SoftSKU: Optimizing Server Architectures for Microservice
Diversity @Scale

Akshitha Sriraman+*, Abhishek Dhanotia*, Thomas F. Wenisch+
University of Michigan+, Facebook*

akshitha@umich.edu, abhishekd@fb.com, twenisch@umich.edu

ABSTRACT

The variety and complexity of microservices in warehouse-
scale data centers has grown precipitously over the last few
years to support a growing user base and an evolving product
portfolio. Despite accelerating microservice diversity, there
is a strong requirement to limit diversity in underlying server
hardware to maintain hardware resource fungibility, preserve
procurement economies of scale, and curb qualification/test
overheads. As such, there is an urgent need for strategies that
enable limited server CPU architectures (a.k.a “SKUs”) to
provide performance and energy efficiency over diverse mi-
croservices. To this end, we first undertake a comprehensive
characterization of the top seven microservices that run on
the compute-optimized data center fleet at Facebook.

Our characterization reveals profound diversity in OS and
I/O interaction, cache misses, memory bandwidth utilization,
instruction mix, and CPU stall behavior. Whereas customiz-
ing a CPU SKU for each microservice might be beneficial, it
is prohibitive. Instead, we argue for “soft SKUs”, wherein we
exploit coarse-grain (e.g., boot time) configuration knobs to
tune the platform for a particular microservice. We develop a
tool, uSKU, that automates search over a soft-SKU design
space using A/B testing in production and demonstrate how it
can obtain statistically significant gains (up to 7.2% and 4.5%
performance improvement over stock and production servers,
respectively) with no additional hardware requirements.

CCS CONCEPTS
Computer systems organization — Cloud computing

KEYWORDS
Microservice, resource fungibility, soft SKU

ACM Reference Format:

Akshitha Sriraman, Abhishek Dhanotia, Thomas F. Wenisch, 2019. Soft-
SKU: Optimizing Server Architectures for Microservice Diversity @Scale.
In Proceedings of ISCA 19, Phoenix, AZ, USA, June 22-26, 2019, 14 pages.
https://doi.org/10.1145/3307650.3322227

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author.

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6669-4/19/06.

https://doi.org/10.1145/3307650.3322227

1.E+06]
1.E+04
1.E+02
1.E+00
1.E-02

|}
o
=
o
o

IPC

CPU util.
ITLB MPKI

Req. latency —m—
util.

Throughput
LLC code MPKI
Mem. bandwidth

Diversity or variation range across
uservices (log scale)
Context switches

System-level parameters

Figure 1: Variation in system-level & architectural traits across mi-
croservices: our microservices face extremely diverse bottlenecks.

1 Introduction

The increasing user base and feature portfolio of web ap-
plications is driving precipitous growth in the diversity and
complexity of the back-end services comprising them [1].
There is a growing trend towards microservice implementa-
tion models [2-6], wherein a complex application is decom-
posed into distributed microservices [7-10] that each provide
specialized functionality [11], such as HTTP connection ter-
mination, key-value serving [12], protocol routing [13,14], or
ad serving [15]. This deployment model enables application
components’ independent scalability by ramping the number
of physical servers/cores dedicated to each in response to
diurnal and long-term load trends [5].

At global user population scale, important microservices
can grow to account for an enormous installed base of physi-
cal hardware. Across Facebook’s global server fleet, seven
key microservices in four service domains run on hundreds
of thousands of servers and occupy a large portion of the
compute-optimized installed base. These microservices’ im-
portance begs the question: do our existing server platforms
serve them well? Are there common bottlenecks across mi-
croservices that we might address when selecting a future
server CPU architecture?

To this end, we undertake comprehensive system-level and
architectural characterizations of these microservices on Face-
book production systems serving live traffic. We find that
application functionality disaggregation across microservices
has yielded enormous diversity in system and CPU architec-
tural requirements, as shown in Fig. 1. For example, caching
microservices [16] require intensive I/O and microsecond-
scale response latency and frequent OS context switches can
comprise 18% of CPU time. In contrast, a Feed [17] mi-
croservice computes for seconds per request with minimal

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

OS interaction. Our Web [18] microservice entails massive in-
struction footprints, leading to astonishing instruction cache
and ITLB misses and branch mispredictions, while others
execute much smaller instruction footprints. Some microser-
vices depend heavily on floating-point performance while
others have no floating-point instructions. The microarchitec-
tural trends we discover differ markedly from those of SPEC
CPU2006/2017 [19,20], academic cloud workloads [21,22],
and even some of Google’s major services [1,23].

Such diversity might suggest a strategy to specialize CPU
architectures to suit each microservice’s distinct needs. Opti-
mizing one or more of these microservices to achieve even
single-digit percent speedups can yield immense performance-
per-watt benefits. Indeed, we report observations that might
inform future hardware designs. However, large-scale in-
ternet operators have strong economic incentives to limit
hardware platforms’ diversity to (1) maintain fungibility of
hardware resources, (2) preserve procurement advantages that
arise from economies of scale, and (3) limit the overhead of
qualifying/testing myriad hardware platforms. As such, there
is an immediate need for strategies that enable a limited set
of server CPU architectures (often called “SKUs,” short for
“Stock Keeping Units”) to provide performance and energy
efficiency over microservices with diverse characteristics.

Rather than diversify the hardware portfolio, we argue
for “soft SKUs,” a strategy wherein we exploit coarse-grain
(e.g., boot time) OS and hardware configuration knobs to
tune limited hardware SKUs to better support their presently
assigned microservice. Unlike data centers that co-locate
services via virtualization, Facebook’s microservices run on
dedicated bare metal servers, allowing us to easily create
microservice-specific soft SKUs. As microservice allocation
needs vary, servers can be redeployed to different soft SKUs
through reconfiguration and/or reboot. Our OS and CPUs
provide several specialization knobs; in this study, we focus
on seven: (1) core frequency, (2) uncore frequency, (3) active
core count, (4) code vs. data prioritization in the last-level
cache ways, (5) hardware prefetcher configuration, (6) use of
transparent huge pages, and (7) use of static huge pages.

Identifying the best microservice-specific soft-SKU config-
uration is challenging: the design space is large, service code
evolves quickly, synthetic load tests do not necessarily cap-
ture production behavior, and the effects of tuning a particular
knob are often small (a few percent performance change). To
this end, we develop uSKU—a design tool that automates
search within the seven-knob soft-SKU design space using
A/B testing in production systems on live traffic. uSKU au-
tomatically varies soft-SKU configuration while collecting
numerous fine-grain performance measurements to obtain
sufficient statistical confidence to detect even small perfor-
mance improvements. We evaluate a prototype of uSKU and
demonstrate that the soft SKUs it designs outperform stock
and production server configurations by up to 7.2% and 4.5%
respectively, with no additional hardware requirement.

In summary, we contribute:

e A comprehensive characterization of system-level bot-
tlenecks experienced by key production microservices
in one of the largest social media platforms today.

o A detailed study of microservices’ architectural bottle-

A. Sriraman et al.

necks, highlighting potential design optimizations.

e USKU: A design tool that automatically tunes important
configurable server parameters to create microservice-
specific “soft” server SKUs on existing hardware.

e A detailed performance study of configurable server
parameters tuned by uSKU.

The rest of the paper is organized as follows: We describe
and measure these seven production microservices’ perfor-
mance traits in Sec. 2. We argue the need for Soft SKUs in
Sec. 3. We describe uSKU’s design in Sec. 4 and we discuss
the methodology used to evaluate uSKU in Sec. 5. We evalu-
ate USKU in Sec. 6, discuss limitations in Sec. 7, compare
against related work in Sec. 8, and conclude in Sec. 9.

2 Understanding Microservice Performance

We aim to identify software and hardware bottlenecks faced
by Facebook’s key production microservices to see if they
share common bottlenecks that might be addressed in future
server CPU architectures. In this section, we (1) describe each
microservice, (2) explain our characterization methodology,
(3) discuss system-level characteristics to provide insights
into how each microservice is operated, (4) report on the
architectural characteristics and bottlenecks faced by each
microservice, and (5) summarize our characterization’s most
important conclusions. A key theme that emerges throughout
our characterization is diversity; the seven microservices
differ markedly in their performance constraints’ time-scale,
instruction mix, cache behavior, CPU utilization, bandwidth
requirements, and pipeline bottlenecks. Unfortunately, this
diversity calls for sometimes conflicting optimization choices,
motivating our pursuit of “soft SKUs” (Section 3) rather than
custom hardware for each microservice.

2.1 The Production Microservices

We characterize seven microservices in four diverse service
domains running on Facebook’s compute-optimized data cen-
ter fleet. The workloads with longer work-per-request (e.g.
Feed2, Ads1) might be called “services” by some readers;
we use “microservice” since none of these systems is entirely
stand-alone. We characterize on production systems serving
live traffic. We first detail each microservice’s functionality.

Web. Web implements the HipHop Virtual Machine, a
Just-In-Time (JIT) compilation and runtime system for PHP
and Hack [18,24,25], to serve web requests originating from
end-users. Web employs request-level parallelism: an incom-
ing request is assigned to one of a fixed pool of PHP worker
threads, which services the request until completion. If all
workers are busy, arriving requests are enqueued. Web makes
frequent requests to other microservices, and the correspond-
ing worker thread blocks waiting on the responses.

Feedl and Feed2. Feedl and Feed?2 are key microser-
vices in our News Feed service. Feed2 aggregates various
leaf microservices’ responses into discrete “stories.” These
stories are then characterized into dense feature vectors by
feature extractors and learned models [17,26-28]. The feature
vectors are then sent to Feed1, which calculates and returns
a predicted user relevance vector. Stories are then ranked and
selected for display based on the relevance vectors.

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

Table 1: Skylake18, Skylake20, Broadwell16’s key attributes.

Skylakel8 Skylake20 Broadwelll6
Microarchitecture Intel Skylake | Intel Skylake | Intel Broadwell
Number of sockets 1 2 1
Cores/socket 18 20 16
SMT 2 2 2
Cache block size 64 B 64 B 64 B
L1-I$ (per core) 32 KiB 32 KiB 32 KiB
L1-D$ (per core) 32 KiB 32 KiB 32 KiB
Private L2$ (per core) 1 MiB 1 MiB 256 KiB
Shared LLC (per socket) 24.75 MiB 27 MiB 24 MiB

Adsl and Ads2. Ads1 and Ads2 maintain user-specific
and ad-specific data, respectively [15]. When Ads1 receives
an ad request, it extracts user data from the request and sends
targeting information to Ads2. Ads2 maintains a sorted ad
list, which it traverses to return ads meeting the targeting
criteria to Ads1. Ads1 then ranks the returned ads.

