164 188 0.465

CODEnn 36 91 117 0.215
SCS 11 24 47 0.138

used with it produces evaluation results for CODEnn that roughly
correspond to those found in its original paper [15].

7 RELATEDWORK
Recent works from both academia and industry have explored the
realm of code search.NCS [29] presented a simple yet effective unsu-
pervisedmodel.CODEnn [15] and SCS [20] provided a deep learning
approach by using sophisticated neural networks. These systems
build on the idea of bimodal embeddings of source code and natu-
ral language. Sachdev et al [29] also compared neural code search
to traditional IR techniques such as BM25 and showed that neural
techniques outperform when results are post-ranked (a common
technique in IR).

Existing work in natural language processing [4, 9, 13] has ex-
plored constructing embeddings for two languages with little bilin-
gual data. It is possible that some of these techniques might be ap-
plicable to the code search task, and address some of the issues we
identified during our analysis. However, in the code search task the
embedding alignment we care about is not just at the word (i.e. to-
ken) level, but rather should aggregate successfully to whole code
snippets and queries.

Other than code search, a line of work has explored enhancing
developer productivity by exploiting an aligned corpus of code and
natural language. Allamanis et al. [2] proposes a probabilistic model
to synthesize a program snippet from a natural language query.
Bayou [28] is a system that uses deep neural networks to synthesize
code programs from a few API calls and a natural language input.
CODE-NN [22] uses LSTM networks to produce natural language
descriptions given a code snippet.

Interest in applications of neural networks to software engineer-
ing has increased significantly. Existing work has introduced neural
networks to identify software defects [10], guide program synthe-
sis [5, 35], enable new representations for program analysis [1, 3], fa-
cilitate code reuse [17], and automate code changes [34]. Themodels
we present heremake use of these technologies to varying degrees to
explore the design space and impact of these choices on code search
quality.

Other areas of software engineering have used neural networks
to improve performance in tasks that can be formulated as a search

given an input “query”. For example, bug localization uses an input
query (e.g. a bug report, regression test outputs) to identify source
files in a project’s tree that are relevant to the bug by using deep
neural networks to create representations of the input query and
source tree files [19, 23, 37]. Our research is complementary to this
work as we evaluate the performance of different neural network
architectures on a search task. However, in contrast, the code search
tasks we target and evaluate span multiple source code projects and
rely exclusively on a natural language query as an input for search.

8 CONCLUSION
In this paperwe explored some of the design pointsmade in previous
works (e.g. sequence-based models, docstring supervision). We com-
pared three state-of-the-art techniques for neural code search with
a novel extension of our own, and provided quantitative evidence
for key design considerations.

We showed that supervision, shown by extendingNCS to UNIF ,
can improve performance over an unsupervised technique. We sug-
gest baselining against an unsupervised neural code search system
andcomparing incremental improvements,whichshouldbeweighed
against the time and resources required to collect supervision data.

We found that UNIF outperformed the more sophisticated CO-
DEnn and SCS models on our benchmarks. With this observation in
mind, we suggest evaluating simple architectures before incorporat-
ing more sophisticated components such as RNNs into code search
systems.

Finally, we showed that an ideal training corpus that resembled
eventual user queries provided impressive improvements for all su-
pervised techniques. We suggest considering the extent to which a
training corpus resembles eventual user queries for optimal results,
and exploring the possibility of better training corpora, rather than
assumingacode/docstringcorpuswill provide thebest performance.
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