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Abstract

We present Habitat, a platform for research in embodied
artificial intelligence (AI). Habitat enables training embod-
ied agents (virtual robots) in highly efficient photorealistic
3D simulation. Specifically, Habitat consists of:
(i) Habitat-Sim: a flexible, high-performance 3D sim-
ulator with configurable agents, sensors, and generic 3D
dataset handling. Habitat-Sim is fast – when rendering
a scene from Matterport3D, it achieves several thousand
frames per second (fps) running single-threaded, and can
reach over 10,000 fps multi-process on a single GPU.
(ii) Habitat-API: a modular high-level library for end-to-
end development of embodied AI algorithms – defining tasks
(e.g. navigation, instruction following, question answering),
configuring, training, and benchmarking embodied agents.

These large-scale engineering contributions enable us to
answer scientific questions requiring experiments that were
till now impracticable or ‘merely’ impractical. Specifically,
in the context of point-goal navigation: (1) we revisit the
comparison between learning and SLAM approaches from
two recent works [19, 16] and find evidence for the oppo-
site conclusion – that learning outperforms SLAM if scaled
to an order of magnitude more experience than previous
investigations, and (2) we conduct the first cross-dataset
generalization experiments {train, test} × {Matterport3D,
Gibson} for multiple sensors {blind, RGB, RGBD, D} and
find that only agents with depth (D) sensors generalize across
datasets. We hope that our open-source platform and these
findings will advance research in embodied AI.

1. Introduction
Imagine walking up to a home robot and asking ‘Hey –

can you go check if my laptop is on my desk? And if so, bring
*Denotes equal contribution.

it to me.’ In order to be successful, such a robot would need
a range of skills – visual perception (to recognize scenes and
objects), language understanding (to translate questions and
instructions into actions), and navigation in complex environ-
ments (to move and find things in a changing environment).

While there has been significant progress in the vision
and language communities thanks to recent advances in deep
representations [14, 11], much of this progress has been
on ‘internet AI’ rather than embodied AI. The focus of the
former is pattern recognition in images, videos, and text on
datasets typically curated from the internet [10, 18, 4]. The
focus of the latter is to enable action by an embodied agent
(e.g. a robot) in an environment. This brings to the fore active
perception, long-term planning, learning from interaction,
and holding a dialog grounded in an environment.

A straightforward proposal is to train agents directly in
the physical world – exposing them to all its richness. This
is valuable and will continue to play an important role in the
development of AI. However, we also recognize that train-
ing robots in the real world is slow (the real world runs no
faster than real time and cannot be parallelized), dangerous
(poorly-trained agents can unwittingly injure themselves, the
environment, or others), resource intensive (the robot(s) and
the environment(s) in which they execute demand resources
and time), difficult to control (it is hard to test corner-case
scenarios as these are, by definition, infrequent and chal-
lenging to recreate), and not easily reproducible (replicating
conditions across experiments and institutions is difficult).

We aim to support a complementary research program:
training embodied agents (e.g. virtual robots) in rich realistic
simulators and then transferring the learned skills to reality.
Simulations have a long and rich history in science and
engineering (from aerospace to zoology). In the context of
embodied AI, simulators help overcome the aforementioned
challenges – they can run orders of magnitude faster than
real-time and can be parallelized over a cluster; training
in simulation is safe, cheap, and enables fair comparison
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Figure 1: The ‘software stack’ for training embodied agents involves (1) datasets providing 3D assets with semantic annotations, (2)
simulators that render these assets and within which an embodied agent may be simulated, and (3) tasks that define evaluatable problems that
enable us to benchmark scientific progress. Prior work (highlighted in blue boxes) has contributed a variety of datasets, simulation software,
and task definitions. We propose a unified embodied agent stack with the Habitat platform, including generic dataset support, a highly
performant simulator (Habitat-Sim), and a flexible API (Habitat-API) allowing the definition and evaluation of a broad set of tasks.

and benchmarking of progress in a concerted community-
wide effort. Once a promising approach has been developed
and tested in simulation, it can be transferred to physical
platforms that operate in the real world [6, 15].

