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Abstract: Automatic speech recognition, a process of converting speech signals to text, has improved
a great deal in the past decade thanks to the deep learning based systems. With the latest transformer
based models, the recognition accuracy measured as word-error-rate (WER), is even below the
human annotator error (4%). However, most of these advanced models run on big servers with
large amounts of memory, CPU/GPU resources and have huge carbon footprint. This server based
architecture of ASR is not viable in the long run given the inherent lack of privacy for user data,
reliability and latency issues of the network connection. On the other hand, on-device ASR (meaning,
speech to text conversion on the edge device itself) solutions will fix deep-rooted privacy issues
while at same time being more reliable and performant by avoiding network connectivity to the back-
end server. On-device ASR can also lead to a more sustainable solution by considering the energy
vs. accuracy trade-off and choosing right model for specific use cases/applications of the product.
Hence, in this paper we evaluate energy-accuracy trade-off of ASR with a typical transformer based
speech recognition model on an edge device. We have run evaluations on Raspberry Pi with an
off-the-shelf USB meter for measuring energy consumption. We conclude that, in the case of CPU
based ASR inference, the energy consumption grows exponentially as the word error rate improves
linearly. Additionally, based on our experiment we deduce that, with PyTorch mobile optimization
and quantization, the typical transformer based ASR on edge performs reasonably well in terms of
accuracy and latency and comes close to the accuracy of server based inference.

Keywords: automatic speech recognition; ASR; edge inference; Raspberry Pi; transformers; PyTorch;
GreenAI

1. Introduction

Automatic speech recognition (ASR) is a process of converting audio to text. Applica-
tions of ASR include dictation, accessibility, hearables, voice assistants, AR/VR applications,
among other things. Speech recognition has improved greatly in recent times because of
the adoption of deep learning based techniques for training and inferencing [1]. However,
most of the state-of-the-art speech recognition models are deployed based on cloud com-
puting architectures where input from user devices is sent to the server for processing and
results are returned back to the device. This model can not guarantee the privacy and
security of user-sensitive audio data. This architecture is also prone to reliability, latency,
and availability issues because of the reliance on the network.

Machine learning practitioners typically optimize for the accuracy of the model to
achieve state of the art results. Recent studies focusing on GreenAI [2,3] reveal that after a
certain point, achieving linear incremental improvements to accuracy (in this case the WER)
leads to exponential increase in the energy cost for training and inference. The carbon
footprint of these applications will worsen the global energy crisis as deep learning based
AI applications obtain widely adopted [4,5]. Specifically for ASR applications, one solution
is to adopt a balanced approach by using an ASR model based on its energy, accuracy,
and performance trade-offs. For example, in the case of on-device dictation applications,
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minor and infrequent ASR errors can be tolerated as long as the app running on the
device can provide a way to correct some of these errors via keyboard or scribble. Having
lower WER will definitely improve the user experience. However, if the lower WER burns
battery at higher rate, a sensible product decision would be to settle for an acceptable
WER within the energy budget and provide other UI affordances to satisfy product or
application requirements. With experimental evaluations in this paper we attempt to
inform the research community about the energy and accuracy trade-offs of ASR inference
on the edge.

On-device ASR inherently provides privacy and security to sensitive user data and
is more reliable and performant by precluding the need for network connectivity. Apart
from these obvious reasons, on-device ASR inference is also a more sustainable solution in
terms of energy efficiency. For cloud based processing, the audio needs to be streamed to
the server. There is also the energy cost of Wi-Fi/LTE for connection establishment and
data transfer [6], routing across the internet and computation in data centers. Moreover,
the computations on data centers are more expensive than on a typical hand held device
given the multicore CPUs and associated cooling mechanisms. All these energy costs will
be saved by on-edge processing.

Related to our work, Ref. [7] evaluated the on-device speech recognition performance
with DeepSpeech [8], Kaldi [9], and Wav2Letter [10] models. Effects of thermal throttling
on CNN vision models was researched in [11]. In [12], authors evaluate the performance,
power consumption, and thermal impact of CNN based vision inference on edge devices.
Authors in [3] predict the energy cost of NLP inference using software approach. In this
paper, our objective is to measure the trade-off between accuracy, energy, and performance
of ASR with a typical transformer based model on the edge. To the best of our knowledge
there are no prior articles or research work which assess ASR inference on edge in terms of
performance and efficiency. Many of the on-edge evaluation papers focus on CNN based
models for computer vision.

