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ABSTRACT

Grapheme-based acoustic modeling has recently been shown
to outperform phoneme-based approaches in both hybrid and
end-to-end automatic speech recognition (ASR), even on non-
phonemic languages like English. However, graphemic ASR
still has problems with low-frequency words that do not fol-
low the standard spelling conventions seen in training, such as
entity names. In this work, we present a novel method to train
a statistical grapheme-to-grapheme (G2G) model on text-to-
speech data that can rewrite an arbitrary character sequence
into more phonetically consistent forms. We show that using
G2G to provide alternative pronunciations during decoding
reduces Word Error Rate by 3% to 11% relative over a strong
graphemic baseline and bridges the gap on rare name recog-
nition with an equivalent phonetic setup. Unlike many pre-
viously proposed methods, our method does not require any
change to the acoustic model training procedure. This work
reaffirms the efficacy of grapheme-based modeling and shows
that specialized linguistic knowledge, when available, can be
leveraged to improve graphemic ASR.

Index Terms— graphemic pronunciation learning, hybrid
speech recognition, chenones, acoustic modeling

1. INTRODUCTION

There is a growing trend in the automatic speech recognition
(ASR) community to use graphemes directly as the output
units for acoustic modeling instead of phonemes [1–14].
Grapheme-based modeling, which does not rely on any spe-
cialized linguistic information, has been shown to outper-
form phoneme-based modeling in both end-to-end [5, 12]
and traditional hybrid ASR [1, 13], even on non-phonemic
languages with poor grapheme-phoneme relationship like
English [13]. Despite achieving better overall recognition
accuracy, grapheme-based modeling still has problems with
rare words that are pronounced differently than how they
are spelled or do not conform to the standard spelling con-
ventions, most notably proper nouns. These problems are
typically addressed in phoneme-based approaches by having
linguists manually correcting the pronunciations and training
a grapheme-to-phoneme (G2P) model to generalize to previ-
ously unseen words. Thanks to this extra linguistic informa-

tion, phonetic ASR may perform better than grapheme-based
approaches in long-tail name recognition. It is therefore ap-
pealing to leverage linguistic knowledge in the same way to
improve graphemic ASR’s performance on rare entity names.

In this work, we propose a novel method to distill linguis-
tic knowledge into graphemic ASR by automatically learning
pronunciations at the grapheme level on artificial audio gener-
ated with text-to-speech (TTS). The outcome of this method
is a statistical grapheme-to-grapheme (G2G) model that can
transform a character sequence into homophones with more
conventional spelling, such as rewriting “Kaity” to “Katie.”
We show that using G2G to generate alternative pronuncia-
tions during decoding results in 3% to 11% relative Word
Error Rate (WER) improvement for graphemic models on ut-
terances containing entity names. With G2G, our graphemic
ASR system is able to bridge the gap with equivalent pho-
netic baselines on rare name recognition while achieving bet-
ter overall WER. Our work addresses a long-standing weak-
ness of grapheme-based models and contributes a novel way
to combine the strengths of graphemic and phonetic ASR.

2. RELATED WORK

Grapheme-based modeling with word pieces has become
the standard approach for end-to-end ASR, outperform-
ing both context-independent phonemes and graphemes
(e.g., [5–7, 11, 12]). More recently, we showed that context-
and position-dependent graphemes (i.e., chenones) are also
extremely effective for hybrid ASR, significantly outper-
forming senones [13] and achieving state-of-the-art results
on Librispeech [14]. In this work, we continue to improve
graphemic hybrid ASR performance on name recognition.

Existing solutions for handling proper nouns and rare
words for graphemic ASR have mostly been done in the
context of end-to-end systems and typically involve a TTS
component to generate additional synthetic data for AM
training [11, 15–17]. While the resulting improvement is
promising, this approach requires careful balancing between
real and synthetic data to prevent overfitting to TTS, large
amount of synthesized data (relative to real data), as well as a
highly diversified artificial speaker pool, all of which signifi-
cantly complicate the AM training process. A different class
of approach involves training a neural spelling correction



model on TTS data to fix errors made by Listen, Attend, and
Spell (LAS) ASR models [18]. While this technique does
not complicate AM training, it does not explicitly address
the proper noun recognition problem and the WER gain they
achieved on Librispeech was limited. Other methods that
do not rely on TTS include leveraging phonetic information
to build better word piece inventories [19] and fuzzing the
training data with phonetically similar words [16, 20].