Datasets have been a key driver of progress in computer
vision, NLP, and other areas of AI [10, 18, 4, 1]. As the
community transitions to embodied AI, we believe that sim-
ulators will assume the role played previously by datasets.
To support this transition, we aim to standardize the entire
‘software stack’ for training embodied agents (Figure 1):
scanning the world and creating photorealistic 3D assets, de-
veloping the next generation of highly efficient and paralleliz-
able simulators, specifying embodied AI tasks that enable
us to benchmark scientific progress, and releasing modu-
lar high-level libraries for training and deploying embodied
agents. Specifically, Habitat consists of the following:

1. Habitat-Sim: a flexible, high-performance 3D
simulator with configurable agents, multiple sensors, and
generic 3D dataset handling (with built-in support for Mat-
terport3D, Gibson, and Replica datasets).

2. Habitat-API: a modular high-level library for end-
to-end development of embodied AI algorithms – defining
embodied AI tasks (e.g. navigation, instruction following,
question answering), configuring and training embodied
agents (via imitation or reinforcement learning, or via classic
SLAM), and benchmarking using standard metrics [2].

The Habitat architecture and implementation combine
modularity and high performance. When rendering a scene
from the Matterport3D dataset, Habitat-Sim achieves
several thousand frames per second (fps) running single-
threaded, and can reach over 10,000 fps multi-process on

a single GPU, which is orders of magnitude faster than the
closest simulator. Habitat-API allows us to train and
benchmark embodied agents with different classes of meth-
ods and in different 3D scene datasets.

These large-scale engineering contributions enable us to
answer scientific questions requiring experiments that were
till now impracticable or ‘merely’ impractical. Specifically,
in the context of point-goal navigation [2], we make two
scientific contributions:

1. We revisit the comparison between learning and
SLAM approaches from two recent works [19, 16] and find
evidence for the opposite conclusion – that learning out-
performs SLAM if scaled to an order of magnitude more
experience than previous investigations.

2. We conduct the first cross-dataset generalization exper-
iments {train, test} × {Matterport3D, Gibson} for multiple
sensors {Blind1, RGB, RGBD, D} × {GPS+Compass} and
find that only agents with depth (D) sensors generalize well
across datasets.

We hope that our open-source platform and these findings
will advance and guide future research in embodied AI.

2. Related Work

The availability of large-scale 3D scene datasets [5, 24, 8]
and community interest in active vision tasks led to a recent
surge of work that resulted in the development of a variety
of simulation platforms for indoor environments [17, 7, 13,
22, 26, 3, 27, 28, 21]. These platforms vary with respect to

1Blind refers to agents with no visual sensory inputs.



the 3D scene data they use, the embodied agent tasks they
address, and the evaluation protocols they implement.

This surge of activity is both thrilling and alarming. On
the one hand, it is clearly a sign of the interest in embodied
AI across diverse research communities (computer vision,
natural language processing, robotics, machine learning). On
the other hand, the existence of multiple differing simulation
environments can cause fragmentation, replication of effort,
and difficulty in reproduction and community-wide progress.
Moreover, existing simulators exhibit several shortcomings:
– Tight coupling of task (e.g. navigation), simulation plat-

form (e.g. GibsonEnv), and 3D dataset (e.g. Gibson). Ex-
periments with multiple tasks or datasets are impractical.

– Hard-coded agent configuration (e.g. size, action-space).
Ablations of agent parameters and sensor types are not
supported, making results hard to compare.

– Suboptimal rendering and simulation performance. Most
existing indoor simulators operate at relatively low frame
rates (10-100 fps), becoming a bottleneck in training
agents and making large-scale learning infeasible. Take-
away messages from such experiments become unreliable
– has the learning converged to trust the comparisons?

– Limited control of environment state. The structure of the
3D scene in terms of present objects cannot be program-
matically modified (e.g. to test the robustness of agents).
Most critically, work built on top of any of the existing

platforms is hard to reproduce independently from the plat-
form, and thus hard to evaluate against work based on a
different platform, even in cases where the target tasks and
datasets are the same. This status quo is undesirable and mo-
tivates the Habitat effort. We aim to learn from the successes
of previous frameworks and develop a unifying platform that
combines their desirable characteristics while addressing
their limitations. A common, unifying platform can sig-
nificantly accelerate research by enabling code re-use and
consistent experimental methodology. Moreover, a common
platform enables us to easily carry out experiments testing
agents based on different paradigms (learned vs. classical)
and generalization of agents between datasets.