Cachel and Cache2. Cache is a large distributed-memory
object caching service (like, e.g., [12, 16,29, 30]) that re-
duces throughput requirements of various backing stores.
Cachel and Cache?2 correspond to two tiers within each ge-
ographic region for this service. Client microservices contact
the Cache?2 tier. If a request misses in Cache2, it is for-
warded to the Cachel tier. Cachel misses are then sent to
an underlying database cluster in that region.

2.2 Characterization Approach

We characterize the seven microservices by profiling each in
production while serving real-world user queries. We next
describe the characterization methodology.

Hardware platforms. We perform our characterization
on 18- and 20-core Intel Skylake processor platforms [31],
Skylake18 and Skylake20. Characteristics of each are sum-
marized in Table 1. Web, Feed1, Feed?2, Ads1, and Cache2
run on Skylakel8. Ads2 and Cachel are deployed on Sky-
lake20. Both platforms support Intel Resource Director
Technology (RDT) [32]. RDT facilitates tunable Last-Level
Cache (LLC) size configurations using Cache Allocation
Technology (CAT) [33], and allows prioritizing code vs. data
in the LLC ways using Code Data Prioritization (CDP) [34].

Experimental setup. We measure each microservice in
Facebook’s production environment’s default deployment—
stand-alone with no co-runners on bare metal hardware. There-
fore, there are no cross-service contention or interference
effects in our data. We measure each system at peak load to
stress performance bottlenecks and characterize the system’s
maximum throughput capabilities. Facebook’s production mi-
croservice codebases evolve rapidly; we repeat experiments
across updates to ensure that results are stable.

We collect most system-level performance data using an
internal tool called Operational Data Store (ODS) [35-37].
ODS enables retrieval, processing, and visualization of sam-
pling data collected from all machines in the data center. ODS
provides functionality similar to Google-Wide-Profiling [38].

To analyze microservices’ interactions with the underlying
hardware, we use myriad processor performance counters.
We collect data with Intel’s EMON [39]—a performance
monitoring and profiling tool that time multiplexes sampling
of a vast number of processor-specific hardware performance
counters with minimal error. For each experiment, we use

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

Table 2: Avg. request throughput, request latency, & path length
across microservices: we observe great diversity across services.

uservice | Throughput (QPS) | Req. latency | Insn./query
Web O (100) O (ms) 0 (10%)
Feedl O (1000) O (ms) 0 (10%)
Feed2 O (10) O (s) 0 (10%)
Adsl O (10) O (ms) 0 (10%)
Ads2 0 (100) O (ms) 0 (10%)

Cachel O (100K) O (us) 0 (10%)

Cache2 O (100K) O (us) 0 (10%)

this tool to collect tens of thousands of hardware performance
events. We report 95% confidence intervals on mean results.

We contrast our measurements with some CloudSuite [21],
SPEC CPU2006 [19], SPEC CPU2017 [20], and Google ser-
vices [1,23] where possible. We measured SPEC CPU2006
performance on Skylake20. We reproduce selected data
from published reports on SPEC CPU2017 [20], Cloud-
Suite [21], and Google’s services [1,23] measured on Haswell,
Westmere, and Haswell, respectively. These results are not
directly comparable with our measurements as they are mea-
sured on different hardware. Nevertheless, they provide con-
text for the greater bottleneck diversity we observe in our mi-
croservices relative to commonly studied benchmark suites.

We present our characterization in two parts. We first
discuss system-level characteristics observed over the entire
fleet. We then present performance-counter measurements
and their implications on architectural bottlenecks.

2.3 System-Level Characterization

We first present key system-level metrics, such as request la-
tency, achieved throughput, and path length (instructions per
query), to provide insight into how the microservices behave
and how these traits may impact architectural bottlenecks.
Throughout, we call attention to key axes of diversity.

2.3.1 Request throughput, request latency, and path
length. We report approximate peak-load throughput, av-
erage request latency, and path length (instructions per query)
in Table 2. The amount of work per query varies by six
orders of magnitude across the microservices, resulting in
throughputs ranging from tens of Queries Per Second (QPS)
to 100,000s of QPS with average request latencies ranging
from tens of microseconds to single-digit seconds.

Microservices’ differing time scales imply that per-query
overheads that may pose major bottlenecks for some microser-
vices are negligible for others. For example, microsecond-
scale overheads that arise from accesses to Flash [40], emerg-
ing memory technologies like 3D XPoint by Intel and Mi-
cron [41-43], or 40-100 Gb/s Infiniband and Ethernet net-
work interactions [44] can significantly degrade the request la-
tency of microsecond-scale microservices [45—48] like Cachel
or Cache2. However, such microsecond-scale overheads
have negligible impact on the request latency of seconds-
scale microservices like Feed2. The request latency diversity
motivates our choice to include several microservices in our
detailed performance-counter investigation.

2.3.2 Request latency breakdown. We next character-
ize request latency in greater detail to determine the rela-
tive contribution of computation and queuing/stalls on an
average request’s end-to-end latency. We report the average
fraction of time a request is “running” (executing instruc-

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

B Running (%) Blocked (%) ORunning W Queue latency

W Scheduler latency O10 latency

Web 72
Feedl 5
Feed2 m——— 31 34 28
Ads1 38
Ads2 10
10
0 50 100

28
Request latency breakdown (%)

(a) (b)

Figure 2: (a) A single request’s latency breakdown for each pservice:
few uservices block for a long time, (b) Web’s request latency
breakdown: thread over-subscription causes scheduling delays.

O Kernel & 10

100
SOiii iﬁi
0

Web Feedl Feed2 Adsl Ads2 Cachel Cache2

W User

CPU util. (%)

Figure 3: Max. achievable CPU utilization in user- and kernel-mode
across pservices: utilization can be low to avoid QoS violations.

tions) vs. “blocked” (stalled, e.g., on I/O) in Fig. 2 (a). We
omit Cachel and Cache2 from this measurement since their
queries follow concurrent execution paths and time cannot
easily be apportioned as “running” or “blocked”.

Feed1 and Ads2 are almost entirely compute-bound through-
out a request’s life as they are leaves and do not block on re-
quests to other microservices in the common case. They will
benefit directly from architectural features that enhance in-
struction throughput. In contrast, Web, Feed2, and Ads1 emit
requests to other microservices and hence their queries spend
considerable time blocked. These can benefit from architec-
tural/OS features that support greater concurrency [11,49],
fast thread switching, and better I/O performance [50,51].

We further break down Web’s “blocked” component in
Fig. 2 (b) into queuing latency (while a query awaits a worker
thread’s availability), scheduler latency (where a worker is
ready but not running), and I/O latency (where a query is
blocked on a request to another microservice). Although
Web’s scheduler delays are surprisingly high, these delays are
not due to inefficient system design, and are instead triggered
by thread over-subscription. To improve Web’s throughput,
load balancing schemes continue spawning worker threads
until adding another worker begins degrading throughput.

2.3.3 CPU utilization at peak load. The microservices
also vary in their CPU utilization profile. Fig. 3 shows the
CPU utilization and its user- and kernel-mode breakdown
when each microservice is operated at the maximum load
it can sustain without violating Quality of Service (QoS)
constraints. We make two observations: (1) CPU resources
are not always fully utilized. (2) Most microservices ex-
hibit a relatively small fraction of kernel/IO wait utilization.
Each microservice faces latency, quality, and reliability con-
straints, which impose QoS requirements that in turn impose
constraints on how high CPU utilization may rise before a
constraint is violated. Our load balancers modulate load to en-
sure constraints are met. More specifically, Cachel, Cache2,
Feedl, Feed?2, Ads1, and Ads2 under-utilize the CPU due to
strict latency constraints enforced to maintain user experience.
These services might benefit from tail latency optimizations,

A. Sriraman et al.

< g 30

2 ¢ 20

25 10 D
é £> 0 | | I (5]] o

5

S g Web Feedl Feed2 Adsl Ads2 Cachel Cache2

Figure 4: Fraction of a second spent context switching (range):
Cachel & Cache?2 can benefit from context switch optimizations.

W Branch (%) m Floating point (%) Arithmetic (%) Load (%) Store (%)

* Web ru—| 36 27 17
§ Feedl . 4 34 10
@ Feed2 |mumswammm a1 27 14
§ Ads] |jm——— 34 27 10
E Ads2 - 38 26 13
5 Cachel 38 27 17
O Cache2 36 28 18
400.perlbench 2 38 27 13
401.bzip2 pm—— 43 30 10
403.gCC | m—— 36 21 18
429.mcf 4 31 35 11
) 445.gobmk =e-u 42 26 13
2 456.hmmer ma 37 43 15
bt 458.sjeng | —yE— 44 24 9
& 462.libquantum jm—— 51 28 3
464.h264ref e 41 38 12
471.omnetpp 24 0 30 29 16
473.astar 5 39 34 11
483.xalancbmk 1 31 31 8
% 0 20 40 60 80 100

Figure 5: Instruction type breakdown across Lservices: instruction
mix ratios vary substantially across Lservices.

which might allow them to operate at higher CPU utilization.
Cachel and Cache2 exhibit higher kernel-mode utilization
due to frequent context switches, which we inspect next.

2.3.4 Context switch penalty. We report the fraction of
a CPU-second each microservice spends context switching
in Fig. 4. We estimate context switch penalty by first aggre-
gating non-voluntary and voluntary context switch counts
reported by Linux’s time utility. We then estimate upper
and lower context switch penalty bounds using switching
latencies reported by prior works [52,53].

Cachel and Cache?2 incur context switches far more fre-
quently than other microservices, and may spend as much
as 18% of CPU time in switching. These frequent context
switches also lead to worse cache locality, as we will show
in our architectural characterization. Software/hardware op-
timizations [54—-62] that reduce context switch latency or
counts might considerably improve Cache performance.

2.3.5 Instruction mix. We report our microservices’ in-
struction mix and contrast with SPEC CPU2006 benchmarks
in Fig. 5. Instruction mix varies substantially across our mi-
croservices, especially with respect to store-intensity and the
presence/absence of floating-point operations. The microser-
vices that include ranking models that operate on real-valued
feature vectors, Ads1, Ads2, Feedl, and Feed?2, all include
floating-point operations, and Feed1 is dominated by them.
These microservices can likely benefit from optimizations for
dense computation, such as SIMD instructions.

