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Abstract
Modern data-center applications often comprise a large
amount of code, with substantial working sets, making them
good candidates for code-layout optimizations. Although
recent work has evaluated the impact of profile-guided intra-
module optimizations and some cross-module optimiza-
tions, no recent study has evaluated the benefit of function
placement for such large-scale applications. In this paper,
we study the impact of function placement in the context
of a simple tool we created that uses sample-based profiling
data. By using sample-based profiling, this methodology fol-
lows the same principle behind AutoFDO, i.e. using profil-
ing data collected from unmodified binaries running in pro-
duction, which makes it applicable to large-scale binaries.
Using this tool, we first evaluate the impact of the traditional
Pettis-Hansen (PH) function-placement algorithm on a set of
widely deployed data-center applications. Our experiments
show that using the PH algorithm improves the performance
of the studied applications by an average of 2.6%. In addition
to that, this paper also evaluates the impact of two improve-
ments on top of the PH technique. The first improvement is
a new algorithm, called C3, which addresses a fundamental
weakness we identified in the PH algorithm. We not only
qualitatively illustrate how C3 overcomes this weakness in
PH, but also present experimental results confirming that
C3 performs better than PH in practice, boosting the perfor-
mance of our workloads by an average of 2.9% on top of
PH. The second improvement we evaluate is the selective
use of huge pages. Our evaluation shows that, although ag-
gressively mapping the entire code section of a large binary
onto huge pages can be detrimental to performance, judi-
ciously using huge pages can further improve performance
of our applications by 2.0% on average.

1. Introduction
Modern server workloads are large and complex programs
that have been highly tuned over the course of their devel-
opment. As a result, many such applications lack obvious
“hot spots” that an engineer can optimize to deliver large
overall performance improvements. Instead, the sheer vol-
ume of code that must be executed can be a bottleneck for
the system. As a result, code locality is a relevant factor for
performance of such systems.

While the large size and performance criticality of such
applications make them good candidates for profile-guided
code-layout optimizations, these characteristics also im-
pose scalability challenges to optimize these applications.
Instrumentation-based profilers significantly slow down the
applications, often making it impractical to gather accurate
profiles from a production system. To simplify deployment,
it is beneficial to have a system that can profile unmodi-
fied binaries, running in production, and use these data for
feedback-directed optimization. This is possible through the
use of sample-based profiling, which enables high-quality
profiles to be gathered with minimal operational complexity.
This is the approach taken by tools such as AutoFDO [1],
and which we also follow in this work.

The benefit of feedback-directed optimizations for some
data-center applications has been evaluated in some pre-
vious work, including AutoFDO [1] and LIPO [2]. Chen
et al. [1] evaluated the impact of intra-module feedback-
directed optimizations, while Li et al. [2] evaluated the im-
pact of some cross-module optimizations, in particular in-
lining and indirect-call promotion. However, no recent work
has evaluated the benefit of function placement for large-
scale data-center applications.

In this paper, we demonstrate the benefit of optimizing
function placement for these large-scale server applications.
By default, the linker places functions according to the order
the object files are specified in the command line, with no
particular order within each object file. This arbitrary layout
disperses the hot code across the text section, which reduces
the efficiency of caches and TLBs. The potential to improve
the function order and thus the performance of a binary was
demonstrated by Pettis and Hansen [3]. In this work, we first
evaluate the performance impact of their technique on a set
of widely deployed data-center applications, and then show
the impact of two improvements on top of this traditional
technique.

Our study is conducted in the context of hfsort, which
is a simple tool we created to sort the functions in a binary.
Our methodology was designed to be simple enough to be
applied to large-scale production systems with little friction.
Like AutoFDO [1], this is achieved by leveraging sample-
based profiling.



Overall, this paper makes the following contributions:
• it evaluates the impact of Pettis and Hansen’s traditional

function-ordering algorithm on a set of widely deployed
data-center applications;

• it identifies an opportunity for potential improvement
over Pettis and Hansen’s algorithm, and then describes
a novel algorithm based on this insight;

• it describes a simple, user-level approach to leverage
huge pages for a program’s text section on Linux;

• it experimentally evaluates the aforementioned tech-
niques, demonstrating measurable performance improve-
ments on our set of data-center applications.

This paper is organized as follows. We start by describing
the applications studied in this paper and some key perfor-
mance characteristics in Section 2. Then Section 3 presents
an overview of our methodology for improving code layout,
followed by a description of techniques for building a dy-
namic call graph (Section 4) and for sorting the functions
(Section 5). Section 6 then describes our technique for lever-
aging huge pages for the text section on Linux. A thorough
evaluation of our techniques on four widely deployed server
applications is presented in Section 7. Finally, related work
is discussed in Section 8 and Section 9 concludes the paper.