The experiments we carry out contrasting learned and
classical approaches to navigation are similar to the recent
work of Mishkin et al. [19]. However, the performance
of the Habitat stack relative to MINOS [22] used in [19]
– thousands vs. one hundred frames per second – allows
us to evaluate agents that have been trained with signifi-
cantly larger amounts of experience (75 million steps vs. five
million steps). The trends we observe demonstrate that
learned agents can begin to match and outperform classical
approaches when provided with large amounts of training
experience. Other recent work by Koijima and Deng [16] has
also compared hand-engineered navigation agents against
learned agents but their focus is on defining additional met-
rics to characterize the performance of agents and to establish

Figure 2: Example rendered sensor observations for three sensors
(color camera, depth sensor, semantic instance mask) in two differ-
ent environment datasets. A Matterport3D [8] environment is in
the top row, and a Replica [25] environment in the bottom row.

measures of hardness for navigation episodes. To our knowl-
edge, our experiments are the first to train navigation agents
provided with multi-month experience in realistic indoor
environments and contrast them against classical methods.

3. Habitat Platform
The development of Habitat is a long-term effort to en-

able the formation of a common task framework [12] for
research into embodied agents, thereby supporting system-
atic research progress in this area.
Design requirements. The issues discussed in the previous
section lead us to a set of requirements that we seek to fulfill.
– Highly performant rendering engine: resource-

efficient rendering engine that can produce multiple chan-
nels of visual information (e.g. RGB, depth, semantic
instance segmentation, surface normals, optical flow) for
multiple concurrently operating agents.

– Scene dataset ingestion API: makes the platform agnos-
tic to 3D scene datasets and allows users to use their own
datasets.

– Agent API: allows users to specify parameterized em-
bodied agents with well-defined geometry, physics, and
actuation characteristics.

– Sensor suite API: allows specification of arbitrary num-
bers of parameterized sensors (e.g. RGB, depth, contact,
GPS, compass sensors) attached to each agent.

– Scenario and task API: allows portable definition of
tasks and their evaluation protocols.

– Implementation: C++ backend with Python API and
interoperation with common learning frameworks, mini-
mizes entry threshold.

– Containerization: enables distributed training in clusters
and remote-server evaluation of user-provided code.

– Humans-as-agents: allows humans to function as agents
in simulation in order to collect human behavior and in-
vestigate human-agent or human-human interactions.

– Environment state manipulation: programmatic con-



trol of the environment configuration in terms of the ob-
jects that are present and their relative layout.

Design overview. The above design requirements cut across
several layers in the ‘software stack’ in Figure 1. A mono-
lithic design is not suitable for addressing requirements at
all levels. We, therefore, structure the Habitat platform to
mirror this multi-layer abstraction.

At the lowest level is Habitat-Sim, a flexible, high-
performance 3D simulator, responsible for loading 3D scenes
into a standardized scene-graph representation, configuring
agents with multiple sensors, simulating agent motion, and
returning sensory data from an agent’s sensor suite. The
sensor abstraction in Habitat allows additional sensors such
as LIDAR and IMU to be easily implemented as plugins.
Generic 3D dataset API using scene graphs.
Habitat-Sim employs a hierarchical scene graph
to represent all supported 3D environment datasets, whether
synthetic or based on real-world reconstructions. The
use of a uniform scene graph representation allows us to
abstract the details of specific datasets, and to treat them in a
consistent fashion. Scene graphs allow us to compose 3D
environments through procedural scene generation, editing,
or programmatic manipulation.
Rendering engine. The Habitat-Sim backend module
is implemented in C++ and leverages the Magnum graphics
middleware library2 to support cross-platform deployment
on a broad variety of hardware configurations. The simu-
lator backend employs an efficient rendering pipeline that
implements visual sensor frame rendering using a multi-
attachment ‘uber-shader’ combining outputs for color cam-
era sensors, depth sensors, and semantic mask sensors. By
allowing all outputs to be produced in a single render pass,
we avoid additional overhead when sensor parameters are
shared and the same render pass can be used for all outputs.
Figure 2 shows examples of visual sensors rendered in three
different supported datasets. The same agent and sensor
configuration was instantiated in a scene from each of the
three datasets by simply specifying a different input scene.
Performance. Habitat-Sim achieves thousands of
frames per second per simulator thread and is orders of mag-
nitude faster than previous simulators for realistic indoor
environments (which typically operate at tens or hundreds of
frames per second) – see Table 1 for a summary and the sup-
plement for more details. By comparison, AI2-THOR [17]
and CHALET [28] run at tens of fps, MINOS [22] and Gib-
son [27] run at about a hundred, and House3D [26] runs at
about 300 fps. Habitat-Sim is 2-3 orders of magnitude
faster. By operating at 10,000 frames per second we shift
the bottleneck from simulation to optimization for network
training. Based on TensorFlow benchmarks, many popular
network architectures run at frame rates that are 10-100x