Prior work has reported that key-value stores, like Cachel
and Cache?2, are typically memory intensive [16]. However,

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

ore IPC

Per-c
o m om ow &

NNNNNNNN

Bigtable [J

Our microservices SPEC2006 SPEC2017 | CloudSuite Google Google
[Limaye18]| [Ferdman12] [Kanev1s] [Avers18]
(Haswell) | (Westmere) (Haswell) (Haswell)

Figure 6: Per-core IPC across our pservices & prior work (IPC mea-
sured on other platforms): our pservices have a high IPC diversity.

Retiring m Front-end Bad speculation Back-end
Web 32 35 P 20
§ Feedl 37 RV 2 3
_ Feed2 40 13 26
8 Q Ads1 37 EEEVEEE © 36
g Ads2 27 ST a8
E Cachel 2 TR 34
Cache2 28 6 30
400.perlbench 71 BT s 7
401.bzip2 a5 23 | 20 27
403.gcc 29 EETEN 54
429.mcf |5 5 86
o 445.gobmk 40 23 | 28 9
5 456.hmmer 79 EEEEN) ©
b 458.sjeng 48 24 | 22 6
% 462.libquantum 13 Eh 83
464.h264ref 73 EEVEE 4 10
471.omnetpp 13 WS 75
473.astar 25 | 7 | 27 a1
483 .xalancbmk 29 3 54
Ads 14 TR S5 58
Bigtable 16 Y S 58
. Disk 13 T 56
) Flight-search 17 VA 3 53
Z= Gmail 18 TR 53
52 Gmail-FE [+13 I —T 47
~ .
> f\:‘g Indexingl 12 ST 58
?on = Indexing2 13 5 64
$ Searchl 13 45 22
Search2 22 I TR 11 36
Search3 16 YT 29
Video 23 |15 K 59
RS
ERA Searchl-Leaf 32 ISR 15 29
oL g
S
0 20 40 60 80 100

Pipeline slot breakdown (%)

Figure 7: Top-down bottleneck breakdown: several of our microser-
vices face high front-end stalls.

we note that Cache requires substantial arithmetic and control
flow instructions for parsing requests and marshalling or
unmarshalling data; their load-store intensity does not differ
from other services as much as the literature might suggest.

2.4 Architectural Characterization

We next turn to performance-counter-based analysis of the
architectural bottlenecks of our microservice suite, and exam-
ine opportunities it reveals for future hardware SKU design.

2.4.1 IPC and stall causes. We report each microservice’s
overall Instructions Per Cycle (IPC) in Fig. 6. We contrast our
results with IPCs for commonly studied benchmark suites [20,
21] and published results for comparable Google services [1,
23]. Prior works’ IPCs are measured on other platforms as
shown in Fig. 6; although absolute IPCs may not be directly
comparable, it is nevertheless useful to compare variability
and spreads.

None of our microservices use more than half of the the-
oretical execution bandwidth of a Skylake CPU (theoretical
peak IPC of 5.0), and Cachel uses only 20%. As such, simul-

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

taneous multithreading is effective for these services and is
enabled in our platforms. Relative to alternative benchmarks,
our microservices exhibit (1) a greater IPC diversity than
Google’s services [1] and (2) a lower IPC than most widely-
studied SPEC CPU2006 benchmarks. Given our production
workloads’ larger codebase, larger working set, and more var-
ied memory access patterns, we do not find our lower typical
IPC surprising. When accounting for Skylake’s enhanced
performance over Haswell, we find the range of IPC values
we report to be comparable to the Google services [23].

We provide insight into the root causes of relatively low
IPC using the Top-down Microarchitecture Analysis Method
(TMAM) [63] to categorize processor pipelines’ execution
stalls, as reported in Fig. 7. TMAM exposes architectural
bottlenecks despite the many latency-masking optimizations
of modern out-of-order processors. The methodology reports
bottlenecks in terms of “instruction slots”—the fraction of the
peak retirement bandwidth that is lost due to stalls each cycle.
Slots are categorized as: front-end stalls due to instruction
fetch misses, back-end stalls due to pipeline dependencies
and load misses, bad speculation due to recovery from branch
mispredictions, and retiring of useful work.

As suggested by the IPC results, our microservices retire
instructions in only 22%-40% of possible retirement slots.
However, the nature of the stalls in our applications varies
substantially across microservices and differs markedly from
the other suites. We make several observations.

First, our microservices tend to have greater front-end
stalls than SPEC workloads. In particular, Web, Cachel, and
Cache?2 lose ~37% of retirement slots due to front-end stalls;
only Google’s Gmail-FE and search exhibit comparable
front-end stalls. In Web, front-end stalls arise due to its enor-
mous code footprint due to a rich feature set and the many
URL endpoints it implements. In Cache, frequent context
switches and OS activity cause high front-end stalls. As we
will show, these microservices could benefit from larger I-
cache and ITLB and other techniques that address instruction
misses [64,65]. In contrast, microservices like Ads1, Ads2,
or Feed1 do not stand to gain much from greater instruction
capacity, leading to conflicting SKU optimization goals.

Second, mispredicted branches make up 3% — 13% of
wasted slots. Branch mispredictions are more rare in data-
crunching microservices like Feed1 and more common when
instruction footprint is large, as in Web, where aliasing in the
Branch Target Buffer contributes a large fraction of branch
misspeculations. SKU optimization goals diverge, with some
microservices calling for simple branch predictors while oth-
ers call for higher capacity and more sophisticated prediction.

Third, back-end stalls, largely due to data cache misses, oc-
cupy up to 48% of slots, implying that several microservices
can benefit from memory hierarchy enhancements. However,
microservices like Web or Feed2, which have fewer back-end
stalls, likely gain more from chip area/power dedicated to
additional computation resources rather than cache.

2.4.2 Cache misses. We provide greater nuance to our
front-end and back-end stall breakdown by measuring in-
struction and data misses in the cache hierarchy. We present
code and data Misses Per Kilo Instruction (MPKI) across all
cache levels—L1, L2, and LLC in Figs. 8 and 9, to analyze
the overall effectiveness of each cache level. We also show

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

160
120
< 8
S w i
° ENaii

PEEE

M Data OCode

comk |

o gl

Searchl-Leaf I
Searchl-Leaf |1
400.perlbench |

483.xala

Our
microservices

SPEC2006

microservices

L1 Cache L2 Cache

Figure 8: L1 & L2 code & data MPKI: our microservices typically
have higher L1 MPKI than comparison applications.

D=80, D=24, D=26,
B Data OCode C=0.1 =0 C=0
512
5 4 iJ_I_l_LI_[
3 o0 .
O =N AN AN “— C N YL XS weYg Qg X
w o n o o 9 [] ©
2883 Lsl § |csreEfEsz25285
i 4 8 ® T L0083 EWES 2T
OOl ¢ [Ed99 ®wcw SN MG
S o 2 SugsgwocSoS o
o a < S R3S 8S %Y
@© g < 20 4 <
Q = < =9~)
(%] g o < 0
L <
Our Google SPEC2006
microservices Ayers18
Haswell

Figure 9: LLC code & data MPKI: LLC data MPKI is high across
microservices and Web incurs a high code LLC MPKI.

cache MPKI reported by prior work [23] for Google search
and our measurements of SPEC CPU2006 on Skylake20.

We make the following observations: (1) Our L1 MPKI
are drastically higher than the comparison applications, es-
pecially for code, and particularly for Cachel and Cache2.
(2) LLC data misses are commonly high in all microservices,
especially in Feed1, which traverses large data structures. (3)
Web incurs 1.7 LLC instruction MPKI. These misses are quite
computationally expensive, since out-of-order mechanisms
do not hide instruction stalls. It is unusual for applications to
incur non-negligible LLC instruction misses at all in steady
state; few such applications are reported in the academic
literature.

Prior works [1,21,23,66] typically find current LLC sizes
to be sufficient to encompass server applications’ entire code
footprint. In Web, the large code footprint and high instruction
miss rates arise due to the large code cache, frequent JIT
code generation, and a large and complex control flow graph.
Cachel and Cache?2 incur frequent context switches (see
Fig. 4) among distinct thread pools executing different code,
which leads to code thrashing in L1 and, to a lesser degree,
L2. We conclude many microservices can benefit from larger
I-caches, instruction prefetching, or prioritizing code over
data in the LLC using techniques like Intel’s CDP [34, 67].

2.4.3 LLC capacity sensitivity. Using CAT [34], we in-
spect sensitivity to LLC capacity. We vary capacity by en-
abling LLC ways two at a time, up to the maximum of 11
ways. We report LLC MPKI broken down by code and data
in Fig. 10. We omit Cache as it fails to meet QoS constraints
with reduced LLC capacity. For most microservices, a knee
(8 ways) emerges where the LLC is large enough to capture
a primary working set without degrading IPC, and further

A. Sriraman et al.

< g H Bcode [Odata
s, Ilgmoa UUHM loonon OD0nmen OOBDOD
24681011 24681011 24681011 246 81011 2 4 6 81011

Web Feedl Feed2 Ads1 Ads2
LLC ways for each microservice

Figure 10: LLC code and data MPKI vs. LLC size: some microser-
vices may benefit from trading LLC capacity for more cores.

Mload OStore L=66, 1=47, (=22,

.
EXLR-RTR-]

Very low values

TLB MPKI

429.mcf
473.astar

403.gcc
445.gobmk

473.astar /

483.xalancbmk

401.bzip2 |
403.gcc
429.mcf
445.gobmk
458.sjeng

462.libquantum
458.sjeng

462.libquantum

456.hmmer
464.h264ref
471.omnetpp
401.bzip2
456.hmmer
464.h264ref
471.omnetpp

400.perlbench
400.perlbench

Our microservices SPEC 2006 Our microservices SPEC 2006

dTLB

Figure 11: ITLB & DTLB (load & store) MPKI breakdown: some
microservices can benefit from huge page support.

capacity increases provide diminishing returns. For some
microservices (e.g., Ads2 and Feedl), the largest working
set is too large to be captured. Hence, some services might
benefit from trading LLC capacity for additional cores [68].