2. Studied Applications
In order to demonstrate the importance of both code locality
and the proposed techniques for server applications, this pa-
per focuses on four systems that account for a large portion
of the computing cycles spent to run some of the most pop-
ular websites in the world. The first of these systems is the
HipHop Virtual Machine (HHVM) [4], which is the PHP and
Hack execution engine powering many servers across the In-
ternet, including three of the top ten websites in the world:
Facebook, Wikipedia, and Baidu [5]. The second system
evaluated in this paper is TAO [6], a highly distributed, in-
memory, data-caching service used at Facebook. The other
two systems are AdIndexer, an ads-related service, and Mul-
tifeed Aggregator, a service used to determine what is shown
in the Facebook News Feed.

These four applications contain between 70 and 199 MB
of program text. In the case of HHVM, which includes a JIT
compiler, there is an even larger portion of dynamically gen-
erated code. Note, however, that the function-ordering tech-
niques studied in this paper are applied statically and thus
do not impact the dynamically generated code in HHVM.
For running Facebook, the breakdown of HHVM’s execution
time is 70% in static code and 30% in dynamic code. For all
these applications, while the majority of the time is spent in
smaller, hot portions of the code, there is an enormous tail of
lukewarm code that executes with moderate frequency. This
long tail competes for I-TLB, I-cache, and LLC space with
the hot code. The resulting cache pressure from this large
code footprints leads to high miss rates at all levels.

.text IPC I-TLB I-Cache
Application (MB) MPKI MPKI
AdIndexer 186 0.61 0.48 9.84
HHVM 133 0.53 1.28 29.68
Multifeed 199 0.87 0.40 5.30
TAO 70 0.30 3.08 67.42

Table 1. Code size and performance characteristics of Face-
book server applications. (MPKI means misses per 1000 in-
structions.)

Frequent misses stall the processor front end and limit
opportunities for out-of-order scheduling, leading to low
instructions-per-cycle (IPC). Table 1 shows the binary size
and cache performance of the studied applications. For
example, without the optimizations studied in this paper,
HHVM suffers 29.7 I-cache misses and 1.3 I-TLB misses
per thousand instructions, and processes only 0.53 instruc-
tions per cycle. These high miss rates indicate that the pro-
cessor’s resources are significantly underutilized due to fre-
quent front-end stalls.

3. System Overview
This section gives an overview of the methodology used in
this paper to improve binary layout. One of the main design
goals of this methodology was to be practical enough to
be used in real, large-scale production systems. Figure 1
illustrates the steps and components of this methodology.

The first step in our methodology is to collect profile data.
To do so, we use production servers running unmodified bi-
naries. We select a small set of loaded servers for profiling,
and we use a sampling-based tool (the Linux perf utility)
to gather profile data. The perf tool uses hardware perfor-
mance counters and interrupts the process at the specified
intervals to collect profile data. As described in Section 4,
we use the instructions perf event to collect profile data (ei-
ther last-branch records or stack traces) at regular intervals
measured in number of dynamic instructions executed.

The profile data is fed into a tool that generates an op-
timized list of hot functions. The tool we built to sort the
hot functions is called hfsort, and it is available as open
source [7]. This tool starts by processing the profile data to
build a dynamic call graph, as described in Section 4. This
profile-based call graph is the input to the layout algorithm,
which uses the node and edge weights to determine an ap-
propriate ordering for the functions. The layout algorithm
proposed in this paper is described in detail in Section 5.2.
To enable the actual function reordering by the linker, the
program is compiled using gcc -ffunction-sections,
which places each function in an appropriately named ELF
section [8]. The hfsort tool then generates a customized
linker script, which directs the linker to place sections (i.e.
functions) in a specific order. Because the linker may em-
ploy identical code folding to reduce code size by aliasing
functions with identical bodies, the generated linker script
should list all aliased functions to ensure proper placement.
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Figure 1. System overview.

This methodology is attractive from a deployment per-
spective for two main reasons. First, it does not require a
special profiling build. Instead, profile data is collected with
negligible overhead on unmodified binaries running in their
regular production environments. Second, this methodology
uses simple, off-the-shelf tools to perform the optimization.
perf is a standard utility, and so are linkers such as gold [9]
with support for a custom script. The function ordering can
be performed by an external utility such as hfsort, and need
not be explicitly supported by the linker or the compiler.

4. Building the Call Graph
Application binaries are normally constructed around the
concept of functions (or procedures) from a higher-level pro-
gramming language. The binary code for each function is
normally generated contiguously in the binary, and transi-
tions between functions are performed via function calls and
returns. In this work, we focus on improving the locality of
these transitions among the functions at runtime. To achieve
this goal, it is natural to use a call graph representation of
the binary. A call graph G = (V,A) contains a set of nodes
V , each associated with a corresponding function f in the
binary, and also a set of arcs A, where each arc f ! g repre-
sents the fact that function f calls function g. In order to rep-
resent the dynamic occurrence of transitions between func-
tions, we use a weighted call graph. That is, associated with
each arc f ! g, there is a weight w(f ! g) representing
the number of times that function f calls g at runtime.

Although a non-weighted call graph for a program can
be built statically, obtaining a weighted call graph requires
some sort of profiling. The straightforward profiling ap-
proach is to instrument the program with counters inserted at
every call site, and then to run the program on representative
profiling inputs. For binary layout optimizations, which are
static transformations, this profiling data is then fed into a
pass that rebuilds the binary using the data. This approach is
commonly used for profile-guided optimizations, including
in the seminal code-layout work by Pettis and Hansen [3].