We used Raspberry Pi for evaluations for a few reasons. It is an easily programmable
and configurable Linux based device. We can control the environment, such as co-running
apps to ensure that there are no side effects during evaluations. We could easily use off-
the-shelf power meters to measure steady state and inference time energy consumption.
Research completed in this paper [4] shows that hardware based energy evaluations are
at-least 20 pcs more accurate than software based energy management solutions. Further,
the hardware specs of Raspberry Pi 4 are comparable to smart speaker, smart displays,
AR/VR products, etc. This makes Pi a good proxy device to assess ASR performance and
efficiency of typical edge devices.

Major contributions of this paper are as follows:

• We present a process for measuring energy consumption of ASR inference on Rasp-
berry Pi using an off-the-shelf energy meter;

• We measure and analyze the accuracy and energy efficiency of the ASR inference with
a transformer based model on an edge device and show how energy and accuracy
vary across different sized models;

• We examine the performance and computational efficiency of ASR process in terms of
CPU load, memory footprint, load times, and thermal impact of various sized models;

• We also compare on-edge WER with that of server’s for the same dataset.

The rest of the paper is organized as follows: In the background section we discuss
ASR and transformers. In the experimental setup, we go through the steps for preparing
the model and setting up, for inferencing and energy measurements. We go over the
accuracy, performance and efficiency metrics in the results section. Finally, we conclude
with a summary and outlook.
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2. Background
ASR

ASR is the process of converting audio signals to text. At high level, ASR consists of
an acoustic model, a pronunciation model and a language model to convert raw audio to
text [13]. Over time, DL systems [1,14] such as CNN [15,16] and RNN [17] were applied to
different ASR components. Since then, ASR model architectures have evolved to convert
audio signals to text directly, which are known as end-to-end and sequence-to-sequence
models. These architectures have simplified the training and implementation of ASR
models. The most successful end-to-end ASR systems are based on connectionist tempo-
ral classification (CTC) [18], recurrent neural network (RNN) transducer (RNN-T) [17],
and attention-based encoder-decoder architectures [19]. Recently, hybrid model systems
have shown significant improvements in accuracy for streaming ASR [20,21]. Transformer
is a sequence-to-sequence architecture originally proposed for machine translation [22]. It
has since been adopted for ASR [23,24], with the difference being that the input is audio
frames instead of the text as in translation tasks.

ASR is a CPU and memory intensive task. The resource budget to consider on edge
device for ASR purposes are CPU, memory, storage, energy/battery life, as well as the ther-
mal budget (if it is a mobile or a wearable device). Apart from resource constraints, other
long-term disadvantages include, less frequent model updates (in case of cloud, continuous
updates, and applying hot patches is easier), lack of real-time data for improving the
model overtime, lack of metadata about ASR process for debugging [25], etc. The overall
benefits of privacy, reliability, energy conservation of on-device processing outweigh the
engineering challenges which anyway need to be addressed by edge AI community.

In this paper, we evaluate the accuracy, performance, and efficiency of inference with
a transformer based ASR model on a Raspberry Pi device. We have used fairseq speech-
to-text models [24] using same architecture as in [22]. It is a transformer based encoder,
decoder with seq-2-seq loss. Small model has self-attention dimension of 256 with 12 layers
of encoder, 6 layers of decoder. Similarly, the medium model has self-attention dimension
of 512 with 12 layers of encoder, 6 layers of decoder, and large model has self-attention
dimension of 1024 with 12 layers of encoder, 6 layers of decoder. In addition, it also has
input subsampler before the transformer encoder to project the input into transformer
dimension, as well as to downsample input sequence. It is trained with a Librispeech 960hr
of labeled training dataset. Model accepts 80-channel log mel-filter bank extracted features
with 25 ms window size and 10 ms shift. Additionally, utterance-level cepstral mean and
variance normalization (CMVN) [26] transform is applied before feeding to subsampler.
The decoder uses 10,000 unigram vocabulary.