2.4.4 TLB misses. We report instruction and data TLB
MPKI in Fig. 11. For the DTLB, we break down misses due
to loads and stores. The ITLB miss trends mirror our LLC
code miss observations: Web, Cachel, and Cache2 incur
substantial ITLB misses, while the miss rates are negligible
for the remaining microservices. The drastically higher miss
rate in Web illustrates the impact of its large JIT code cache.

DTLB miss rates are more variable across microservices.
They typically follow the LLC MPKI trends shown in Fig. 9
with the exception of Feed1—despite a relatively high LLC
MPKI of 9.3 it incurs a relatively low DTLB MPKI of 5.8.
Feed1’s main data structures are dense floating-point feature
vectors and model weights, leading to good page locality
despite a high LLC MPKI. However, the other microservices
might benefit from software (like static or transparent huge
pages) and hardware (e.g., [69-75]) paging optimizations.

2.4.5 Memory bandwidth utilization. We inspect mem-
ory bandwidth utilization and its attendant effects on latency
due to memory system queuing for each microservice in
Fig. 12. We first characterize the inherent bandwidth vs. la-
tency trade-off of our two platforms—Skylake18 in the blue
dots and Skylake20 in the yellow crosses—using a mem-
ory stress test [76]. These curves show the characteristic
horizontal asymptote at the unloaded memory latency and
then exponential latency growth as memory system load ap-
proaches saturation. We then plot each microservice’s mea-
sured average latency and bandwidth, using dots and crosses,
respectively, to indicate the service platform.

Microservices like Web or Feed1 have high memory band-
width utilization relative to the platform capability. Neverthe-
less, our microservices cannot push memory bandwidth uti-
lization above a certain threshold—operating at higher band-
width causes exponential memory latency increase, triggering
service latency violations. Ads1 and Ads2 operate at higher
latency than the characteristic curve predicts due to memory

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

« Skylake18 stress test latency Skylake20 stress test latency
0

é Cache2 Feedl
& 300 4 Ads2
S s Cachel
w 200 |Ads1 5
> l . +
5 100 [ees oo = +
£ 0 Feed?2 Web
=
0 50 100 150

Memory bandwidth (GB/s)

Figure 12: Memory bandwidth vs. latency: microservices under-
utilize memory bandwidth to avoid latency penalties.

traffic burstiness. The curves also reveal why it is necessary
to run Cachel and Ads2 on the higher-peak-bandwidth Sky-
lake20 platform to keep memory latency low. Nevertheless,
several microservices under-utilize available bandwidth, and
hence might benefit from optimizations that trade bandwidth
to improve latency, such as hardware prefetching [77].

We summarize our findings in Table 3.

3 “Soft” SKUs

Our microservices exhibit profound diversity in system-level
and architectural traits. For example, we demonstrated di-
verse OS and I/O interaction, code/data cache miss ratios,
memory bandwidth utilization, instruction mix ratios, and
CPU stall behavior. One way to address such distinct bottle-
necks is to specialize CPU architectures by building custom
hardware server SKUs to suit each service’s needs. However,
such hardware SKU diversity is impractical, as it requires
testing and qualifying each distinct SKU and careful capacity
planning to provision each to match projected load. Given
the uncertainties inherent in projecting customer demand,
investing in diverse hardware SKUs is not effective at scale.

Data center operators aim to maintain hardware resource
fungibility to preserve procurement advantages that arise
from economies of scale and limit the effort of qualifying
myriad hardware platforms. To preserve fungibility, we seek
strategies that enable a few server SKUs to provide perfor-
mance and energy efficiency over diverse microservices. To
this end, we propose exploiting coarse-grain (e.g., boot time)
parameters to create “soft SKUs”, tuning limited hardware
SKUs to better support their assigned microservice. However,
manually identifying microservice-specific soft-SKUs is im-
practical since the design space is large, code evolves quickly,
synthetic load tests do not necessarily capture production be-
havior, and the effects of tuning a single knob are often small
(a few percent performance change). Hence, we build an auto-
mated design tool—uSKU—that searches the configuration
design space to optimize for each microservice.

4 uSKU: System Design

USKU is a design tool for quick discovery of performant and
efficient “soft” SKUs. uSKU automatically varies config-
urable server parameters, or “knobs,” by searching within a
predefined design space via A/B testing. A/B testing is the
process of comparing two identical systems that differ only
in a single variable. uSKU conducts A/B tests by comparing
the performance of two identical servers (i.e., same hardware
platform, same fleet, and facing the same load) that differ
only in their knob configuration. puSKU collects copious

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

A/B Tester: production systems serving live traffic

CDP:
LLC

Core
count

Uncore
frequency

Core
frequency

THP ‘ SHP

I

Knob Ideal config

Prefetcher L1

Microservice

Input file 1z

Platform o
parser Knob

Core frequency 2.2GHz

i

SHP 300

A/B test 1
configurator

Input file

Soft SKU Deployed on

generator

servers

uSKU

Figure 13: uSKU: system design

fine-grain performance measurements while conducting auto-
mated A/B tests on production systems serving live traffic to
search for statistically significant performance changes. We
aim to ensure that uSKU has a simple design so that it can
be applied across microservices and hardware SKU gener-
ations while avoiding operational complexity. Key design
challenges include: (1) identifying performance-efficient soft-
SKU configurations in a large design space, (2) dealing with
frequent code evolution, (3) capturing behavior in produc-
tion systems facing diurnal or transient load fluctuations, and
(4) differentiating actual performance variations from noise
through appropriate statistical tests. We discuss how USKU’s
design meets these challenges.

We develop a uSKU prototype that explores a soft-SKU
design space comprising seven configurable server knobs.
USKU accepts a few input parameters and then invokes its
components—A/B test configurator, A/B tester, and soft SKU
generator, as shown in Fig. 13. We describe each component
below.

Input file. The user provides an input file with the follow-
ing three input parameters.

(1) Target Microservice. Several aspects of SKU’s behav-
ior must be tuned for the specific target microservice. uSKU
reboots the server while performing certain A/B tests (e.g.,
core count scaling). Some microservices may not tolerate
reboots on live traffic and hence uSKU disables these knobs
in such cases. Furthermore, SKU disables knobs that do not
apply to a microservice. For example, Statically-allocated
Huge Pages (SHPs) are inapplicable to Ads1, since it does not
use the APIs to allocate them. Our current USKU prototype
estimates performance by measuring the Millions of Instruc-
tions per Second (MIPS) rate via EMON [39], which we
have confirmed is proportional to several key microservices’
throughput (e.g., Web and Ads1). However, we anticipate
the performance metric that uSKU measures to determine
whether a particular soft SKU has improved performance
to be microservice specific. In particular, MIPS may be
insufficient to measure Cache’s throughput, since Cache’s
code is introspective of performance. (It executes exception
handlers when faced with knob configurations that engender
QoS violations, which make instructions-per-query vary with
performance.) uSKU can be extended to perform A/B tests
using microservice-specific performance metrics.

(2) Processor platform. The available settings in several
USKU design space dimensions, such as specific core and
uncore frequencies, core counts, and hardware prefetcher
options, are hardware platform specific.

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

A. Sriraman et al.

Table 3: Summary of findings and suggestions for future optimizations.

Finding

Opportunity

Diversity among microservices (§2.3, §2.4)
Some pservices are compute-intensive (§2.3.2)
Some pservices emit frequent requests (§2.3.2)

CPU under-utilization due to QoS constraints (§2.3.3)
High context switch penalty (§2.3.4)
Substantial floating-point operations (§2.3.5)
Large front-end stalls & code footprint (§2.4.1-2)
Branch mispredictions (§2.4.1)

Low data LLC capacity utilization (§2.4.1-3, §2.4.5)
Low memory bandwidth util. (§2.4.5)

Enhance instruction throughput (e.g., more cores, wider SMT, etc.)
Features that support greater concurrency, fast thread switching, and faster I/O
Mechanisms to reduce tail latency, enabling higher utilization
Coalesce I/0, user-space drivers, vDSO, in-line accelerators, thread pool tuning

AutoFDO, large I-cache, CDP, prefetchers, ITLB optimizations, better decode
“Wider” hardware branch predictors, sophisticated prediction algorithms

Optimizations that trade bandwidth for latency (e.g., prefetching)

“Soft” SKUs

Optimizations for dense computation (e.g., SIMD)

Trade-off LLC capacity for additional cores

(3) Sweep configuration. uSKU’s A/B tester measures the
performance implications of sweeping server knobs either (1)
independently, where individual knobs are scaled one-by-one
and their effects are presumed to be additive when creating a
soft SKU, or (2) exhaustively, where the design space sweep
explores the cross product of knob settings. Note that some
microservices receive code updates so frequently (O(hours))
that an exhaustive USKU sweep cannot be completed between
code pushes. In practice, the gains from uSKU’s knobs are
not strictly additive. Nevertheless, the knobs do not typically
co-vary strongly, so we have had success in tuning knobs
independently, as the exhaustive approach requires an imprac-
tically large number of A/B tests.

A/B test configurator. The A/B test configurator sets up
the automatic A/B test environment by specifying the sweep
configuration and knobs to be studied.

A/B tester. The A/B tester is responsible for indepen-
dently or exhaustively varying configurable hardware and
OS knobs to measure ensuing performance changes. Our
USKU prototype varies seven knobs (suggested by our ear-
lier characterization), but can be extended easily to support
more. It varies (1) core frequency, (2) uncore frequency, (3)
core count, (4) CDP in the LLC ways, (5) prefetchers, (6)
Transparent Huge Pages (THP), and (7) SHPs.

The A/B tester sweeps the design space specified by the
A/B test configurator. For each point in the space, the tester
suitably sets knobs and then launches a hardware perfor-
mance counter-based profiling tool [39] to collect perfor-
mance observations. For each knob configuration, the A/B
tester first discards observations during a warm-up phase that
typically lasts for a few minutes to avoid cold start bias [78].
Next, the A/B tester records performance counter samples
via EMON [39] with sufficient spacing to ensure indepen-
dence. Finally, when the desired 95% statistical confidence
is achieved, the A/B tester outputs mean estimates, which it
records in a design space map. It then proceeds to the next
knob configuration. The A/B tester typically achieves 95%
confidence estimates with tens of thousands of performance
counter samples (minutes to hours of measurement). If 95%
confidence is not reached after collecting ~ 30,000 obser-
vations, LSKU concludes there is no statistically significant
performance difference and proceeds to the next knob con-
figuration. The final design space map helps identify (with a
95% confidence) the most performant knob configurations.