Overall, there are two main drawbacks with this approach
based on instrumentation, which complicate its use in pro-
duction environments. First, it requires intrusive instrumen-
tation of the program and an extra, special build of the ap-
plication. Furthermore, to instrument the whole application,
including libraries, this instrumentation should be done ei-
ther at link-time or on the final binary. Second, instrumenta-
tion incurs significant performance and memory overheads
that are often inadequate to be used in real production en-

vironments. As a result, a special, controlled environment
is often needed to execute the profiling binary, which then
limits the amount of profiling data that can be collected. To-
gether, these issues result in many production environments
completely opting out of profile-guided optimizations, de-
spite their potential performance benefits.

The alternative to overcome the drawbacks of instrumen-
tation is to rely on sampling techniques to build a weighted
call graph. Compared to instrumentation, sampling-based
techniques are intrinsically less accurate, although this inac-
curacy can be limited by collecting enough samples. Further-
more, efficient sampling techniques enable the collection of
profiling data in actual production environments, which has
the potential to be more representative than instrumentation-
based profiles collected in less realistic environments.

We have experimented with two sampling-based tech-
niques that have negligible overheads and thus can be used
to obtain profiling data on unmodified production systems.
The first one is to use hardware support available on modern
Intel x86 processors, called last branch records (LBR) [10].
This is basically a 16-entry buffer that keeps the last 16 ex-
ecuted control-transfer instructions, and which can be pro-
grammed to filter the events to only keep records for func-
tion calls. The caller-callee addresses from the LBR can be
read through a script passed to the Linux perf tool. The
second approach we have experimented with is based on
sampling stack traces instead of flat profiles, which is also
used in other work, e.g. the pprof CPU profiler. This can
be done very efficiently, in particular for programs compiled
with frame pointers. Stack traces can be obtained via perf’s
--call-graph option. From a stack trace, a relatively accu-
rate weighted call graph can be computed by just looking at
the top two frames on the stack.1 More precisely, the weight
w(f ! g) of arc f ! g can be approximated by how many
sampled stack traces had function g on the top with f imme-
diately below it. Our experiments with these two sampling-
based approaches revealed that they lead to weighted call
graphs with similar accuracy.

Figure 2 illustrates a dynamic call graph that can be
built with either of these sampling-based approaches. For
example, the weight w(B ! C) = 30 means that, via
hardware counters, there were 30 call entries for B calling
C in the LBR, or, alternatively via stack traces, that 30
sampled stack traces had function C at the top with function
B immediately below it.

1 We have found that looking at lower frames on the stack can distort the
weights.
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Figure 2. Example of a dynamic call graph.

5. Function-Ordering Heuristics
Petrank and Rawitz [11] demonstrated that finding an op-
timal data or code placement that minimizes cache misses
is a NP-hard problem. Furthermore, they also showed that
this problem is unlikely to have an efficient approximate
solution either. Besides that, server applications also typi-
cally have a very large set of functions, in the order of hun-
dreds of thousands or more, which render applying an op-
timal, exponential-time solution impractical. Therefore, in
practice, heuristic solutions are applied to these problems.

This section describes two heuristics to obtaining a binary
layout. Section 5.1 describes a prior heuristic by Pettis and
Hansen [3], while Section 5.2 describes the novel heuristic
proposed in this paper. Section 7 presents an experimental
evaluation comparing the performance impact of these tech-
niques on the applications described in Section 2.

5.1 Pettis-Hansen (PH) Heuristic
Pettis and Hansen [3] studied various aspects of code layout,
including reordering functions through the linker to improve
code locality (Section 3 in [3]). Their function-ordering al-
gorithm is a commonly used technique in practice, having
been implemented in compilers, binary optimizers, and per-
formance tools [3, 12–15]. We describe their heuristic for
this problem in this section, which we call the PH heuristic,
and illustrate how it operates in a simple example.

The PH heuristic is based on a weighted dynamic call
graph. However, the call graph used by PH is undirected,
meaning that an arc between functions F and G repre-
sents that either function F calls function G, or function G
calls F , or both. Although subtle, this indistinction between
callers and callees in the call graph can lead to sub-optimal
results as illustrated in Section 5.2.

Once the call graph is constructed, PH processes each
edge in the graph in decreasing weight order. At each step,
PH merges the two nodes connected by the edge in consid-
eration. When two nodes are merged, their edges to the re-
maining nodes are coalesced and their weights are added up.
During the algorithm, a linear list of the original nodes as-
sociated with each node in the graph is maintained. When
merging two nodes a and b, careful attention is paid to the
original connections in the graph involving the first and last
nodes in the lists associated with a and b. Reversing of either
a or b is evaluated as a mechanism for increasing the weight
of the new adjacent nodes that will result from the merge,
and the combination that maximizes this metric is chosen.
The process repeats until there are no edges left in the graph.