We experimented with beam search width of 1 and 5 variants for the all the considered
models during decoding. Beam search is a common heuristic algorithm for decoding
structured predictors [27]. The decoder in these models use a sentence piece tokenizer.
Using a language model on top, should further improve the WER. We consider exper-
imenting with different types transformer architectures and language model as future
work. In this study, we explore the relationship between WER and energy consumption
for different sized transformer based ASR systems. The models used in this paper are
not currently state-of-the-art in-terms of accuracy. However, we chose these models as a
starting point because of they are easily accessible and programmable through fairseq and
huggingface platforms.

Figure 1 shows the simplified flow of the ASR process with this model.
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Figure 1. Speech2Text inference.

3. Experimental Setup
3.1. Model Preparation

We have used PyTorch [28] based models for evaluation. PyTorch is an open source
machine learning framework based on torch library. Figure 2 shows the steps for preparing
the models for inferencing on edge devices.

Figure 2. Model preparation steps.

We first go through a few of the PyTorch tools and APIs used in our evaluation.

3.1.1. TorchScript

TorchScript is the means by which PyTorch models can be optimized, serialized and
saved in intermediate representation (IR) format. torch.jit (https://pytorch.org/docs/
stable/jit.html, accessed on 5 November 2021) APIs are used for converting, saving, and
loading PyTorch models as ScriptModules. TorchScript itself is a subset of the Python
language. Hence, sometimes, a model written in Python needs to be simplified to convert
it into a script module. TorchScript module can be created either using tracing or scripting
methods. Tracing works by executing the model with sample inputs and capturing all
computations whereas, scripting does static inspection to go through the model recur-
sively. The advantage of scripting over tracing is that it correctly handles the loops and
control statements in the module. A saved script module can then be loaded either in a
Python or C++ environment for inferencing purposes. For our evaluation, we generated
ScriptModules for Speech2Text models after applying quantization and optimizations.

3.1.2. PyTorch Mobile Optimizations

PyTorch provides a set of APIs for optimizing the models for mobile platforms. It uses
module fusing, operator fusing, quantization, among other things to optimize the models.
By quantization, model weights and computation are reduced to int8 precision from float
precision. This reduces memory, storage and computation cycles of the model.

3.1.3. Speech2Text Model

Pretrained Speech2Text models are imported using the fairseq (https://github.com/
pytorch/fairseq/tree/master/examples/speech_to_text, accessed on 5 November 2021)
framework. Fairseq is a sequence modeling toolkit that allows researchers and developers
to train custom models for various text and speech related tasks. Some minor syntactic
changes, such as type hints, were needed to convert the generator model to a TorchScript
module. For this evaluation, we have considered s2t_transformer_s, s2t_transformer_m,
and s2t_transformer_l architectures. Table 1 shows the model details for each of the quan-
tized and original versions of models. Given the CPU, Memory, and disk constraints
on Raspberry Pi, we made use of Google Colab for importing, optimizing, and saving
the model as TorchScript module. The saved modules were copied to Raspberry Pi for
inferencing. The decoding uses a beam search decoder with beam size of 5 and a Sentence-
Piece tokenizer.

https://pytorch.org/docs/stable/jit.html
https://pytorch.org/docs/stable/jit.html
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text
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Table 1. Model details.

Model Name Size Config Parameters

Speech2Text small quantized 80 MB
Speech2Text small 125 MB 256d, 12 L enc./6 L dec. 30 Million

Speech2Text medium quantized 184 MB
Speech2Text medium 299 MB 512d, 12 L enc./6 L dec. 71 Million

Speech2Text large quantized 617 MB
Speech2Text large 1100 MB 1024d, 12 L enc./6 L dec. 268 Million

3.2. Datasets

We use Librispeech [29], a standard ASR bench-mark that contains 1000 h of labeled
English speech from audiobooks. It has a combination of train, dev, and test datasets.
For evaluation, test and dev datasets are used.

3.3. Raspberry Pi Setup

Raspberry Pi 4 B (https://www.raspberrypi.org/products/raspberry-pi-4-model-b/,
accessed on 5 November 2021) is used for evaluation. It is a basic headless module (Figure 3)
with no additional peripherals attached to it. Relevant device specs are provided in Table 2.
The default Raspberry Pi OS is 32 bit which is not compatible with PyTorch. Therefore, we
installed a 64 bit OS version on Pi.