Soft SKU generator. The A/B tester’s design space map is
fed to the soft SKU generator, which selects the most perfor-
mant knob configurations. It then applies this configuration
to live servers running the microservice. Once the selected

soft SKU is deployed, uSKU performs further A/B tests by
comparing the QPS achieved (via ODS) by soft-SKU servers
against hand-tuned production servers for prolonged dura-
tions (including across code updates and under diurnal load)
to validate that the soft SKU offers a stable advantage.

5 Methodology

We discuss the methodology we use to evaluate uSKU.

Microservices. We focus our prototype tSKU evaluation
on the Web service on two generations of hardware platforms
and on the Ads1 microservice on a single platform. These
two microservices differ drastically in our characterization
results while both being amenable to the use of MIPS rate as
a performance metric. Moreover, the surrounding infrastruc-
ture for these services is sufficiently robust to tolerate failures
and disruptions we might cause with the uSKU prototype,
allowing us to experiment on production traffic.

Hardware platforms. To evaluate uSKU, we run Web
on two hardware platforms—Broadwel116 and Skylakel8,
and Ads1 on Skylake18 (see Table 1). We evaluate Web on
both Skylakel8 and Broadwelll6 to analyze the config-
urable server knobs’ sensitivity to the underlying hardware
platform. Henceforth, we refer to Web running on Skylake18
as Web (Skylake) and Broadwell16 as Web (Broadwell).

Experimental setup. We compare uSKU’s A/B test knob
scaling studies against default production server knob con-
figurations. Some default knob configurations arise from
arduous manual tuning, and therefore differ from stock server
configurations. We next describe how uSKU implements
A/B test scaling studies for each configurable knob.

(1) Core frequency. Our servers enable Intel’s Turbo Boost
technology [79]. uSKU scales core frequency from 1.6 GHz
to 2.2 GHz (default) by overriding core frequency-controlling
Model-Specific Registers (MSRs).

(2) Uncore frequency. uSKU varies uncore (LLC, memory
controller, etc.) frequency from 1.4 GHz to 1.8 GHz (default)
by overriding uncore frequency-controlling MSRs [80].

(3) Core count. uSKU scales core count from 2 physical
cores to the platform-specific maximum (default), by direct-
ing the boot loader to incorporate the isolcpus flag [81]
specifying cores on which the OS may not schedule. uSKU
then reboots the server to operate with the new core count.

(4) LLC Code Data Prioritization. WSKU uses Intel RDT [34]
to prioritize code vs. data in the LLC ways. Our servers’ OS
kernels have extensions that support Intel RDT via the Resc-
trl interface [82]. uSKU leverages these kernel extensions
to vary CDP from one dedicated LL.C way for data and the

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

rest for code, to one dedicated way for code and the rest for
data. Default production servers share LLC ways between
code and data without CDP prioritization.

(5) Prefetcher. Our servers support four prefetchers [83]:
(a) L2 hardware prefetcher that fetches lines into the L2
cache, (b) L2 adjacent cache line prefetcher that fetches a
cache line in the same 128-byte-aligned region as a requested
line, (c) DCU prefetcher that fetches the next cache line into
L1-D cache, and (d) DCU IP prefetcher that uses sequential
load history to determine whether to prefetch additional lines.
USKU considers five configurations: (a) all prefetchers off,
(b) all prefetchers on (default on Web (Skylake) and Ads1),
(c) only DCU prefetcher and DCU IP prefetcher on, (d) only
DCU prefetcher on, and (e) only L2 hardware prefetcher
and DCU prefetcher on (default on Web (Broadwell)). uSKU
adjusts prefetcher settings via MSRs.

(6) Transparent Huge Pages (THP): THP is a Linux kernel
mechanism that automatically backs virtual memory allo-
cations with huge pages (2MB or 1GB) when contiguous
physical memory is available and defragments memory in
the background to coalesce free space [84]. uSKU consid-
ers three THP configurations (a) madvise—THP is enabled
only for memory regions that explicitly request huge pages
(default), (b) always ON—THP is enabled for all pages, and
(c) always OF F—THP is not used even if requested. uSKU
configures THP by writing to kernel configuration files.

(7) Statically-allocated Huge Pages (SHP): SHPs are huge
pages (2MB or 1GB) reserved explicitly by the kernel at
boot time and must be explicitly requested by an application.
Once reserved, SHP memory can not be repurposed. uSKU
varies SHP counts from 0 to 600 in 100-step increments by
modifying kernel parameters [85]. uSKU can be extended to
conduct a binary search to identify optimal SHP counts.

Performance metric. ySKU estimates performance in
terms of throughput by measuring MIPS rate via EMON [39].
We have verified that MIPS is proportional to Web and Ads1’s
throughput (QPS). We do not measure QPS directly as QPS
reported by ODS is not sufficiently fine-grained. We aim to
eventually have uSKU replace tedious manual knob tuning
for each microservice. Hence, we evaluate (SKU-generated
soft SKUs against (a) stock off-the-shelf and (b) hand-tuned
production server configurations.

6 Evaluation

We first present tSKU’s A/B test results for all seven con-
figurable server knobs. We then compare the throughput of
“soft” server SKUs that uSKU discovers against (a) hand-
tuned production and (b) stock server configurations.

6.1 Knob Characterization

We present uSKU’s A/B test results for each knob and com-
pare it against the current production configuration, indicated
by thick red bar/point outlines or red axis lines in our graphs.
For each graph, we report mean throughput and 95% confi-
dence intervals under peak-load production traffic. For the
first three knobs, we find that £SKU matches expert manual
tuning decisions. However, for the next four knobs, uSKU
identifies configurations that outperform production settings.

(1) Core frequency. We illustrate tSKU’s core frequency
scaling analysis in Fig. 14 (a). uSKU varies core frequency

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

H17m18@1902021022

il il) 55 i

el Web Web b
(Skylake) (Broadwell) A9 (Skylake) (Broadwell) A9S!

(a) (b)

ml5 mEl16 O17 @18

BN
o woxno
uncore freq

o N &M o

% Perf. gain over 1.6 GHz
core freq
% Perf gain over 1.4 GHz

Figure 14: Perf. trend with (a) core frequency scaling, (b) uncore
frequency scaling: the max. frequency offers the best performance.

—=—|deal —s~Web (Skylake) Web (Broadwell)

g 1
° 5
wn 8 e = 0
>38 e 0.36
£ S o
> 0 5 10 15 20

Number of physical cores

Figure 15: Perf. trend with core count scaling: Web is core-bound.

from 1.6 GHz to 2.2 GHz. We report relative throughput
(MIPS) gains over cores operating at 1.6 GHz. Our produc-
tion systems have a fixed CPU power budget that is shared
between the core and uncore (e.g., LLC, memory and QPI
controller, etc.) CPU components. The current production
configuration enables Turbo Boost [79] and runs Web (Sky-
lake and Broadwell) at 2.2 GHz and Ads1 at 2.0 GHz (as
indicated by the thick red bar outlines in Fig. 14 (a)). Ads1
must operate at slightly lower frequency because its use of
AVX operations consumes part of the CPU power budget.

USKU aims to (1) identify whether there is a minimum core
frequency knee below which throughput degrades rapidly
and (2) diagnose if core frequency trends suggest that the mi-
croservice may be uncore bound. Web’s and Ads1’s through-
puts increase precipitously from 1.6 GHz to 1.9 GHz, beyond
which uSKU reports continued but diminishing throughput
gains. These microservices are all sensitive to core frequency,
hence, operating at the maximum and enabling Turbo Boost
are sensible tuning decisions. uSKU configures soft SKUs
that operate at 2.2 GHz core frequency for Web (Skylake and
Broadwell) and 2.0 GHz for Ads1, matching experts’ tuning.

(2) Uncore frequency. 4 SKU varies the frequency of un-
core CPU power domain (including LLC, QPI controller, and
memory controller), from 1.4 GHz to 1.8 GHz. We report
results normalized to 1.4 GHz uncore frequency (Fig. 14 (b)).
Our default production configuration runs both microservices
at 1.8 GHz uncore frequency. Uncore frequency indicates the
degree to which applications are sensitive to access latency
when memory and core execution bandwidth are held con-
stant. Both of these microservices are sensitive to memory
latency, though the sensitivity is greater in Ads1. As with
core frequency, USKU selects soft SKUSs that operate at the
maximum 1.8 GHz for both microservices, again matching
the default production configuration.

(3) Core count. We present SKU’s core count scaling
results in Fig. 15, where we report throughput gain relative
to execution on only two physical cores. The grey line in-
dicates ideal linear scaling. uSKU scales Web (Skylake) to
its maximum core count (18 cores) and Web (Broadwell) to
its maximum (16). We exclude Ads1 from Fig. 15 since its
load balancing design precludes (SKU from meeting QoS

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

m1,10 m2,9 m@3,8 D47 056 MWL, 11M2,1003,9 04,8 057 W66
W65 ©74 083 092 001 87,5 084 09,3 01020111
g 4 g 9 ———
3 0 . o= ED
% £% 20
& o 4 L& &
g 8 « § 40
& 12 2 60
R Web (Skylake) Ads1 E Web (Broadwell)
(a) (b)

Figure 16: Perf. trend with CDP scaling: (a) Web (Skylake) & Adsl
benefit due to lower code MPKI (b) Web (Broadwell) has no gains.

EMDCU&DCUIPon @EDCUon [—OL2hardware & DCU on @@ All prefetch on

8
4
0
-4

Web (Skylake) Web (Broadwell) Adsl

% Perf. gain
over all
prefetch off

Figure 17: Perf. trends with varied prefetcher config.: turning off
prefetchers can improve bandwidth utilization in Web (Broadwell).

constraints with fewer cores. £SKU observes that Web’s per-
formance scales almost linearly up to ~8 physical cores. As
core count increases further, interference in the LLC causes
the scaling curve to bend down. As with frequency, the best
soft SKU selected by uSKU operates with all available cores.

(4) Code Data Prioritization (CDP) in LLC ways. In
our earlier characterization (Fig. 9), we noted that Web ex-
hibits a surprising number of off-chip code misses. Hence,
USKU considers prioritizing code vs. data in the LLC ways.
We report throughput gains over the production baseline
(where CDP is not used and code and data share LLC ways)
for Web (Skylake) and Ads1 in Fig. 16(a) and Web (Broad-
well) in Fig. 16(b). Skylake18 and Broadwell16 have 11
and 12 LLC ways, respectively. We label each bar with {LLC
ways dedicated to data, LLC ways dedicated to code}.