A ; B C
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90

(a) after 1st step

A ; B C ; D
70

(b) after 2nd step

B; A; C ; D

(c) final graph

Figure 3. PH heuristic processing example from Figure 2.

We illustrate the operation of the PH heuristic in the
example in Figure 2. In the first step, PH processes the
heaviest-weight edge, A ! B, merging nodes A and B
and obtaining the graph in Figure 3(a). In the second step,
the heaviest edge in Figure 3(a), connecting C and D, is
selected. In the final step, the only edge remaining is used to
merge nodes A;B and C;D. At this point, four different
options are considered, corresponding to either reversing
or not each of the nodes. The edges in the original graph
(Figure 2) are analyzed, and the choice to make A and C
adjacent is made because they are connected by the edge
with the heaviest weight. To realize this decision, the nodes
in the merged node A;B are reversed before making the final
merge. The final ordering is illustrated in Figure 3(c).

5.2 Call-Chain Clustering (C3) Heuristic
In this section, we describe a new call-graph-based heuris-
tic, which we named Call-Chain Clustering (C3). We first
present a key insight that distinguishes C3 from the PH
heuristic, and then describe C3 and illustrate its operation
with an example.

Unlike PH, C3 uses a directed call graph, and the role of
a function as either the caller or callee at each point is taken
into account. One of the key insights of the C3 heuristic is
that taking into account the caller/callee relationships mat-
ters. We illustrate this insight on a simple example with two
functions, F and G, where function F calls G. In order to
improve code layout, compilers typically layout a function
so that the function entry is at the lower address. During the
execution of a function, instructions from higher address are
fetched and executed. Representing the size of function F by
|F |, the average distance in the address space of any instruc-
tion in F from the entry of F is |F |/2. So, assuming this
average distance from the entry of F to the call to G within
F and the layout where G follows F in the binary, the dis-
tance to be jumped in the address space when executing this
call G instruction in F is |F |/2. This is illustrated in Fig-
ure 4(a). Now consider the layout where G is placed before
F . In this case, the distance to be jumped by the call G in-
struction is |G|+|F |/2. This is illustrated in Figure 4(b). The



F G

|F| |G|

|F| / 2

(a)
|G| + |F| / 2

G F

|G| |F|

(b)

Figure 4. Two possible layouts for functions F and G,
where F calls G.

distance in this second case can be arbitrarily larger than in
the first case depending on the size of G. And, the larger the
distance, the worse the locality: there is a higher probability
of crossing a cache line or a page boundary.

The C3 heuristic operates as follows. It processes each
function in the call graph, in decreasing order of profile
weights. Initially, each function is placed in a cluster by it-
self. Then, when processing each function, its cluster is ap-
pended to the cluster containing its most likely predecessor
in the call graph. The intuition here is that we want to place a
function as close as possible to its most common caller, and
we do so following a priority from the hottest to the cold-
est functions in the program. By following this order, C3

effectively prioritizes the hotter functions, allowing them to
be placed next to their preferred predecessor. The only thing
that blocks the merge of two clusters is when either of them
is larger than the merging threshold. The merging threshold
that C3 uses is the page size because, beyond this limit, there
is no benefit from further increasing the size of a cluster: it
is already too big to fit in either an instruction cache line or
a memory page.

C3’s last step is to sort the final clusters. In this step,
the clusters are sorted in decreasing order according to a
density metric. This metric is the total amount of time spent
executing all the functions in the cluster (computed from the
profiling samples) divided by the total size in bytes of all the
functions in the cluster (available in the binary):

density(c) =
time(c)

size(c)

The intuition for using this metric is to try to pack most
of the execution time in as few code pages as possible, in
order to further improve locality. A large, hot function puts
more pressure on the cache hierarchy than an equally hot
but smaller function. Therefore, preferring the latter will
minimize the number of cache lines or TLB pages required
to cover most of the program’s execution time.

Note that, although we limit the cluster sizes through
the merging threshold, we still place consecutive clusters
adjacently in memory, with no gaps between them.

We now illustrate how C3 processes the example from
Figure 2. For simplicity, let us assume that the amount of
time spent in each function equals the sum of the weights
of its incoming arcs in the call graph. Therefore, C3 starts
by processing function B, which is then appended to the
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Figure 5. Example of C3 heuristic processing the call graph
from Figure 2.

cluster containing A. The result of this merge is illustrated in
Figure 5(a). Next, function D is processed, and it is merged
with the cluster containing function C. The result of this step
is shown in Figure 5(b). At this point, there are two clusters
left: A;B and C;D. Next, function C is processed, and its
cluster (C;D) is appended to cluster A;B, resulting in the
final cluster A;B;C;D, which is illustrated in Figure 5(c).