Table 2. Raspberry Pi 4 B spec.

Name Spec

Chip BCM2711
CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC
Clock speed 1.5 GHz
RAM 4 GB SDRAM
Caches 32 KB data + 48 KB instruction L1 cache per core. 1 MB L2 cache
Storage 32 GB micro SD card
OS 64 bit Raspberry Pi OS
Python version 3.7
Power supply 5V DC via USB-C connector

• PyTorch was built and installed from source on Pi with XNNPACK and QNNPACK
cmake configs. Quantized Neural Networks Package (QNNPACK) (https://github.
com/pytorch/QNNPACK, accessed on 5 November 2021) is a mobile-optimized li-
brary for low-precision high-performance tensor computations. Similarly, XNNPACK
(https://github.com/google/XNNPACK, accessed on 5 November 2021) is a mobile
optimized libary for higher precision tensor computations;

• Since the library for MFCC feature computations could not find on Raspberry Pi,
the MFCC features for librispeech datasets were pre-generated on server using fairseq
audio_utils (https://github.com/pytorch/fairseq/blob/master/fairseq/data/audio/
audio_utils.py, accessed on 5 November 2021). They were then saved as NumPy files
and used them as input to models on Raspberry Pi;

• The device backend was set to qnnpack during inference in the script as follows:
torch.backends.quantized.engine = ‘qnnpack’.

3.4. Energy and Temperature Measurements

We used a USB power meter [30] for measuring the power consumption on Raspberry
Pi. Figure 3 shows the setup with energy monitoring.

Following are the steps for measuring energy during inference:

• Store the list of audio samples along with ground truths in a USB-thumb drive and
plug it into Raspberry Pi;

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://github.com/pytorch/QNNPACK
https://github.com/pytorch/QNNPACK
https://github.com/google/XNNPACK
https://github.com/pytorch/fairseq/blob/master/fairseq/data/audio/audio_utils.py
https://github.com/pytorch/fairseq/blob/master/fairseq/data/audio/audio_utils.py
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• Power up Raspberry Pi through the USB meter as shown in Figure 3;
• Login to Raspberry Pi and run the energy evaluation script;
• The script first reads the audio manifest file, logs the timestamp to a file and waits for

a few seconds in steady state. The power consumed by Raspberry Pi at this state is
considered a steady state value;

• Load the model and start the audio inference. Record load and inference time stamps.
Exit the evaluation script;

• Download the amps/voltage series from energy meter through an android app;
• Post-process the logs from evaluation script and the time series values from USB power

meter. Compute watts, and mWh when the script was idle and during inferencing.
Compute the delta to calculate the actual power consumption by the inference process.

Figure 3. Energy monitoring setup.

CPU temperature and frequency are monitored using vcgencmd measure_temp
(https://www.raspberrypi.org/documentation/computers/os.html#vcgencmd, accessed
on 5 November 2021) and vcgencmd measure_clock arm on Raspberry Pi. We collect
these values continuously in a separate script while ASR is ongoing. The default fre-
quency scaling governor on Raspberry Pi is ondemand (https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt, accessed on 5 November 2021). In this mode,
CPU frequency remains at 1.5 GHz as long as the temperate is below the max threshold of
82 ◦C. If the temperature goes beyond that threshold, it starts to reduce CPU frequency
up-to the lower limit of 600 MHz. In our experiments, we also set the frequency scaling
governor to powersave (which effectively sets the CPU frequency to 600 MHz) to check the
performance of various models with lower CPU frequency.

4. Results

We evaluate different sized Speech2Text models with beam width of 5 and 1 config-
urations for accuracy, performance and efficiency. The word-error-rate (WER) metric is
used for measuring accuracy. WER is defined in Equation (1). The real-time-factor (RTF) is
used to measure performance. RTF is defined in Equation (2). We measure energy, model

https://www.raspberrypi.org/documentation/computers/os.html#vcgencmd
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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load time, memory footprint, and CPU percentage of the execution script to evaluate the
efficiency of the model inference.