Our proposed approach differs from previous work in
three ways. First, it also leverages TTS but instead produces
alternative pronunciations that are ingested on-the-fly during
decoding, thus does not require any change to AM training
and preserves the system’s simplicity. Second, our method
is geared toward conventional hybrid ASR whereas previous
work mostly focused on end-to-end. Third, our work directly
resolves the mismatch between graphemes and acoustic mod-
els, the fundamental cause of name recognition errors which
previous work only addressed indirectly.

3. DATA

3.1. Audio Data

Our training data contains a mixture of two in-house hand-
transcribed anonymized datasets with no personally identifi-
able information (PII). The first dataset consists of 15.7M ut-
terances (12.5K hours) in the voice assistant domain recorded
via mobile devices by 20K crowd-sourced workers. Each ut-
terance is distorted twice using simulated reverberation and
randomly sampled additive background noise extracted from
public Facebook videos. The second dataset comprises 1.2M
voice commands (1K hours) sampled from the production
traffic of Facebook Portal1 after the “hey Portal” wakeword
is triggered. To further de-identify the user, utterances from
this dataset are morphed when researchers access them (the
audio is not morphed during training). We use speed pertur-
bation [21] to create two additional copies of each utterance at
0.9 and 1.1 times the original speed. Finally, we distort each
copy with additive noise sampled from the same source de-
scribed previously, resulting in six copies in total ({0.9, 1.0,
1.1 speed} × {no noise, with noise}). The total amount of
data after distortion is 38.6M utterances (31K hours).

Our evaluation data consists of 54.7K hand-transcribed
anonymized utterances from volunteer participants in Portal’s
in-house dogfooding program, which consists of employee
households that have agreed to have their Portal voice ac-
tivity reviewed and tested. Every utterance in this set has
an associated contact list, which we use for on-the-fly per-
sonalization for calling queries. We further split this evalu-
ation set into three subsets. Firstly, name-prod comprises
11.4K utterances with 3.9K unique entity names from the per-

1Portal is a video-enabled smart device that supports calling (e.g., “hey
Portal, call Alex”) and other types of voice queries (e.g., “hey Portal, what’s
the weather in Menlo Park?”).

Fig. 1. Overview of TTS-based G2G training pipeline.

sonalized contact list. Secondly, name-rare is similar to
name-prod, but with 800 utterances and 700 unique en-
tity names; it contains more diverse names than those typi-
cally observed in traffic and is designed to stress-test our ASR
system on name recognition. Lastly, non-name consists of
42.5K utterances (10.6K unique transcripts) that do not have
any entity name from the associated contact list. Note that
utterances from this subset may still contain other types of
entities not included in the personalization data, such as city
names, song names, and artist names.

3.2. Pronunciation Data

Our phonetic ASR system makes use of an in-house pronunci-
ation corpus consisting of 1.1M unique written–pronunciation
pairs, 75% of which are name pronunciations, where the writ-
ten form of a word is mapped to an X-SAMPA pronuncia-
tion [22]. This dataset is used for G2P training and gives
considerable advantage to phonetic ASR baselines in terms
of name recognition since it has much wider name coverage
than those included in the acoustic training data. The aim of
this work is to distill the phonetic information from this pro-
nunciation corpus into our graphemic ASR system.

4. G2G TRAINING METHODS

In standard grapheme-based hybrid ASR, the G2P-equivalent
operation is trivial; the pronunciation of a word (e.g., “blue”)
is simply its decomposed grapheme sequence (e.g., “b l u
e”). However, this method may fail for long-tail words whose
graphemes do not accurately reflect how they are pronounced.
Having a G2P-like model for graphemes (i.e., G2G), is there-
fore desirable to handle such cases. We hereby propose two
training methods for G2G based on TTS and homophones.

G2G-TTS: Figure 1 summarizes our proposed approach
to train a TTS-based G2G model, which consists of three
main steps. First, we feed the X-SAMPA string for each
entry in our pronunciation corpus through a TTS engine to
obtain the corresponding vocalization. Note that we inten-
tionally operate on X-SAMPA directly instead of the written
form to bypass the reliance on TTS’s internal G2P. Second,



we do lexicon-free decoding (LFD) [23] on these artificial ut-
terances using a specialized character-level ASR system to
generate grapheme sequences that accurately reflect their pro-
nunciations while adhering to the English spelling conven-
tion. We will provide more detail about LFD in Section 5.2.
Finally, we train a statistical G2G model to map the original
written form of the pronunciation data (e.g., “Kaity”) to its
LFD output (e.g., “Katie”). This is in essence a sequence-
to-sequence modeling problem with many viable approaches;
however, we will employ the same method as G2P model
training to ensure fair comparison with phonetic baselines.