We now quantitatively compare the final layouts obtained
by PH (B;A;C;D) and C3 (A;B;C;D) for the example
in Figure 2. For simplicity, we assume that all 4 functions
have the same size |f | and that all calls appear exactly in the
middle of the caller’s body (i.e. at a |f |/2 distance from the
caller’s start). Figures 6(a) and (b) illustrate the code layouts
obtained using the PH and C3 heuristics, respectively. These
figures also illustrate the distances between the call instruc-
tions and their targets with both code layouts. Plugging in
the arc weights from the call graph from Figure 2, we obtain
the total distance jumped through the calls in each case:

cost(PH) = 100⇤1.5⇤|f |+40⇤0.5⇤|f |+30⇤1.5⇤|f |+90⇤0.5⇤|f |
) cost(PH) = (150 + 20 + 45 + 45) ⇤ |f | = 260 ⇤ |f |
cost(C3) = 100⇤0.5⇤|f |+40⇤1.5⇤|f |+30⇤0.5⇤|f |+90⇤0.5⇤|f |
) cost(C3) = (50 + 60 + 15 + 45) ⇤ |f | = 170 ⇤ |f |

Therefore, relative to PH, C3 results in a 35% reduction
in the total call-distance in this case. In practice, as the
experiments in Section 7 demonstrate, such reduction in call-
distance results in a reduction in I-cache and I-TLB misses,
and therefore an increase in IPC and performance.

6. Huge Pages for the Text Section
Function layout heuristics like C3 and PH increase perfor-
mance by improving the efficiency of the processor’s caches,
particularly the I-TLB. Once the hot functions have been
clustered into a small subsection of the binary using these
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Figure 6. Call-distances for the layouts obtained for the
example from Figure 2 using (a) the PH heuristic, and (b)
the C3 heuristic.

techniques, it is possible to exploit TLB features to further
reduce misses and improve performance.

Modern microprocessors support multiple page sizes
for program code. For example, Intel’s Ivy Bridge micro-
architecture supports both 4 KB and 2 MB pages for instruc-
tions. Using these huge pages allows the processor to map
larger address ranges simultaneously, which greatly reduces
pressure on the I-TLB. There are usually a limited number
of huge I-TLB entries available, e.g. Ivy Bridge provides
only 8 entries, so it is important for programs to use these
entries judiciously.

On systems that support multiple page sizes, the use of
huge pages for either data or code is always an opportunity
to be evaluated for large-scale applications. On Linux, the
libhugetlbfs library [16] provides a simple mechanism
to map a program’s entire text section onto huge pages.
However, as our experiments in Section 7.5 demonstrate,
mapping the entire text section of a binary onto huge pages
can put too much pressure on the limited huge I-TLB entries
and thus result in a performance degradation.

In principle, one could add support for partially map-
ping a binary’s text section onto huge pages by modifying
the Linux loader. However, shipping kernel patches has its
own drawbacks in practice, as it increases deployment risk
and slows down the experimental process compared to an
application-level solution.

To avoid this complexity, we implement huge page map-
ping in user code via a new library. At startup, the appli-
cation copies the hot function section to scratch space, and
unmaps that address range. That range is then re-mapped
using anonymous huge pages, and the text is copied back
in place.2 This technique allows the application to map the
hottest functions using a small number of huge pages. We
measure the performance impact of this technique in Sec-
tion 7.

2 Note that unmapping .text will make symbols unavailable to perf;
however this can be easily overcome by writing the static symbols to
/tmp/perf-PID.map at startup.

7. Evaluation
This section evaluates the PH and C3 heuristics, as well
as the selective use of huge pages, on the four large-scale
applications introduced in Section 2: AdIndexer, HHVM [4],
Multifeed, and TAO [6].

The experimental results presented here were obtained on
Linux-based servers powered by dual 2.8 GHz Intel Xeon
E5-2680 v2 (Ivy Bridge) microprocessors, with 10 cores
and 25 MB LLC per processor. The amount of RAM per
server was 32 GB for HHVM and Multifeed, and 144 GB for
AdIndexer and TAO. The applications were compiled using
GCC 4.9 with -O3 optimization level.

We measured the performance of HHVM running Face-
book using a custom-built performance-measurement tool.
This tool first warms up HHVM’s JIT and the data layer
(e.g. MemCache), and then runs a measurement phase. In
this phase, the server is heavily loaded with requests from
a selected set of production HTTP requests, and the CPU
time consumed by each request is measured. The overall re-
sult is a weighted average of the individual endpoint results
representing the contribution of each endpoint to the overall
production workload [17].

For AdIndexer, Multifeed, and TAO the performance re-
sults were obtained by running the same production traffic
on identical machines. The performance was measured by
monitoring the CPU utilization of the servers over a few
hours during steady state (i.e. after they were warmed up).
Detailed performance data was obtained from the hardware
performance counters read through the Linux perf tool.

7.1 Performance Results
We gather performance results using five different configu-
rations. The first three of these configurations correspond to
the three different approaches to order the functions: the de-
fault order picked by the linker (the baseline), PH, or C3.
The other two configurations correspond to enabling the use
of huge pages on top of PH and C3. For both PH and C3,
only the hot part of the text section, which includes the func-
tions seen during profiling, is mapped to huge pages.

Figure 7 compares the performance of our applications
with the PH and C3 function-sorting algorithms, with and
without the use of huge pages, over the baseline binaries. For
this comparison, we looked at both the CPU utilization and
the instructions-per-cycle (IPC). For all these workloads, we
found that both of these metrics perfectly correlate.