2https://magnum.graphics/

1 process 5 processes

Sensors / Resolution 128 256 512 128 256 512

RGB 4,093 1,987 848 10,592 3,574 2,629
RGB + depth 2,050 1,042 423 5,223 1,774 1,348

Table 1: Performance of Habitat-Sim in frames per second
for an example Matterport3D scene (id 17DRP5sb8fy) on an Intel
Xeon E5-2690 v4 CPU and Nvidia Titan Xp GPU, measured at
different frame resolutions and with a varying number of concur-
rent simulator processes sharing the GPU. See the supplement for
additional benchmarking results.

lower on a single GPU3. In practice, we have observed that
it is often faster to generate images using Habitat-Sim
than to load images from disk.

Efficient GPU throughput. Currently, frames rendered
by Habitat-Sim are exposed as Python tensors through
shared memory. Future development will focus on even
higher rendering efficiency by entirely avoiding GPU-to-
CPU memory copy overhead through the use of CUDA-GL
interoperation and direct sharing of render buffers and tex-
tures as tensors. Our preliminary internal testing suggests
that this can lead to a speedup by a factor of 2.

Above the simulation backend, the Habitat-API layer
is a modular high-level library for end-to-end development
in embodied AI. Setting up an embodied task involves speci-
fying observations that may be used by the agent(s), using
environment information provided by the simulator, and con-
necting the information with a task-specific episode dataset.

– Task: this class extends the simulator’s
Observations class and action space with task-
specific ones. The criteria of episode termination and
measures of success are provided by the Task. For
example, in goal-driven navigation, Task provides
the goal and evaluation metric [2]. To support this
kind of functionality the Task has read-only access to
Simulator and Episode-Dataset.

– Episode: a class for episode specification that includes
the initial position and orientation of an Agent, scene id,
goal position, and optionally the shortest path to the goal.
An episode is a description of an instance of the task.

– Environment: the fundamental environment concept
for Habitat, abstracting all the information needed for
working on embodied tasks with a simulator.

More details about the architecture of the Habitat plat-
form, performance measurements, and examples of API use
are provided in the supplement.

3https://www.tensorflow.org/guide/performance/
benchmarks

https://magnum.graphics/
https://www.tensorflow.org/guide/performance/benchmarks
https://www.tensorflow.org/guide/performance/benchmarks


4. PointGoal Navigation at Scale

To demonstrate the utility of the Habitat platform de-
sign, we carry out experiments to test for generalization of
goal-directed visual navigation agents between datasets of
different environments and to compare the performance of
learning-based agents against classic agents as the amount
of available training experience is increased.

Task definition. We use the PointGoal task (as defined by
Anderson et al. [2]) as our experimental testbed. This task is
ostensibly simple to define – an agent is initialized at a ran-
dom starting position and orientation in an environment and
asked to navigate to target coordinates that are provided rela-
tive to the agent’s position; no ground-truth map is available
and the agent must only use its sensory input to navigate.
However, in the course of experiments, we realized that
this task leaves space for subtle choices that (a) can make a
significant difference in experimental outcomes and (b) are
either not specified or inconsistent across papers, making
comparison difficult. We attempt to be as descriptive as pos-
sible about these seemingly low-level choices; we hope the
Habitat platform will help iron out these inconsistencies.