G2G-HOM: the reliance on TTS is a limitation of the pre-
vious approach. One way to circumvent TTS is to gather clus-
ters of homophones from our phonetic lexicon (e.g., Michael,
Mikall, Mykol) and train a model to map each word in the
cluster to the cluster “root” (e.g., Michael). A cluster “root”
is defined to be the word that most closely adheres to the En-
glish spelling convention; the exact metric for this determi-
nation will be discussed in Section 5.2. Note that this shares
some similarity with the “transcript fuzzing” method utilized
in [16]; however, unlike their approach which aims to increase
variation during training by introducing more proper nouns,
our approach aims to decrease variation during decoding.

5. EXPERIMENTAL SETUP

5.1. Baseline ASR Systems

Our baselines are hybrid ASR systems with context- and
position-dependent phonemes/graphemes similar to our pre-
vious work [13]. For the phonetic setup, we train a joint-
sequence G2P model [24] on the pronunciation corpus de-
scribed in Section 3.2, using an in-house implementation of
Phonetisaurus [25]. This model is used to generate pronun-
ciations for both the training and decoding lexicons. For
the graphemic setup, we preserve all casing information and
use unidecode to normalize Latin characters. Exclud-
ing position-dependent variants, we have 47 phones and 56
graphemes, on which we train tri-context decision trees with
7K senones and 5K chenones.

The AM training procedure is identical across both pho-
netic and graphemic setups. We employ a multi-layer uni-
directional Long Short-Term Memory RNN (LSTM) with
five hidden layers and 800 units per layer (approximately
35M parameters). The input features are globally normalized
80-dimensional log Mel-filterbank extracted with 25ms FFT
windows and 10ms frame shift; each input frame is stacked
with seven right neighboring frames. The first LSTM hidden
layer subsamples the output by a factor of three [26] and
the target labels are delayed by 10 frames (100ms). We first
train the model using Cross Entropy (CE) for 15 epochs,
followed by Lattice-Free Maximum Mutual Information (LF-
MMI) [27] for 8 epochs. We use Adam optimizer [28], 0.1
dropout, Block-wise Model-Update Filtering (BMUF) [29],

Written interesting
LM i B n t e r e s t i n g E
Lexicon i WB n t e r e s t i n g WB

Table 1. Example character-level language model and lexicon
entries in our lexicon-free decoding setup.

and 64 GPUs for all AM training experiments.
Evaluation is done using our in-house one-pass dynamic

decoder with n-gram language model (LM). We use a 4-gram
class-based background LM with 135K vocabulary and 23M
n-grams. During decoding, the @name class tag is expanded
on-the-fly using the personalized contact list to allow for
contextual biasing, and name pronunciations are obtained
the same way as was done during training. For phonetic
baselines, the number of pronunciation variants per name
generated via G2P is a tunable hyperparameter (defaults to
2). For graphemic baselines, we add the lower-cased form
of the name as an alternative pronunciation in addition to its
original written form, producing up to two variants.

5.2. G2G Training and Integration

We follow the G2G training procedure outlined in Section 4.
G2G-TTS: our TTS engine is an in-house single-voice

system made up of a text-processing frontend, prosody mod-
els, acoustic models, and a neural vocoder, capable of pro-
ducing high fidelity speech. For LFD, we employ a 10-gram
character-level LM for decoding. This LM is trained on single
words obtained from the training transcripts, which captures
the spelling convention of English. To preserve position de-
pendency, we augment the characters with additional position
tags: B (beginning of word), E (end of word), and S (single-
ton). These position tags allow us to map each grapheme to
the correct AM output unit; for example, the lexicon entry for
i B, i E, and i S is i WB (WB stands for “word boundary”),
whereas the lexicon entry for i is i (see Table 1 for an exam-
ple). The AM used for LFD is a Latency-Controlled Bidirec-
tional LSTM (LC-BLSTM) [30] with five hidden layers and
800 units per direction per layer. This AM uses the same de-
cision tree as our graphemic baseline; it is first trained on reg-
ular training data, then adapted with LF-MMI on TTS audio
generated from the training transcripts. After adaptation, the
Character Error Rate (CER) on a held-out TTS development
set reduces from 1.64% to 0.16%, which denotes almost per-
fect recognition accuracy. The highly accurate AM coupled
with the character-level LM ensures that the LFD output both
captures the acoustic properties of the TTS data and closely
adheres to the conventional English spelling.