Here we find that Web (Skylake) achieves up to 4.5% mean
throughput gain with 6 LLC ways dedicated to data and 5
LLC ways dedicated to code, a configuration that degrades
LLC data misses by 0.60 MPKI but improves code misses by
0.30 MPKI. Although this configuration increases net LLC
misses by almost 0.30 MPKI, it still results in a performance
win because the latency of code misses is not hidden and
they incur a greater penalty. Similarly, Ads1 achieves 2.5%
mean throughput improvement with 9 LLC ways dedicated to
data and 2 LLC ways dedicated to code, sacrificing 0.20 LLC
data MPKI to improve LLC code MPKI by 0.06. uSKU ob-
serves no throughput improvement in Web (Broadwell) since
it saturates memory bandwidth under all CDP configurations.
Hence, uSKU can not trade-off increasing the net LLC MPKI
to reduce LLC code misses. uSKU selects soft server SKUs
for Web (Skylake) and Ads1 such that they dedicate {6, 5}
and {9, 2} LLC ways for data and code, respectively, improv-
ing over the present-day hand-tuned production configuration.
USKU does not enable CDP in Web’s (Broadwell) soft SKU.

(5) Prefetcher. We report uSKU’s results for prefetcher
tuning in Fig. 17. Our production systems enable (1) all
prefetchers on Web (Skylake) and Ads1 and (2) only the L2
hardware prefetcher and DCU prefetcher on Web (Broadwell).
On Web (Broadwell), SKU reveals a ~ 3% mean throughput
win over the production configuration when all prefetchers

A. Sriraman et al.

o o

] I

3 mAlways ON @ Never ON ¢ m100 m 200 @300 0400 @500 00600

g 4 25

W [} 488

g2 o S ¢

c 0 = s = +~ §2

© [}

o 2 Web Web 50

‘= €l €l (3]

8 (Skylake) ~ (Broadwell) Ads1 Q Web (Skylake) Web (Broadwell)
X

B (a) (b)

Figure 18: Perf. trends with varied (a) THP: Web (Skylake) benefits
from THP ON, (b) SHP: there is a sweet spot in optimal SHP count.

W Stock configurations @ Hand-tuned configurations

£ 5 9

% é ; ‘_. .

s ¢ : Y
o 3

= Web (Skylake) ~ Web (Broadwell) Adsl

Figure 19: Perf. gain with uSKU over stock and hand-tuned servers:
USKU outperforms even hand-tuned production servers.

are turned off. Web (Broadwell) is heavily memory band-
width bound when prefetchers are turned on, unlike Web
(Skylake) and Ads1. Turning off prefetchers reduces memory
bandwidth pressure, enabling overall throughput gains. In
contrast, Web (Skylake) and Ads1 are not memory bandwidth
bound, and hence do not benefit from turning off prefetchers.

(6) Transparent Huge Pages (THPs). In our earlier char-
acterization (see Fig. 11), we found that Web suffers from
significant ITLB and DTLB misses. Hence, tSKU explores
huge page settings to reduce TLB miss rates. The default
THP setting on our production servers is madvise, where
THP is enabled only for memory regions that explicitly re-
quest it. In Fig. 18(a), uSKU considers (1) always enabling
huge pages (always ON) and (2) disabling huge pages even
when requested (never ON), and compares with the default
(baseline for the graph) madvise configuration.

USKU identifies a mean 1.87% throughput gain on Web
(Skylake) when THP is always ON, as it significantly reduces
TLB misses compared to madvise. However, the always
ON setting does not enhance Ads1 and Web (Broadwell)’s
throughput as their TLB miss rates do not improve. Through-
put achieved with the never ON configuration is comparable
with madvise, as few allocations use the madvise hint.

(7) Statically-allocated Huge Pages (SHPs). We report
USKU’s SHP sweep results in Fig. 18(b). uSKU excludes
Ads1 from this study as it makes no use of SHPs. Our pro-
duction systems reserve 200 SHPs for Web (Skylake) and 488
SHPs for Web (Broadwell). uSKU shows that reserving 300
SHPs on Web (Skylake) and 400 SHPs on Web (Broadwell)
can outperform our production systems by 1.4% and 1.0%
respectively, due to modest TLB miss reductions.

6.2 Soft SKU Performance

USKU creates microservice-specific soft SKUs by indepen-
dently analyzing each knob and then composing their best
configurations. In Fig. 19, we show the final throughput
gains achieved by uSKU’s soft SKUs as compared to (1)
hand-tuned production configurations and (2) stock server
configurations (i.e., after a fresh server re-install). The stock
configuration comprises (1) 2.2 GHz and 2.0 GHz core fre-
quency for Web and Ads1 respectively, (2) 1.8 GHz uncore

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

frequency, (3) all cores active, (4) no CDP in LLC, (5) all
prefetchers turned on, (6) always ON for THP, and (7) no
SHPs. We listed the hand-tuned configurations in Sec. 6.1.

Since these services operate on hundreds of thousands of
machines, achieving even single-digit percent speedups with
USKU can yield immense aggregate data center efficiency
benefits by reducing a service’s provisioning requirement.
USKU’s soft SKUs outperform stock configurations by 6.2%
on Web (Skylake), 7.2% on Web (Broadwell), and 2.5% on
Ads1 due to benefits enabled by CDP, prefetchers, THP, and
SHP. Interestingly, uSKU also outperforms the hand-tuned
production configurations by 4.5% on Web (Skylake), 3.0%
on Web (Broadwell), and 2.5% on Ads1. We confirmed that
the MIPS improvement reported by uSKU’s soft SKUs yields
a corresponding QPS improvement over a prolonged period
(spanning several code pushes) by monitoring fleet-wide QPS
via ODS. The statistically significant throughput gains are a
substantial win in data centers’ efficiency.

USKU’s prototype takes 5-10 hours to explore its knob
design space and arrive at the final soft-SKU configurations.
Even for knob settings where uSKU identifies the same result
as manual tuning by experts, the savings in engineering effort
by relying on an automated system is significant. A key
advantage of uSKU is that it can be applied to microservices
that do not have dedicated performance tuning engineers.

7 Discussion

We discuss open questions and uSKU prototype limitations.

Future hardware knobs. Our architectural characteri-
zation revealed significant diversity in architectural bottle-
necks across microservices. We discussed opportunities for
microservice-specific hardware modifications and motivated
how soft SKUs can be designed using existing hardware- and
OS-based configurable knobs. However, in light of a soft-
SKU strategy, we anticipate that hardware vendors might
introduce additional tunable knobs. uSKU does not currently
adjust knobs to address microservice differences in instruc-
tion mix, branch prediction, context switch penalty, and other
opportunities revealed in our characterization.

QoS and perf/watt constraints. Our microservices face
stringent latency, throughput, and power constraints in the
form of Service-Level Objectives (SLO). uSKU’s prototype
performs A/B testing in a coarse-grained design space and
tunes configurable hardware and OS knobs to improve through-
put. However, uSKU does not consider energy or power
constraints. QoS constraints are only addressed insofar as we
discard parts of the . SKU tuning space that lead to violations.

USKU can be extended to consider a cluster’s SLOs’ full
range. For example, Cache executes exception handlers
when latency targets are violated, which makes MIPS an
inappropriate metric to quantify Cache performance. With
support for other performance metrics, £SKU can perform
A/B tests that discount exception-handling code when mea-
suring throughput. With support to also measure system
power/energy, LSKU can be extended to perform energy- or
power-efficiency optimization rather than optimizing only for
performance. We leave such support to future work.

Exhaustive design-space sweep. We notice that through-
put improvements achieved by individual knobs are not al-
ways additive when uSKU composes them to generate a soft

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

SKU. This observation implies that knob configurations may
have subtle dependencies on which we might capitalize. An
exhaustive characterization that determines a Pareto-optimal
soft SKU might identify global performance maxima that are
better than those found by our independent search. However,
performing an exhaustive search is prohibitive; better search
heuristics (e.g., hill climbing [86]) may be required.

USKU and co-location. Our production microservices
run on dedicated hardware without co-runners. Co-location
can raise interesting challenges for future work—scheduler
systems that map service affinities can be designed in a
USKU-aware manner.

8 Related Work

Architectural proposals for cloud services. Several works
propose architectures suited to a particular, important cloud
service. Ayers et al. [23] characterize Google web search’s
memory hierarchy and propose an L4 eDRAM cache to
improve heap accesses. Earlier work [87] also discusses
microarchitecture for Google search. Some works [88-90]
characterize low-power cores for search engines like Nutch
and Bing. Trancoso et al. [91] analyze the AltaVista search
engine’s memory behavior and find it similar to decision
support workloads; Barroso et al. [92] show that L2 caches
encompass such workloads’ working set, leaving memory
bandwidth under-utilized. Microsoft’s Catapult accelerates
search ranking via FPGAs [93]. DCBench studies latency-
sensitive cloud data analytics [94]. Studying a single service
class can restrict the generality of conclusions, as modern
data centers typically execute diverse services with varied
behaviors. In contrast, we characterize diverse production
microservices running in the data centers of one of the largest
social medial providers. We show that modern microservices
exhibit substantial system-level and architectural differences,
which calls for microservice-specific optimization.

Other works [1,95] propose architectural optimizations for
diverse applications. Kanev et al. [1] profile different Google
services and propose architectural optimizations. Kozyrakis
et al. [95] examine Microsoft’s email, search, and analytics
applications, focusing on balanced server design. However,
these works do not customize SKUs for particular services.

Academic efforts develop and characterize benchmark
suites for cloud services. Most notably, CloudSuite [21]
comprises both latency-sensitive and throughput-oriented
scale-out cloud workloads. Yasin et al. [63] perform a mi-
croarchitectural characterization of several CloudSuite work-
loads. However, our findings on production services dif-
fer from those of academic cloud benchmark suite stud-
ies [21,22,63,96,97]. For example, unlike these benchmark
suites, our microservices have large L2 and LLC instruction
working sets, high stall times, large front-end pipeline stalls,
and lower IPC. While these suites are vital for experimenta-
tion, it is important to compare their characteristics against
large-scale production microservices serving live user traffic.