Figure 7 shows that C3 invariably performs better than
PH. Without using huge pages, C3 achieves an average IPC
improvement of 5.46%, compared to 2.64% for PH. Map-
ping the hot functions onto huge pages boosts the average
performance improvement with PH to 6.35%, while the per-
formance with C3 goes up to 7.51% on average. The largest
performance improvement was measured for TAO, where
C3 with huge pages improved performance by 11.0%. Over-
all, by using C3 and huge pages, the average performance
improvement over PH is 4.87%.
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Figure 7. Performance comparison on the Facebook work-
loads (measured in IPC).

In all scenarios, C3 outperforms PH. However, we notice
that the benefit of C3 over PH is smaller when huge pages
are enabled. As shown in Section 7.2, this is because using
huge pages greatly reduces the I-TLB footprint of the appli-
cation, and so the particular ordering algorithm is somewhat
less important in this scenario. We also note that, in all these
scenarios, the use of huge pages was beneficial. However,
as studied in Section 7.5, the use of huge pages has to be
judicious otherwise it may degrade performance.

7.2 I-TLB Performance Comparison
To understand the performance improvements achieved by
the different configurations, we look at detailed micro-
architectural counters obtained through the Linux perf tool
to compute misses per thousand instructions (MPKI) dur-
ing steady-state execution. This section compares the effect
of the different configurations on the I-TLB misses for our
workloads, and Section 7.3 compares I-cache misses.

Figure 8 compares the I-TLB miss rates for the various
configurations. Without huge pages, PH reduces the I-TLB
misses by 32.4% on average, while C3 reduces this metric
by 44.2% on average over the baseline. This is the main
effect of function sorting, and it directly correlates with the
performance wins reported in Section 7.1. With huge pages,
the gap between C3 and PH on I-TLB misses is smaller
(67.4% versus 65.6%, respectively). In all configurations,
C3 reduces I-TLB misses more than PH does. Similarly,
the use of huge pages for the hot functions is beneficial
in all cases. Overall, by combining C3 with huge pages,
we observed a 51.8% reduction in I-TLB misses over PH
without huge pages.

7.3 I-Cache Performance Comparison
Figure 9 compares the I-cache performance for the various
configurations. Without huge pages, C3 always improves I-
cache misses, providing an average reduction of 5.9% in this
metric. PH, however, sometimes increases the I-cache miss
rate, and results on a 1.7% average reduction in this metric.
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Figure 8. I-TLB performance comparison on the Facebook
workloads.
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Figure 9. I-cache performance comparison on the Facebook
workloads.

Another interesting observation is that the use of huge pages
invariably increases the I-cache misses, on average by 3.8%
with PH and 3.0% with C3. Although we could not confirm
the root-cause for this effect, we suspect it may be due to an
overlap in the memory hierarchy when I-TLB misses and I-
cache misses occur simultaneously and how this situation is
reported through the hardware performance counters. Since
huge pages significantly reduce the I-TLB misses, we sus-
pect that, when enabling huge pages, fewer I-cache misses
are masked by I-TLB misses, thus increasing the number of
I-cache misses reported.

7.4 Call-Distance Comparison
In Section 5.2, we illustrated and provided some intuition
about how C3 can theoretically reduce the average call-
distance compared to PH. In this section, we provide some
experimental data confirming this effect in practice.

For this study, we focus on AdIndexer, HHVM, and Mul-
tifeed. We instrumented the hfsort tool to report various
statistics after the functions have been sorted with the two
different methods. The collected data is shown in Figures 10
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Figure 10. Percentage of calls within 64 B (cache-line size)
with PH and C3.

and 11, which show that C3 significantly increases the num-
ber of calls with a distance of 64 B and 4 KB. On average, C3

increases the number of calls within 64 B and 4 KB over PH
by 16.8% and 14.7%, respectively. These are the calls that
may turn out to be within a I-cache line or a regular memory
page. The increase on these metrics aligns with C3’s benefit
in reducing I-cache misses and I-TLB misses without huge
pages compared to PH.

When we look at the number of calls within the 2 MB
huge-page size, there is very little difference between PH
and C3. In fact, both PH and C3 are able to keep the vast
majority of the calls (⇠94%) within a 2 MB distance. This
explains why there is a smaller gap in I-TLB misses and
performance between the two sorting algorithms when huge
pages are used.

7.5 Effect of Huge Pages without Function Sorting
In all the experiments above, the use of huge pages was
restricted to the hot functions in the .text section of the
binary, i.e. those that where sampled at least once during
the profiling collection. However, it is possible to apply
huge pages without profiling information. In this section, we
evaluate the approach of mapping the entire .text section
onto huge pages without clustering the hot functions.