Agent embodiment and action space. The agent is physi-
cally embodied as a cylindrical primitive shape with diame-
ter 0.2m and height 1.5m. The action space consists of four
actions: turn_left, turn_right, move_forward,
and stop. These actions are mapped to idealized actua-
tions that result in 10 degree turns for the turning actions
and linear displacement of 0.25m for the move_forward
action. The stop action allows the agent to signal that it
has reached the goal. Habitat supports noisy actuations but
experiments in this paper are conducted in the noise-free
setting as our analysis focuses on other factors.

Collision dynamics. Some previous works [3] use a coarse
irregular navigation graph where an agent effectively ‘tele-
ports’ from one location to another (1-2m apart). Others [9]
use a fine-grained regular grid (0.01m resolution) where the
agent moves on unoccupied cells and there are no collisions
or partial steps. In Habitat and our experiments, we use
a more realistic collision model – the agent navigates in a
continuous state space4 and motion can produce collisions
resulting in partial (or no) progress along the direction in-
tended – simply put, it is possible for the agent to ‘slide’
along a wall or obstacle. Crucially, the agent may choose
move_forward (0.25m) and end up in a location that is
not 0.25m forward of where it started; thus, odometry is not
trivial even in the absence of actuation noise.

Goal specification: static or dynamic? One conspicuous
underspecification in the PointGoal task [2] is whether the
goal coordinates are static (i.e. provided once at the start of
the episode) or dynamic (i.e. provided at every time step).

4Up to machine precision.

The former is more realistic – it is difficult to imagine a real
task where an oracle would provide precise dynamic goal co-
ordinates. However, in the absence of actuation noise and col-
lisions, every step taken by the agent results in a known turn
or translation, and this combined with the initial goal location
is functionally equivalent to dynamic goal specification. We
hypothesize that this is why recent works [16, 19, 13] used
dynamic goal specification. We follow and prescribe the
following conceptual delineation – as a task, we adopt static
PointGoal navigation; as for the sensor suite, we equip our
agents with an idealized GPS sensor. This orients us towards
a realistic task (static PointGoal navigation), disentangles
simulator design (actuation noise, collision dynamics) from
the task definition, and allows us to compare techniques by
sensors used (RGB, depth, GPS, compass, contact sensors).

Sensory input. The agents are endowed with a single color
vision sensor placed at a height of 1.5m from the center of
the agent’s base and oriented to face ‘forward’. This sensor
provides RGB frames at a resolution of 2562 pixels and with
a field of view of 90 degrees. In addition, an idealized depth
sensor is available, in the same position and orientation as
the color vision sensor. The field of view and resolution
of the depth sensor match those of the color vision sensor.
We designate agents that make use of the color sensor by
RGB, agents that make use of the depth sensor by Depth,
and agents that make use of both by RGBD. Agents that
use neither sensor are denoted as Blind. All agents are
equipped with an idealized GPS and compass – i.e., they
have access to their location coordinates, and implicitly their
orientation relative to the goal position.

Episode specification. We initialize the agent at a start-
ing position and orientation that are sampled uniformly at
random from all navigable positions on the floor of the envi-
ronment. The goal position is chosen such that it lies on the
same floor and there exists a navigable path from the agent’s
starting position. During the episode, the agent is allowed to
take up to 500 actions. This threshold significantly exceeds
the number of steps an optimal agent requires to reach all
goals (see the supplement). After each action, the agent
receives a set of observations from the active sensors.

Evaluation. A navigation episode is considered successful
if and only if the agent issues a stop action within 0.2m of
the target coordinates, as measured by a geodesic distance
along the shortest path from the agent’s position to the goal
position. If the agent takes 500 actions without the above
condition being met the episode ends and is considered un-
successful. Performance is measured using the ‘Success
weighted by Path Length’ (SPL) metric [2]. For an episode
where the geodesic distance of the shortest path is l and the
agent traverses a distance p, SPL is defined as S · l/max(p,l),
where S is a binary indicator of success.