WER = (substitutions + insertions + deletions)/number of words in audio (1)

RTF = (read time + inference time + decoding time)/total utterance duration (2)

Librispeech test and dev datasets together contain ∼21 h of audio. It would have
taken us many days to execute the inference on all combinations of models with all the
audio in these datasets. To save time, for this experiment, we randomly sampled 30% of
the audio files in each of the four datasets for inference and evaluation. The same sampled
datasets were used in all the on-device and on-server inference test runs thus ensuring that
the results are comparable.

4.1. WER

Table 3 shows the WER of various models.

Table 3. WER.

Dataset Model Device WER Server WER
Beam5 Beam1 Beam5 Beam1

test-clean

S2T small quant 4.7% 4.7%
S2T small 4.6% 4.6% 4.4% 4.6%
S2T medium quant 4.2% 4.5%
S2T medium 3.9% 4.0% 3.9% 4.0%
S2T large quant 3.7% 3.7%
S2T large 3.7% 3.7% 3.7% 3.7%

test-other

S2T small quant 11.7% 11.7%
S2T small 11.0% 11.0% 10.4% 11.0%
S2T medium quant 10.4% 11.2%
S2T medium 9.4% 10.0% 9.4% 10.0%
S2T large quant 9.6% 10.3%
S2T large 9.4% 10.2% 9.4% 10.2%

dev-clean

S2T small quant 4.2% 4.2%
S2T small 3.7% 3.7% 3.6% 3.7%
S2T medium quant 3.6% 3.9%
S2T medium 3.3% 3.4% 3.3% 3.4%
S2T large quant 3.4% 3.6%
S2T large 3.1% 3.4% 3.1% 3.4%

dev-other

S2T small quant 11.1% 11.1%
S2T small 10.7% 10.7% 9.7% 10.7%
S2T medium quant 9.8% 10.6%
S2T medium 9.1% 9.4% 9.1% 9.4%
S2T large quant 8.8% 9.6%
S2T large 8.8% 9.3% 8.8% 9.3%

WER is slightly higher for the quantized models compared to the unquantized float
versions. This is the cost-benefit trade-off of accuracy vs. RTF and efficient inference.
Test-other and dev-other datasets have a higher WER compared to test-clean and dev-clean
datasets. This is also expected because other datasets are noisier compared to clean ones.
WER improves as the model obtains bigger with more number of encoder/decoder layers
and parameters. For medium and large models, WER is generally lower for beam size of
5 configuration compared to beam size of 1. Since beam size of 1 means greedy search, it
might exclude some of the early hypothesis which might yield better overall match at the
later stages of decoder search.

The server side inference evaluation was carried out on a Google Colab instance.
Essentially the same pre-trained model is imported on Colab instance except without the
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PyTorch dynamic quantization and mobile optimization steps. For medium and large
models, the Colab WER is same as observed on the edge. However, on smaller model,
the on-device WER is higher than the server based one. We are still trying to understand
this specific behavior.

4.2. RTF

In our experiments, RTF is dominated by model inference time >99% compared to
other two factors in Equation (2). Table 4 shows the RTF for all models in both beam size 1
and beam size 5 configurations. RTF does not vary between different datasets for the same
models. Hence, we show RTF (avg, mean, and p75) per model instead of one per dataset.

RTF improved by 10% for small quantized model compared to unquantized floating
point model. Similarly, for medium and large models the improvement is by 20% and
50%, respectively. RTF is ∼30% lower for medium and large models with beam width 1
compared to 5, whereas for small model there is no difference between two configurations.
Improvements in RTF going from unqunatized to quantized, larger to smaller and beam 5
to beam 1 are expected because there will be lesser number of computations and search
involved. We do not observe the improvement in RTF on small model by reducing the beam
size possibly because the small model is quite refined by PyTorch mobile optimizations.

Overall, the small and medium models have RTF less than 1.0 in normal mode, making
them potentially suitable for real-time inference.

Table 4. RTF.