We performed this study for the HHVM binary, mapping
all its 133 MB of static binary onto huge pages, and preserv-
ing the functions in the default order picked by the linker.
Our evaluation of this version of HHVM revealed a 1.15%
performance regression running Facebook web traffic when
compared to the baseline with the same function order and
without mapping any function to huge pages. Analyzing the
I-TLB behavior, we observed that mapping all the text sec-
tion onto huge pages doubled the number of I-TLB misses
compared to the baseline. Aggressively mapping too many
pages onto huge pages puts too much pressure on the lim-
ited huge-page I-TLB entries — Intel IvyBridge has only 8
huge-page I-TLB entries, organized in a single level. There-
fore, even though our experiments in Section 7.1 showed that
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Figure 11. Percentage of calls within 4 KB (regular page
size) with PH and C3.

combining huge pages with hot-function clustering is bene-
ficial, the simple approach of mapping all the text section
onto huge pages can be detrimental to the performance of
large binaries like HHVM. Besides this performance issue,
our experience mapping too many pages as huge in produc-
tion systems has revealed that the Linux kernel starts to mis-
behave after some time, being overwhelmed by the need to
relocate physical pages to satisfy requests for huge pages.
Overall, our experience mapping functions onto huge pages
proved that they need to be used judiciously, such as in com-
bination with hot-function clustering as applied in this work.

7.6 Comparison with gprof

The gprof profiling tool [13] implements a variant of the PH
algorithm, available through the ---function-ordering

option. This implementation is similar to PH in the that
it clusters functions without paying attention to their roles
(caller vs. callee) like C3 does. However, gprof’s technique
is different from PH because it also partitions the functions
based on how hot they are and their number of callers.
Basically, the hottest functions with the most callers are
placed first, followed by other hot functions, followed by
colder functions, finally followed by unused functions at the
end [13].

In order to evaluate gprof’s technique on the same data
collected for hfsort, we wrote a small tool to convert the
perf data that feeds hfsort into gprof’s gmon format [13].
These data was passed to gprof --function-ordering,
which outputs its selected list of functions. This list of func-
tions was then passed to the linker via a linker script, in the
same way that the list of functions generated by hfsort is
used.

For this evaluation, we focused on AdIndexer, HHVM,
and Multifeed, with and without the use of huge pages. Fig-
ure 12 presents the results, along with the data presented
for PH and C3 in Section 7.1. Without huge pages, gprof
performs slightly better than PH, with a 0.44% advantage
on average, but still significantly worse than C3. However,
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Figure 12. Performance comparison of gprof, PH, and C3

function-sorting algorithms.

with huge pages, gprof performs significantly worse than
the other techniques. We found that this is due to the fact
that gprof lists even unused functions. As shown in Sec-
tion 7.5, mapping too many pages as huge can have a nega-
tive effect. Also, we note that, in order to enable the linker
to successfully place the functions in a reasonable amount
of time (⇠ 1 hour), we had to limit the number of functions
output by gprof to 20,000. Based on the observation made
in Section 7.5, we suspect that, had we been able to success-
fully link the binaries with all functions output by gprof, the
binaries would perform even worse, since this would poten-
tially increase the pressure on the processor’s 2 MB I-TLB
entries even further.

7.7 Interaction with Basic-Block Reordering
Many compilers and binary-optimization tools use profiling
data to reorder basic blocks within a function, with the goals
of improving I-cache performance and branch prediction.
Such techniques are implemented in GCC and production
compilers from Intel and Microsoft, for example. Most of
these techniques are based on code instrumentation to ob-
tain profiling data, which makes them less attractive from
a deployment point of view. One interesting alternative is
AutoFDO [1], which is based on non-intrusive profiling via
hardware performance counters, similar to what we use in
this paper. In this section, we evaluate our function-sorting
technique in combination with basic-block reordering and
hot-cold splitting.

Unfortunately, AutoFDO support in the latest GCC ver-
sion currently available in our environment (GCC 4.9) is not
very stable, and we have encountered correctness issues re-
lated to C++ exceptions when applying AutoFDO to our
binaries. So, instead, in this evaluation we use an internal
binary-optimization tool [18] based on LLVM [19], which is
in advanced development stage at this point. This tool uses
last-branch record (LBR) profiling data collected with the
Linux perf tool to reorder the basic blocks in a linked bi-
nary, including moving cold blocks to a separate section.
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Figure 13. Performance comparison of basic-block and
function reordering (measured in IPC).

Figure 13 shows the results of our comparison on the
HHVM binary. These data shows that, although both tech-
niques aim at improving code locality, they play comple-
mentary roles and their benefits are additive. When applied
alone, basic-block reordering provides a 4.5% performance
improvement for HHVM, while function reordering with
huge pages provides an 8.0% improvement. When applied in
combination, the two techniques together improve HHVM’s
performance by 12.5%.

8. Related Work
This section describes some of the previous related work
on changing the binary layout in order to improve perfor-
mance. Performance can be improved in different ways, by
improving the behavior of different architectural or micro-
architectural features. So we break down the related work
roughly based on the hardware feature that they try to im-
prove the behavior.