Episode dataset preparation. We create PointGoal naviga-



tion episode-datasets for Matterport3D [8] and Gibson [27]
scenes. For Matterport3D we followed the publicly available
train/val/test splits. Note that as in recent works [9, 19, 16],
there is no overlap between train, val, and test scenes. For
Gibson scenes, we obtained textured 3D surface meshes from
the Gibson authors [27], manually annotated each scene on
its reconstruction quality (small/big holes, floating/irregular
surfaces, poor textures), and curated a subset of 106 scenes
(out of 572); see the supplement for details. An episode is de-
fined by the unique id of the scene, the starting position and
orientation of the agent, and the goal position. Additional
metadata such as the geodesic distance along the shortest
path (GDSP) from start position to goal position is also in-
cluded. While generating episodes, we restrict the GDSP
to be between 1m and 30m. An episode is trivial if there
is an obstacle-free straight line between the start and goal
positions. A good measure of the navigation complexity
of an episode is the ratio of GDSP to Euclidean distance
between start and goal positions (notice that GDSP can only
be larger than or equal to the Euclidean distance). If the
ratio is nearly 1, there are few obstacles and the episode is
easy; if the ratio is much larger than 1, the episode is difficult
because strategic navigation is required. To keep the navi-
gation complexity of the precomputed episodes reasonably
high, we perform rejection sampling for episodes with the
above ratio falling in the range [1, 1.1]. Following this, there
is a significant decrease in the number of near-straight-line
episodes (episodes with a ratio in [1, 1.1]) – from 37% to
10% for the Gibson dataset generation. This step was not
performed in any previous studies. We find that without this
filtering, all metrics appear inflated. Gibson scenes have
smaller physical dimensions compared to the Matterport3D
scenes. This is reflected in the resulting PointGoal dataset –
average GDSP of episodes in Gibson scenes is smaller than
that of Matterport3D scenes.

Baselines. We compare the following baselines:
– Random chooses an action randomly among
turn_left, turn_right, and move_forward
with uniform distribution. The agent calls the stop
action when within 0.2m of the goal (computed using the
difference of static goal and dynamic GPS coordinates).

– Forward only always calls the move_forward action,
and calls the stop action when within 0.2m of the goal.

– Goal follower moves towards the goal direction. If it is
not facing the goal (more than 15 degrees off-axis), it
performs turn_left or turn_right to align itself;
otherwise, it calls move_forward. The agent calls the
stop action when within 0.2m of the goal.

– RL (PPO) is an agent trained with reinforcement learn-
ing, specifically proximal policy optimization [23]. We
experiment with RL agents equipped with different visual
sensors: no visual input (Blind), RGB input, Depth
input, and RGB with depth (RGBD). The model consists

of a CNN that produces an embedding for visual input,
which together with the relative goal vector is used by an
actor (GRU) and a critic (linear layer). The CNN has the
following architecture: {Conv 8×8, ReLU, Conv 4×4,
ReLU, Conv 3×3, ReLU, Linear, ReLU} (see supplement
for details). Let rt denote the reward at timestep t, dt be
the geodesic distance to goal at timestep t, s a success
reward and λ a time penalty (to encourage efficiency). All
models were trained with the following reward function:

rt =

{
s+ dt−1 − dt + λ if goal is reached
dt−1 − dt + λ otherwise

In our experiments s is set to 10 and λ is set to −0.01.
Note that rewards are only provided in training environ-
ments; the task is challenging as the agent must generalize
to unseen test environments.

– SLAM [19] is an agent implementing a classic robotics
navigation pipeline (including components for localiza-
tion, mapping, and planning), using RGB and depth sen-
sors. We use the classic agent by Mishkin et al. [19] which
leverages the ORB-SLAM2 [20] localization pipeline,
with the same parameters as reported in the original work.

Training procedure. When training learning-based agents,
we first divide the scenes in the training set equally among
8 (Gibson), 6 (Matterport3D) concurrently running simula-
tor worker threads. Each thread establishes blocks of 500
training episodes for each scene in its training set partition
and shuffles the ordering of these blocks. Training continues
through shuffled copies of this array. We do not hardcode the
stop action to retain generality and allow for comparison
with future work that does not assume GPS inputs. For the
experiments reported here, we train until 75 million agent
steps are accumulated across all worker threads. This is
15x larger than the experience used in previous investiga-
tions [19, 16]. Training agents to 75 million steps took (in
sum over all three datasets): 320 GPU-hours for Blind,
566 GPU-hours for RGB, 475 GPU-hours for Depth, and
906 GPU-hours for RGBD (overall 2267 GPU-hours).