Beam5 Beam1
Model Avg Mean P75 Avg Mean P75

S2T small quant 0.29 0.28 0.33 0.29 0.27 0.33
S2T small 0.33 0.32 0.38 0.33 0.33 0.37
S2T medium quant 0.62 0.61 0.68 0.40 0.37 0.45
S2T medium 0.77 0.77 0.84 0.52 0.50 0.56
S2T large quant 1.08 1.09 1.16 0.77 0.76 0.81
S2T large 2.12 2.12 2.23 1.54 1.52 1.59

4.3. Temperature

We measure the impact of long running ASR process on CPU temperature. Tempera-
ture increase is particularly significant for wearable and mobile devices where the devices
are closer to the human body and, therefore, tolerance for increase is very limited, unlike
for the machines in datacenter or other stand-alone home devices. As shown in Table 5,
the temperature increases close to max level 80 ◦C in normal mode a 28 ◦C increase from
steady state (52 ◦C). In power save mode, the increase is only by 14 ◦C. Note that these
increases do not happen for single inference session but after few minutes of continuous
inference. The increase also depends on ambient temperature.

Table 5. Temperature.

Mode Temperature (◦C) Increase (◦C)

ondemand 80.0 28.0
powersave 66.0 14.0

Out of curiosity, we ran ASR inference on small quantized model for long time
(>1 h) to check the effects of thermal throttling on CPU frequency and ASR RTF. Figure 4
shows the weighted-average variation in temperate, RTF, and CPU frequency. The Linux
dynamic-voltage-frequency-scaling (DVFS) reduces the average CPU frequency when the
temperature approaches 82 ◦C (thermal limit) which, in turn, increases the RTF (40%).
The throttling limit can reach very quickly if the ambient temperature is higher.
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Figure 4. CPU temperature, frequency, and ASR RTF variation.

4.4. Energy

Figures 5 and 6 show the watts consumption over time for small quantized model
in normal and powersave modes. The steady state wattage in normal mode is 3.6 W
(5.2 V × 0.7 A) on Raspberry Pi. This increases by 1.6 W when the ASR inference script is
active. Similarly, in powersave mode, the increase is 0.65 W during ASR inference from
steady state.

Figure 5. Normal mode power. ASR power consumption in normal mode is ∼1.6 W.



Sustainability 2021, 13, 12392 10 of 15

Figure 6. Powersave mode power. ASR power consumption in powersave mode is ∼0.65 W.

Table 6 shows the ASR energy consumption of both beam size 1 and 5 configurations
for all models for a 10 s long utterance. Small model consumes 5× to 8× less power
compared to larger models.

For comparison, if we run small quantized ASR model on Apple watch with a
303.8 mAh (1.17 Wh) battery capacity, ASR for a 10 s utterance would roughly consume
∼0.08% of battery capacity. This is only for the computation part. In real scenarios, such as
dictation, voice commands, etc., we also need to account for power used by microphone
for input capture and UI display for any associated output during the usage.

Table 6. Energy table (mWh).

Model Beam5 Beam1

S2T small quant 1.32 1.41
S2T small 1.53 1.58
S2T medium quant 3.57 2.24
S2T medium 4.77 2.90
S2T large quant 7.13 5.10
S2T large 13.62 9.13

Figures 7 and 8 show the variation of energy consumption vs. WER. We have cho-
sen test-clean dataset as a baseline for graphs since the energy consumption does not
vary much across the different datasets. The energy on Y axis is plotted in log scale.
The liner/geometric line of growth on the log scale, for both beam 1 and 5 configurations,
clearly points toward exponential growth in energy as WER rate decreases incrementally.
Improving WER on quantized model by 1.2% resulted in ∼4× to 5× increase in energy
consumption. In case of unquantized model, 0.9% WER improvements resulted in ∼6× to
9× increase in energy consumption. Although the energy measurements on this model
clearly show exponential growth, we also want to validate the same with larger set of
models as part of future work.
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Figure 7. Energy vs. WER for quantized models. Incremental WER improvement leads to a factor of
magnitude higher energy consumption.

Figure 8. Energy vs. WER for original models. WER vs. energy consumption growth is even steeper
for original models compared to quantized versions.

4.5. Memory and CPU

Figures 9 and 10 shows the memory and CPU consumption of all the models used
in this experiment. small quantized model memory footprint is 295 MB. By quantization,
memory footprint reduced by 35% for small model. For larger models, quantization
reduces the memory by higher margins; 50% for medium model and 68% for larger model.
The models with decoder beam size of 1 generally have slightly lower memory footprint
compared to models with beam size 5. This is not surprising given that the decoder
scanning space is smaller with beam 1. The overall memory accounting is a complicated
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process. We deduce that all processes have common memory pages because of shared
libraries, code and other process infra related pages. Therefore, quantized small model
does not show large gains in memory as compared to bigger models. The footprint largely
co-relates to model size and the number of parameters in the models.