Our work increases performance by improving code lo-
cality, which primarily reduces I-TLB misses, and also I-
cache misses. The seminal work by Pettis and Hansen [3]
tackles the same problems, but with different approaches. In
fact, they proposed three different techniques, one of which
is the reordering of functions. That technique is the PH
heuristic described in Section 5.1 in this paper, and which
we extensively compared against C3 in Section 5.2 and Sec-
tion 7. This algorithm is commonly used in practice, hav-
ing been implemented in compilers, binary optimizers, and
performance tools [3, 12–14]. Besides function reordering,
PH also proposed two other intra-procedural transformations
to improve code locality: a technique to improve the layout
of a function by reordering its basic blocks, and a hot-cold
splitting technique that separates the cold blocks of a func-
tion separate from its hot blocks. These techniques are im-
plemented in the binary optimizer used in the evaluation in
Section 7.7 [18] and, as our evaluation demonstrated, are or-
thogonal to function reordering.



The GCC compiler [8] supports function reordering via
its link-time optimizer (LTO), which simply partitions func-
tions into two sections (.text.hot and .text.unlikely)
based on profiling data to segregate the hot and cold func-
tions (via --freorder-functions). Google’s branch of
GCC contains a linker plug-in to reorder functions using the
PH algorithm [15]. We suspect that the Intel and Microsoft
production compilers might implement the PH heuristic to
reorder functions, although we could not verify this infor-
mation because those are not open-source projects and we
have not found any public information about their specific
techniques.

Ramirez et al. [12] specifically studied the impact of code
layout optimizations on transaction-processing workloads.
Their workloads were also very large and significantly suf-
fered from code locality issues. To improve code locality,
Ramirez et al. used the Spike binary optimizer [14], which
uses a straightforward implementation of the PH heuris-
tic [3].

LIPO [2] describes a lightweight feedback-driven frame-
work for cross-module optimizations. They mention that
function reordering was ones of the attempted optimizations,
but it provided no benefit on SPEC-CPU2000 benchmarks.
It is unclear what reordering technique was implemented and
whether it was evaluated on larger applications.

Besides [3], various previous work have investigated the
use of compiler optimizations to improve the code layout
within a function with the goal of improving performance,
by trying to either increase locality or reduce cache con-
flicts [20–22]. Boehm et al. [23] explored aggressive inlining
and hot-cold code splitting in a post-link optimizer [24] that
uses binary instrumentation to obtain a dynamic call graph.

Li et al. [25] use code layout to improve cache defensive-
ness and politeness among multiple applications executing
in a shared cache environment. Therefore, their optimiza-
tion goal is different from ours, which is to improve perfor-
mance of a single application. Furthermore, they show that
techniques that improve one of these goals do not necessar-
ily improve the other. Also, they do not use a dynamic call
graph, but instead they use a temporal-relation graph, which
requires more expensive, instrumentation-based profiling.

Another opportunity for improving performance via code
layout is to try to improve the behavior of the processor’s
branch predictors. Several works have explored this oppor-
tunity, including [26–29].

In addition to code layout optimizations to improve
micro-architectural behavior, much research has focused
on improving performance by data layout and transforma-
tions [30–33]. Notably, Raman et al. [30] builds a field lay-
out graph representing the access affinity of struct fields,
and optimizes the layout by clustering nodes to maximize
locality while minimizing false sharing. While the problem
domain is different (and more constrained), the use of graph
clustering to improve locality is similar.

The drawbacks of instrumentation-based profiling,
with its required two compilation steps and high profiling
overheads, have long been recognized as the main rea-
son why feedback-driven optimizations are not adopted
more widely. This has motivated the recent work on Sam-
pleFDO [34] and AutoFDO [1], which instead rely on
hardware-event sampling data to guide feedback-driven op-
timizations. These approaches required careful engineering
in order to obtain adequate sampling accuracy at the instruc-
tion and basic-block levels, since the profile data are used to
guide intra-procedural compiler optimizations in those work.
In our work, this is less of an issue because our tool operates
at a coarser granularity, by reordering whole functions.

9. Conclusion
This paper studied the impact of function placement for
large-scale data-center applications. This study focused on
four highly optimized applications used to run some of the
largest websites in the world, including Facebook, Baidu,
and Wikipedia. This investigation was conducted using
sampling-based profiling and hfsort, which is an open-
source tool we built to reorder functions based on profile
data. Our experiments showed that the traditional function-
ordering algorithm by Pettis and Hansen [3] improves the
performance of these applications by 2.6% on average. In
this paper, we also identified a weakness in this widely used
algorithm, and then describe a new algorithm, C3, that we
designed based on this insight. Our experimental evaluation
demonstrated that C3 further improves the performance of
the studied applications by an average of 2.9% on top of
Pettis and Hansen’s algorithm. Finally, this paper described
a simple technique to selectively map portions of a binaries
text section onto huge pages on Linux. Our experimental
evaluation demonstrated that, when combined with C3, this
technique further improves the performance of the studied
applications by an average of 2.0%.

Although the presented techniques were studied in the
context of hfsort and a set of four applications, we believe
that the benefits of both C3 and selective use of huge pages
are applicable in general and these techniques can benefit
other tools and applications, including smaller applications
running on systems with more constrained caches and TLBs.
Finally, future work can also investigate the potential of
applying these techniques to dynamically generated code.
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