5. Results and Findings
We seek to answer two questions: i) how do learning-

based agents compare to classic SLAM and hand-coded
baselines as the amount of training experience increases and
ii) how well do learned agents generalize across 3D datasets.

It should be tacitly understood, but to be explicit – ‘learn-
ing’ and ‘SLAM’ are broad families of techniques (and not
a single method), are not necessarily mutually exclusive,
and are not ‘settled’ in their development. We compare rep-
resentative instances of these families to gain insight into
questions of scaling and generalization, and do not make any
claims about intrinsic superiority of one or the other.
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Figure 3: Average SPL of agents on the val set over the course of training. Previous work [19, 16] has analyzed performance at 5-10
million steps. Interesting trends emerge with more experience: i) Blind agents initially outperform RGB and RGBD but saturate quickly;
ii) Learning-based Depth agents outperform classic SLAM. The shaded areas around curves show the standard error of SPL over five seeds.

Gibson MP3D

Sensors Baseline SPL Succ SPL Succ

Blind

Random 0.02 0.03 0.01 0.01
Forward only 0.00 0.00 0.00 0.00
Goal follower 0.23 0.23 0.12 0.12
RL (PPO) 0.42 0.62 0.25 0.35

RGB RL (PPO) 0.46 0.64 0.30 0.42

Depth RL (PPO) 0.79 0.89 0.54 0.69

RGBD
RL (PPO) 0.70 0.80 0.42 0.53
SLAM [19] 0.51 0.62 0.39 0.47

Table 2: Performance of baseline methods on the PointGoal task [2]
tested on the Gibson [27] and MP3D [8] test sets under multiple
sensor configurations. RL models have been trained for 75 million
steps. We report average rate of episode success and SPL [2].

Learning vs SLAM. To answer the first question we plot
agent performance (SPL) on validation (i.e. unseen) episodes
over the course of training in Figure 3 (top: Gibson, bottom:
Matterport3D). SLAM [19] does not require training and
thus has a constant performance (0.59 on Gibson, 0.42 on
Matterport3D). All RL (PPO) agents start out with far worse
SPL, but RL (PPO) Depth, in particular, improves dra-
matically and matches the classic baseline at approximately
10M frames (Gibson) or 30M frames (Matterport3D) of ex-
perience, continuing to improve thereafter. Notice that if
we terminated the experiment at 5M frames as in [19] we
would also conclude that SLAM [19] dominates. Interest-
ingly, RGB agents do not significantly outperform Blind
agents; we hypothesize because both are equipped with GPS
sensors. Indeed, qualitative results (Figure 4 and video in
supplement) suggest that Blind agents ‘hug’ walls and
implement ‘wall following’ heuristics. In contrast, RGB sen-

sors provide a high-dimensional complex signal that may be
prone to overfitting to train environments due to the variety
across scenes (even within the same dataset). We also notice
in Figure 3 that all methods perform better on Gibson than
Matterport3D. This is consistent with our previous analysis
that Gibson contains smaller scenes and shorter episodes.

Next, for each agent and dataset, we select the best-
performing checkpoint on validation and report results on
test in Table 2. We observe that uniformly across the datasets,
RL (PPO) Depth performs best, outperforming RL (PPO)
RGBD (by 0.09-0.16 SPL), SLAM (by 0.15-0.28 SPL), and
RGB (by 0.13-0.33 SPL) in that order (see the supplement for
additional experiments involving noisy depth). We believe
Depth performs better than RGBD because i) the PointGoal
navigation task requires reasoning only about free space and
depth provides relevant information directly, and ii) RGB
has significantly more entropy (different houses look very
different), thus it is easier to overfit when using RGB. We ran
our experiments with 5 random seeds per run, to confirm that
these differences are statistically significant. The differences
are about an order of magnitude larger than the standard devi-
ation of average SPL for all cases (e.g. on the Gibson dataset
errors are, Depth: ±0.015, RGB: ±0.055, RGBD: ±0.028,
Blind: ±0.005). Random and forward-only agents have
very low performance, while the hand-coded goal follower
and Blind baseline see modest performance.See the sup-
plement for additional analysis of trained agent behavior.