Hardware tuning. Many works tune individual server
knobs, such as selective voltage boosting [98—100], exploit-
ing multicore heterogeneity [101-103], trading memory la-
tency/bandwidth [104—107], or reducing front-end stalls [70,
96, 108]. In contrast, we propose (1) performance-efficient
soft SKUs rather than hardware changes, (2) target diverse mi-

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

croservices, and (3) tune myriad knobs to create customized
microservice-specific soft SKUs. Other works reduce co-
scheduled job interference [109-114] or schedule them in
a machine characteristics-aware manner [115-118]. Such
studies can benefit from architectural insights provided here.

9 Conclusion

Modern data centers face server architecture design chal-
lenges as they must efficiently support diverse microservices.
We presented a detailed system-level and architectural char-
acterization of key microservices used by a leading social
media provider. We highlighted surprising and diverse bottle-
necks and proposed future server architecture optimization
opportunities, since each microservice might benefit from
a custom server SKU. However, to avoid per-service SKU
deployment challenges, we instead proposed the “soft” SKU
concept, wherein we tune coarse-grain configuration knobs
on a few hardware SKUs. We developed uSKU to automati-
cally tune server knobs to create microservice-specific soft
SKUs that outperform stock servers by up to 7.2%.

10 Acknowledgement

We acknowledge Carlos Torres, Pallab Bhattacharya, Xi-
aodong Wang, Joy Chaoyue Xiong, Oded Horovitz, Denis
Sheahan, Ning Sun, Mark Santaniello, Amlan Nayak, Chao
Li, and Yudong Guang who provided valuable insights on
Facebook workload characteristics and analysis. We acknowl-
edge Murray Stokeley, Kim Hazelwood, Bharath Muthiah,
Bill Jia, Christina Delimitrou, Carole-Jean Wu, Vaibhav
Gogte, Amrit Gopal, PR Sriraman, Brendan West, Amirhos-
sein Mirhosseini, and the anonymous reviewers for their in-
sightful suggestions.

11 References

[1

—

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in International Symposium on Computer Architecture, 2015.

[2] “The biggest thing amazon got right: The platform.”
https://gigaom.com/2011/10/12/419-the-biggest-
thing-amazon-got-right-the-platform/.

[3] “Adopting microservices at netflix: Lessons for architectural design.”
https://www.nginx.com/blog/microservices-at-
netflix-architectural-best-practices/.

[4] “Scaling Gilt: from Monolithic Ruby Application to Distributed

Scala Micro-Services Architecture.”
https://www.infoq.com/presentations/scale-gilt.

[5] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca,
R. Casallas, and S. Gil, “Evaluating the monolithic and the
microservice architecture pattern to deploy web applications in the
cloud,” in Computing Colombian Conference, 2015.

[6] “What is microservices architecture?.”
https://smartbear.com/learn/api-design/what-are-
microservices/.

[7] S. Kanev, K. Hazelwood, G.-Y. Wei, and D. Brooks, “Tradeoffs
between power management and tail latency in warehouse-scale
applications,” in IEEE International Symposium on Workload
Characterization, 2014.

I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen,
Microservice Architecture: Aligning Principles, Practices, and
Culture. 2016.

[8

—

[9]

(10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

(19]

(20]

[21]

[22]

[23]

(24]

(25]

[26]

(27]

(28]

(29]

[30]
[31]

A. Sriraman et al.

A. Sriraman and T. F. Wenisch, “uSuite: A Benchmark Suite for
Microservices,” in IEEE International Symposium on Workload
Characterization, 2018.

A. Sriraman, “Unfair Data Centers for Fun and Profit,” in Wild and
Crazy Ideas (ASPLOS), 2019.

A. Sriraman and T. F. Wenisch, “uTune: Auto-Tuned Threading for
OLDI Microservices,” in Proceedings of the 12th USENIX
conference on Operating Systems Design and Implementation, 2018.

B. Fitzpatrick, “Distributed Caching with Memcached,” Linux J.,
2004.

“Mcrouter.” https://github. com/facebook/mcrouter.

Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attributing
the Source of Tail Latency Through Precise Load Testing and
Statistical Inference,” in International Symposium on Computer
Architecture, 2016.

X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah,

R. Herbrich, S. Bowers, and J. Q. n. Candela, “Practical Lessons
from Predicting Clicks on Ads at Facebook,” in International
Workshop on Data Mining for Online Advertising, 2014.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. C. Li, er al., “TAO:
Facebook’s Distributed Data Store for the Social Graph,” in USENIX
Annual Technical Conference, 2013.

M. Zuckerberg, R. Sanghvi, A. Bosworth, C. Cox, A. Sittig,
C. Hughes, K. Geminder, and D. Corson, “Dynamically providing a
news feed about a user of a social network,” 2010.

G. Ottoni, “HHVM JIT: A Profile-guided, Region-based Compiler
for PHP and Hack,” in Conference on Programming Language
Design and Implementation, 2018.

J. L. Henning, “Spec cpu2006 benchmark descriptions,” SSIGARCH
Comp. Arch. News, 2006.

A. Limaye and T. Adegbija, “A Workload Characterization of the
SPEC CPU2017 Benchmark Suite,” in International Symposium on
Performance Analysis of Systems and Software, 2018.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,

D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the Clouds: A Study of Emerging Scale-out Workloads on
Modern Hardware,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012.

Y. Gan and C. Delimitrou, “The Architectural Implications of Cloud
Microservices,” IEEE Computer Architecture Letters, 2018.

G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
Hierarchy for Web Search,” in International Symposium on High
Performance Computer Architecture (HPCA), 2018.

O. Yamauchi, Hack and HHVM: programming productivity without
breaking things. 2015.

K. Adams, J. Evans, B. Maher, G. Ottoni, A. Paroski, B. Simmers,
E. Smith, and O. Yamauchi, “The hiphop virtual machine,” in Acm
Sigplan Notices, 2014.

E. Rader and R. Gray, “Understanding user beliefs about algorithmic
curation in the facebook news feed,” in ACM conference on human
factors in computing systems, 2015.

E. Bakshy, S. Messing, and L. A. Adamic, “Exposure to ideologically
diverse news and opinion on Facebook,” Science, 2015.

K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,

D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, and A. Kalro, “Applied
Machine Learning at Facebook: A Datacenter Infrastructure
Perspective,” in International Symposium on High Performance
Computer Architecture, 2018.

V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III,

P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo, and J. Hoon,
“Tao: how facebook serves the social graph,” in International
Conference on Management of Data, 2012.

J. L. Carlson, Redis in Action. 2013.

J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside
6th-generation intel core: new microarchitecture code-named
skylake,” IEEE Micro, 2017.

https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.infoq.com/presentations/scale-gilt
https://smartbear.com/learn/api-design/what-are-microservices/
https://smartbear.com/learn/api-design/what-are-microservices/
https://github.com/facebook/mcrouter

SoftSKU: Optimizing Server Architectures for Microservice Diversity @Scale

[32]

(33]

(34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

(49]

[50]

(51]

[52]

(53]

(54

“Unlock system performance in dynamic environments.”
https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html.

C. Intel, “Improving Real-Time Performance by Utilizing Cache
Allocation Technology,” Intel Corporation, April, 2015.

“Code and Data Prioritization - Introduction and Usage Models in
the Intel Xeon Processor E5 v4 Family.”
https://software.intel.com/en-us/articles/introduction-to-code-and-
data-prioritization-with-usage-models.

D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan,

N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon,
and S. Rash, “Apache Hadoop goes realtime at Facebook,” in
International Conference on Management of data, 2011.

T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza,
and K. Veeraraghavan, “Gorilla: A fast, scalable, in-memory time
series database,” Proceedings of the VLDB Endowment, 2015.

A. S. Aiyer, M. Bautin, G. J. Chen, P. Damania, P. Khemani,

K. Muthukkaruppan, K. Ranganathan, N. Spiegelberg, L. Tang, and
M. Vaidya, “Storage infrastructure behind Facebook messages:
Using HBase at scale,” IEEE Data Eng. Bull., 2012.

G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-wide profiling: A continuous profiling infrastructure for data
centers,” IEEE micro, 2010.

“Emon user’s guide.”
https://software.intel.com/en-us/download/emon-user-guide.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in
USENIX Annual Technical Conference, 2008.

“Intel and Micron Produce Breakthrough Memory Technology.”
https://newsroom.intel.com/news-releases/intel-and-micron-
produce-breakthrough-memory-technology/.

V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen,
and T. F. Wenisch, “Persistency for synchronization-free regions,” in
Programming Language Design and Implementation, 2018.

A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level Persistency,”
in International Symposium on Computer Architecture, 2017.

J. Vienne, J. Chen, M. Wasi-Ur-Rahman, N. S. Islam, H. Subramoni,
and D. K. Panda, “Performance analysis and evaluation of infiniband
fdr and 40gige roce on hpc and cloud computing systems,” in [EEE
20th Annual Symposium on High-Performance Interconnects, 2012.

S. Cho, A. Suresh, T. Palit, M. Ferdman, and N. Honarmand,
“Taming the Killer Microsecond,” in International Symposium on
Microarchitecture, 2018.

L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of
the Killer Microseconds,” Communications of the ACM, 2017.

A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “Enhancing server
efficiency in the face of killer microseconds,” in International
Symposium on High Performance Computer Architecture, 2019.

A. Mirhosseini, A. Sriraman, and T. F. Wenisch, “Hiding the
Microsecond-Scale Latency of Storage-Class Memories with
Duplexity,” in Annual Non-Volative Memories Workshop, 2019.

L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn,
and J. Devietti, “LASER: Light, Accurate Sharing dEtection and
Repair,” in International Symposium on High Performance Computer
Architecture, 2016.

A. Sriraman and T. F. Wenisch, “Performance-Efficient Notification
Paradigms for Disaggregated OLDI Microservices,” in Workshop on
Resource Disaggregation, 2019.

A. Sriraman, S. Liu, S. Gunbay, S. Su, and T. F. Wenisch,
“Deconstructing the Tail at Scale Effect Across Network Protocols,”
The Annual Workshop on Duplicating, Deconstructing, and
Debunking, 2016.

D. Tsafrir, “The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops),” in Workshop on
Experimental computer science, 2007.

C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,”
in Workshop on Experimental computer science, 2007.

Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

[71]

[72]

[73]

[74]

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

performance network virtualization with SR-IOV,” Journal of
Parallel and Distributed Computing, 2012.

E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Thm, D. Han, and
K. Park, “mTCP: A Highly Scalable User-level TCP Stack for
Multicore Systems,” in USENIX Conference on Networked Systems
Design and Implementation, 2014.

A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A Protected Dataplane Operating System for High
Throughput and Low Latency,” in USENIX Conference on Operating
Systems Design and Implementation, 2014.

A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Maziéres, and

C. Kozyrakis, “Dune: Safe User-level Access to Privileged CPU
Features,” in USENIX Symposium on Operating Systems Design and
Implementation, 2012.

P. Emmerich, M. Pudelko, S. Bauer, and G. Carle, “User Space
Network Drivers,” in Proceedings of the Applied Networking
Research Workshop, 2018.

M. Lavasani, H. Angepat, and D. Chiou, “An FPGA-based in-line
accelerator for memcached,” IEEE Computer Architecture Letters,
2013.

T. R. Learmont, “Fine-grained consistency mechanism for optimistic
concurrency control using lock groups,” 2001.

C. J. Blythe, G. A. Cuomo, E. A. Daughtrey, and M. R. Hogstrom,
“Dynamic thread pool tuning techniques,” 2007.

A. Starovoitov, “BPF in LLVM and kernel,” in Linux Plumbers
Conference, 2015.

A. Yasin, Y. Ben-Asher, and A. Mendelson, “Deep-dive analysis of
the data analytics workload in cloudsuite,” in International
Symposium on Workload Characterization, 2014.

D. Chen, D. X. Li, and T. Moseley, “AutoFDO: Automatic
feedback-directed optimization for warehouse-scale applications,” in
International Symposium on Code Generation & Optimization, 2016.

T. Johnson, M. Amini, and X. D. Li, “ThinLTO: scalable and
incremental LTO,” in IEEE/ACM International Symposium on Code
Generation and Optimization, 2017.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal Block Placement and Replication in
Distributed Caches,” in International Symposium on Computer
Architecture, 2009.

1. Papadakis, K. Nikas, V. Karakostas, G. Goumas, and N. Koziris,
“Improving QoS and Utilisation in modern multi-core servers with
Dynamic Cache Partitioning,” in Proceedings of the Joined
Workshops COSH 2017 and VisorHPC 2017, 2017.

P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber,

J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi,
“Scale-out Processors,” in International Symposium on Computer
Architecture, 2012.

S. Bharadwaj, G. Cox, T. Krishna, and A. Bhattacharjee, “Scalable
Distributed Shared Last-Level TLBs Using Low-Latency
Interconnects,” in International Symposium on Microarchitecture,
2018.

R. Kumar, B. Grot, and V. Nagarajan, “Blasting Through the
Front-End Bottleneck with Shotgun,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2018.

A. Bhattacharjee, “Translation-Triggered Prefetching,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2017.

G. Cox and A. Bhattacharjee, “Efficient Address Translation for
Architectures with Multiple Page Sizes,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2017.

B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing
TLB reach by exploiting clustering in page translations,” in
International Symposium on High Performance Computer
Architecture, 2014.

B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt:
Coalesced large-reach TLBs,” in International Symposium on
Microarchitecture, 2012.

ISCA ’19, June 22-26, 2019, Phoenix, AZ, USA

[75]

[76]

(771

[78]

[79]

(80]

[81]

(82]

[83

[t

[84]
[85]

[86]

(87]

(88]

[89]

[90]

[91]

[92]

[93]

(94]

[95]

[96]

(971

[98]

V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Unsal, “Redundant
Memory Mappings for Fast Access to Large Memories,” in
International Symposium on Computer Architecture, 2015.

“Intel Memory Latency Checker v3.6.” https://software.intel.com/en-
us/articles/intelr-memory-latency-checker.

B. Falsafi and T. F. Wenisch, “A primer on hardware prefetching,”
Synthesis Lectures on Computer Architecture, 2014.

D. Meisner, J. Wu, and T. F. Wenisch, “BigHouse: A Simulation
Infrastructure for Data Center Systems,” in International Symposium
on Performance Analysis of Systems & Software, 2012.

E. Rotem, “Intel architecture, code name Skylake deep dive: A new
architecture to manage power performance and energy efficiency,” in
Intel Developer Forum, 2015.

D. Hackenberg, R. Schone, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell
processor,” in IEEE International Parallel and Distributed
Processing Symposium Workshop, 2015.

H. Akkan, M. Lang, and L. M. Liebrock, “Stepping towards
noiseless linux environment,” in International workshop on runtime
and operating systems for supercomputers, 2012.

“Intel resource director technology (rdt) in linux.”
https://01.org/intel-rdt-linux.

“Disclosure of H/W prefetcher control on some Intel processors.”
https://software.intel.com/en-us/articles/disclosure-of-hw-
prefetcher-control-on-some-intel-processors.

A. Arcangeli, “Transparent hugepage support,” in KVM forum, 2010.

A. S. Gadre, K. Kabra, A. Vasani, and K. Darak, “X-xen: huge page
support in xen,” in Linux Symposium, 2011.

B. Selman and C. P. Gomes, “Hill-climbing search,” Encyclopedia of
Cognitive Science, 2006.

L. A. Barroso, J. Dean, and U. Holzle, “Web search for a planet: The
google cluster architecture,” in IEEE Micro, 2003.

K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and

S. Reinhardt, “Understanding and designing new server architectures
for emerging warehouse-computing environments,” in ACM
SIGARCH Computer Architecture News, 2008.

V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web search
using mobile cores: quantifying and mitigating the price of
efficiency,” in ACM SIGARCH Computer Architecture News, 2010.

D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, “Fawn: A fast array of wimpy nodes,” in
Symposium on Operating Systems Principles, 2009.

P. Trancoso, J.-L. Larriba-Pey, Z. Zhang, and J. Torrellas, “The
memory performance of DSS commercial workloads in
shared-memory multiprocessors,” in International Symposium
High-Performance Computer Architecture, 1997.

L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system
characterization of commercial workloads,” in ACM SIGARCH
Computer Architecture News, 1998.

P. Andrew, M. C. Adrian, S. C. Eric, D. Chiou, and

K. Constantinides, “A reconfigurable fabric for accelerating
large-scale datacenter services,” in International Symposium on
Computer Architecuture, 2014.

Z.Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Characterizing data
analysis workloads in data centers,” in International Symposium on
Workload Characterization, 2013.

C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid, “Server engineering
insights for large-scale online services,” IEEE micro, 2010.

Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi, “Microarchitectural
Implications of Event-driven Server-side Web Applications,” in
International Symposium on Microarchitecture, 2015.

H. M. Makrani and H. Homayoun, “MeNa: A memory navigator for
modern hardware in a scale-out environment,” in International
Symposium on Workload Characterization, 2017.

C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
L. Tang, J. Mars, and R. Dreslinski, “Adrenaline: Pinpointing and
Reining in Tail Queries with Quick Voltage Boosting,” in

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

A. Sriraman et al.

International Symposium on High Performance Computer
Architecture, 2015.

H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in
International Symposium on Microarchitecture, 2015.

G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion,
“Energy Proportionality and Workload Consolidation for
Latency-critical Applications,” in ACM Symposium on Cloud
Computing, 2015.

M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini, and
K. S. McKinley, “Exploiting Heterogeneity for Tail Latency and
Energy Efficiency,” in International Symposium on
Microarchitecture, 2017.

S. Panneerselvam and M. Swift, “Rinnegan: Efficient Resource Use
in Heterogeneous Architectures,” in International Conference on
Parallel Architectures and Compilation, 2016.

C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,”
Communications of the ACM, 2018.

K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li,
G. Pekhimenko, S. Khan, and O. Mutlu, “Understanding Latency
Variation in Modern DRAM Chips: Experimental Characterization,
Analysis, and Optimization,” in International Conference on
Measurement and Modeling of Computer Science, 2016.

M. Awasthi, “Rethinking Design Metrics for Datacenter DRAM,” in
International Symposium on Memory Systems, 2015.

S. Volos, D. Jevdjic, B. Falsafi, and B. Grot, “An effective dram
cache architecture for scale-out servers,” tech. rep., 2016.

Y. Wang, A. Tavakkol, L. Orosa, S. Ghose, N. Ghiasi, M. Patel, J. S.
Kim, H. Hassan, M. Sadrosadati, and O. Mutlu, “Reducing DRAM

Latency via Charge-Level-Aware Look-Ahead Partial Restoration,”
in International Symposium on Microarchitecture, 2018.

C. Kaynak, B. Grot, and B. Falsafi, “Confluence: Unified Instruction
Supply for Scale-out Servers,” in International Symposium on
Microarchitecture, 2015.

J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the
Tail: Hardware, OS, and Application-level Sources of Tail Latency,”
in ACM Symposium on Cloud Computing, 2014.

M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Measuring
interference between live datacenter applications,” in International
Conference on High Performance Computing, Networking, Storage
and Analysis, 2012.

J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in International Symposium on
Microarchitecture, 2011.

X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes, “Cpi 2: CPU performance isolation for shared compute
clusters,” in European Conference on Computer Systems, 2013.

Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding
Long Tails in the Cloud,” in NSDI, 2013.

L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The
Impact of Memory Subsystem Resource Sharing on Datacenter
Applications,” in Int. Symposium on Computer Architecture, 2011.

J. Mars and L. Tang, “Whare-map: heterogeneity in homogeneous
warehouse-scale computers,” in International Symposium on
Computer Architecture, 2013.

C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware Scheduling
for Heterogeneous Datacenters,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2013.

X. Yang, S. M. Blackburn, and K. S. McKinley, “Elfen Scheduling:
Fine-Grain Principled Borrowing from Latency-Critical Workloads
Using Simultaneous Multithreading,” in USENIX Annual Technical
Conference, 2016.

N. Mishra, J. D. Lafferty, and H. Hoffmann, “Esp: A machine
learning approach to predicting application interference,” in
International Conference on Autonomic Computing, 2017.

	Introduction
	Understanding Microservice Performance
	The Production Microservices
	Characterization Approach
	System-Level Characterization
	Architectural Characterization

	``Soft'' SKUs
	SKU: System Design
	Methodology
	Evaluation
	Knob Characterization
	Soft SKU Performance

	Discussion
	Related Work
	Conclusion
	Acknowledgement
	References