G2G-HOM: our homophone-based G2G training data are
133.5K homophone clusters with at least two members, total-
ing 419.6K word pairs. We designate the cluster root to be the
member with the highest normalized score obtained from the
10-gram character-level LM used for LFD. We hypothesize



N Dataset G2P G2G-
HOM

G2G-
TTS

2
name-prod 9.6 9.7†

name-rare 9.6 10.3†

non-name 11.9 11.5†

3
name-prod 9.6 9.6 9.5
name-rare 9.1 10.4 9.7
non-name 11.9 11.5 11.5

4
name-prod 9.6 9.5 9.4
name-rare 9.0 10.2 9.3
non-name 11.9 11.5 11.5

5
name-prod 9.7∗ 9.5 9.4
name-rare 8.9∗ 10.0 9.2
non-name 11.9∗ 11.5 11.5

∗: phonetic baseline †: graphemic baseline without G2G
N: maximum number of pronunciation variants

Table 2. WER comparison between phonetic (G2P) and
graphemic (G2G-HOM, G2G-TTS) ASR systems.

Input G2G-TTS Output
Kaity K WB a t i e WB
Ly L WB e e WB
Coce K WB o c h e WB
Sera S WB a r a h WB
Qifei C WB h i e f e WB
Liesl L WB e i s e l WB
quake q WB u a k e WB
prosciutto p WB r o s h u t o WB
phoneme p WB h o n e e m WB
ASCII a WB s k y WB

Table 3. Example G2G-TTS output for names (top half) and
regular words (bottom half).

that high LM scores mean more canonical English spelling.
We apply the same G2P training method to train a joint-

sequence G2G model. The resulting G2G and G2P models
are therefore directly comparable; they use the same source
data, the same underlying model, and the same training
recipe. The output of G2G for personalized contact lists can
either be used directly for decoding or mixed with the default
graphemic pronunciations.

6. RESULTS AND DISCUSSION

As shown in Table 2, the graphemic ASR baseline per-
forms better by 3% relative on non-name and similar on
name-prod compared to the phonetic baseline, but under-
performs significantly on name-rare by 16% relative. This
large gap on name-rare confirms the limitation of default
graphemic pronunciations when dealing with unconventional

names. For example, Kaity, Ly, Coce, Sera, Qifei, and Liesl
are correctly recognized in the phonetic baseline but misrec-
ognized in the graphemic baseline as Katie, Lee, Choquel,
Sarah, Shi, and Lisa, respectively.

We next analyze the impact of G2G on ASR. We notice
that the stand-alone G2G is good at handling the “edge cases”
while the default graphemic pronunciations are more appro-
priate for common names, thus we report results from com-
bining the two2. Both G2G-HOM and G2G-TTS improve
over the baseline, with the latter giving the best results, yield-
ing an improvement of 3% and 11% on name-prod and
name-rare, respectively. With this setup, the gap between
phonetic and graphemic ASR on name-rare closes from
16% to 3% relative, while the latter performs better on the re-
maining test sets. We hypothesize that G2G-HOM underper-
forms because its output may not be fully compatible with the
AM decision tree, whereas G2G-TTS guarantees this prop-
erty through LFD. Further work is required to train a high-
quality G2G system without relying on TTS.

We provide examples of G2G-TTS output in Table 3 to
gain more understanding of how the model works and why
it helps ASR. The top half of the table shows the G2G out-
put for the misrecognized names mentioned previously, all of
which have been fixed with G2G. The model is able to rewrite
these names into homophone variants with more conventional
spellings. Notably, the model can tell that the “Q” in Qifei is
pronounced as “Ch;” this is a common source of errors for
Chinese names in the baseline system. G2G also gives rea-
sonable output for regular words as seen in the bottom half of
the table, including spoken abbreviations like ASCII. Given
these examples, it will be promising to leverage G2G to im-
prove AM training. Moreover, it will also be interesting to
study the impact of G2G on end-to-end ASR systems based
on word pieces or context-independent graphemes.

7. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel method for training a
G2G model from TTS data that can rewrite words into ho-
mophone variants with more conventional spelling. We show
that G2G output can be leveraged during decoding to signif-
icantly improve graphemic ASR’s proper noun recognition
accuracy and bridge the gap with phoneme-based systems
on rare names. Future work will focus on further improving
G2G, possibly by using neural sequence-to-sequence models,
as well as applying G2G to AM training and end-to-end ASR.
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2G2G-only results are consistently worse than the baseline numbers.
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