In Figure 4 we plot example trajectories for the RL (PPO)
agents, to qualitatively contrast their behavior in the same
episode. Consistent with the aggregate statistics, we observe
that Blind collides with obstacles and follows walls, while
Depth is the most efficient. See the supplement and the
video for more example trajectories.

Generalization across datasets. Our findings so far are
that RL (PPO) agents significantly outperform SLAM [19].
This prompts our second question – are these findings



Gibson MP3D
Blind SPL=0.28 RGB SPL=0.57

RGBD SPL=0.91 Depth SPL=0.98

Blind SPL=0.35 RGB SPL=0.88

RGBD SPL=0.90 Depth SPL=0.94

Figure 4: Navigation examples for different sensory configurations
of the RL (PPO) agent, visualizing trials from the Gibson and
MP3D val sets. A blue dot and red dot indicate the starting and
goal positions, and the blue arrow indicates final agent position.
The blue-green-red line is the agent’s trajectory. Color shifts from
blue to red as the maximum number of agent steps is approached.
See the supplemental materials for more example trajectories.

Gibson MP3D
Blind Gibson

MP3D
RGB Gibson

MP3D
Depth Gibson

MP3D
RGBD Gibson

MP3D

0.25
0.34

0.28
0.42

0.30
0.40

0.25
0.46

0.54
0.68

0.56
0.79

0.42
0.53

0.44
0.70

Figure 5: Generalization of agents between datasets. We report
average SPL for a model trained on the source dataset in each row,
as evaluated on test episodes for the target dataset in each column.

dataset specific or do learned agents generalize across
datasets? We report exhaustive comparisons in Figure 5
– specifically, average SPL for all combinations of {train,
test} × {Matterport3D, Gibson} for all agents {Blind,
RGB, RGBD, Depth }. Rows indicate (agent, train set) pair,
columns indicate test set. We find a number of interesting
trends. First, nearly all agents suffer a drop in performance
when trained on one dataset and tested on another, e.g. RGBD
Gibson→Gibson 0.70 vs RGBDGibson→Matterport3D 0.53
(drop of 0.17). RGB and RGBD agents suffer a significant
performance degradation, while the Blind agent is least
affected (as we would expect).

Second, we find a potentially counter-intuitive trend –
agents trained on Gibson consistently outperform their coun-
terparts trained on Matterport3D, even when evaluated on
Matterport3D. We believe the reason is the previously noted
observation that Gibson scenes are smaller and episodes are
shorter (lower GDSP) than Matterport3D. Gibson agents are
trained on ‘easier’ episodes and encounter positive reward
more easily during random exploration, thus bootstrapping
learning. Consequently, for a fixed computation budget Gib-
son agents are stronger universally (not just on Gibson). This

finding suggests that visual navigation agents could benefit
from curriculum learning.

These insights are enabled by the engineering of Habitat,
which made these experiments as simple as a change in the
evaluation dataset name.

6. Future Work
We described the design and implementation of the Habi-

tat platform. Our goal is to unify existing community efforts
and to accelerate research into embodied AI. This is a long-
term effort that will succeed only by full engagement of the
broader research community.

Experiments enabled by the generic dataset support and
the high performance of the Habitat stack indicate that
i) learning-based agents can match and exceed the perfor-
mance of classic visual navigation methods when trained
for long enough and ii) learned agents equipped with depth
sensors generalize well between different 3D environment
datasets in comparison to agents equipped with only RGB.
Feature roadmap. Our near-term development roadmap
will focus on incorporating physics simulation and enabling
physics-based interaction between mobile agents and ob-
jects in 3D environments. Habitat-Sim’s scene graph
representation is well-suited for integration with physics en-
gines, allowing us to directly control the state of individual
objects and agents within a scene graph. Another planned
avenue of future work involves procedural generation of 3D
environments by leveraging a combination of 3D reconstruc-
tion and virtual object datasets. By combining high-quality
reconstructions of large indoor spaces with separately re-
constructed or modelled objects, we can take full advantage
of our hierarchical scene graph representation to introduce
controlled variation in the simulated 3D environments.

Lastly, we plan to focus on distributed simulation settings
that involve large numbers of agents potentially interacting
with one another in competitive or collaborative scenarios.
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