The memory values presented here are avg RES (resident set size) values from Linux
top (https://man7.org/linux/man-pages/man1/top.1.html, accessed on 5 November
2021) command. RES includes clean, dirty, and the shared memory pages of the process.
One thing to notice is that almost all the model data pages are clean (read-only). These
clean pages can be swapped (on systems with swap space) out by OS on memory pressure
without terminating the process because of out-of-memory (OOM) condition.

CPU utilization is ∼95% in all cases. ASR is a CPU intensive process. All the models
fully utilize all four available cores during inferencing.

Figure 9. Memory footprint. Quantized model memory footprint is 30% to 60% smaller correspond-
ing to the original float models.

Figure 10. CPU load. Raspberry Pi CPU capacity is 400%. CPU load during ASR is almost 400% for
all the models.

https://man7.org/linux/man-pages/man1/top.1.html
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Model Load Time

Table 7 shows the model load times of all the models used in this experiment. The load
times are measured from clean state, i.e., after the reboot, the first-time loads are considered.
Typically, the operating system caches the file pages in the memory. So, the load times can
be smaller on subsequent uses. The small quantized model load time avg is 2.2 s. This
is small enough to be loaded on-demand in an application for real-time dictation, voice
commands, etc. The other load times roughly co-relate to the model sizes and parameters
as shown in Table 1.

Table 7. Model load times.

Model Avg (s)

Speech2Text small quantized 2.2
Speech2Text small 4.2
Speech2Text medium quantized 3.8
Speech2Text medium 8.4
Speech2Text large quantized 9.1
Speech2Text large 28.7

5. Conclusions

We presented a methodology for measuring energy consumption on Raspberry Pi
using off-the-shelf USB power meter. We evaluated the ASR accuracy, performance and
efficiency of a transformer based speech2text models on Raspberry Pi. With WER ∼10%,
<300 MB memory footprint and RTF well below 1.0, quantized small architecture models
can be efficiently deployed on mobile and wearables devices. The small quantized model
is also quite efficient in terms of power consumption. It consumes ∼0.1% of battery for 10 s
audio inference on a smaller device, such as an Apple Watch 3. Larger models can be used
to achieve higher accuracy at the expense of higher RTF, memory, and power. For medium
and large models using lower beam size, RTF and energy consumption significantly reduce,
albeit with a small degradation in WER. We believe accuracy, latency, and energy trade-offs
in on-edge AI is a rich area to explore considering different types of architectures, number
of hyper parameters, decoders with language model, etc. With this initial study we could
deduce that inference energy consumption increases exponentially in relation to linear
improvements in WER. Machine learning developers continue to research ways to improve
the model accuracy. It is a well established knowledge in the research community that
the training of ASR models with lower WER will also require factor of magnitude higher
energy. With our study we could reason that inference is no different in that regard. Hence,
we conclude that a careful consideration and balance of application’s WER requirements
and energy budget is crucial before deploying an ASR model for edge inferencing. We also
conclude that, temperature throttling is not an issue for short duration ASR inference but
something to keep in mind during continuous long duration inference as it can affect the
RTF because of throttling.

In the future, we are planning to explore streaming ASR energy consumption with
latest model architectures. We are also planning to build a generic system using off-the-
shelf hardware and software packages to be able to measure energy vs. accuracy trade-offs
on any models agnostic to ML platforms.
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Abbreviations
The following abbreviations are used in this manuscript:

DL Deep learning
CPU Central processing unit
GPU Graphics processing unit
ASR Automatic speech recognition
HMM Hidden Markov model
RNN Recurrent neural network
RNNT Recurrent neural network transducer
CNN Convolutional neural network
LSTM Long short-term memory
Speech2Text Speech to text transformer model from fairseq
GMM Gaussian mixture model
DNN Deep neural network
CTC Connectionist temporal classification
CMVN Cepstral mean and variance normalization
MFCC Mel-frequency cepstral coefficients
WER Word error rate
RTF Real time factor
mWh Milliwattt-hours
AR/VR Augmented reality/Virtual reality
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